R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("Rlab-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('Rlab') Rlab functions and datasets have been loaded. Use help( Rlab ) for an overview of this library Attaching package: 'Rlab' The following object(s) are masked from package:stats : dexp dgamma dweibull pexp pgamma pweibull qexp qgamma qweibull rexp rgamma rweibull The following object(s) are masked from package:datasets : precip > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "Bernoulli" > > ### * Bernoulli > > flush(stderr()); flush(stdout()) > > ### Name: Bernoulli > ### Title: The Bernoulli Distribution > ### Aliases: Bernoulli dbern pbern qbern rbern > ### Keywords: distribution > > ### ** Examples > > # Compute P(X=1) for X Bernoulli(0.7) > dbern(1, 0.7) [1] 0.7 > > > > cleanEx(); ..nameEx <- "Exponential" > > ### * Exponential > > flush(stderr()); flush(stdout()) > > ### Name: Exponential > ### Title: The Exponential Distribution > ### Aliases: Exponential dexp pexp qexp rexp > ### Keywords: distribution > > ### ** Examples > > dexp(1) - exp(-1) #-> 0 [1] 0 > > > > cleanEx(); ..nameEx <- "Gamma" > > ### * Gamma > > flush(stderr()); flush(stdout()) > > ### Name: Gamma > ### Title: The Gamma Distribution > ### Aliases: Gamma dgamma pgamma qgamma rgamma > ### Keywords: distribution > > ### ** Examples > > -log(dgamma(1:4, alpha=1)) [1] 1 2 3 4 > p <- (1:9)/10 > pgamma(qgamma(p,alpha=2), alpha=2) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > 1 - 1/exp(qgamma(p, alpha=1)) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "US" > > ### * US > > flush(stderr()); flush(stdout()) > > ### Name: US > ### Title: Plot of the US with state boundaries > ### Aliases: US > ### Keywords: hplot > > ### ** Examples > > # Draw map in device color # 3 > US( col=3) > > > > cleanEx(); ..nameEx <- "Weibull" > > ### * Weibull > > flush(stderr()); flush(stdout()) > > ### Name: Weibull > ### Title: The Weibull Distribution > ### Aliases: Weibull dweibull pweibull qweibull rweibull > ### Keywords: distribution > > ### ** Examples > > x <- c(0,rlnorm(50)) > all.equal(dweibull(x, alpha = 1), dexp(x)) [1] TRUE > all.equal(pweibull(x, alpha = 1, beta = pi), pexp(x, rate = 1/pi)) [1] TRUE > ## Cumulative hazard H(): > all.equal(pweibull(x, 2.5, pi, lower=FALSE, log=TRUE), -(x/pi)^2.5, tol=1e-15) [1] TRUE > all.equal(qweibull(x/11, alpha = 1, beta = pi), qexp(x/11, rate = 1/pi)) [1] TRUE > > > > cleanEx(); ..nameEx <- "actuator" > > ### * actuator > > flush(stderr()); flush(stdout()) > > ### Name: actuator > ### Title: Actuator force experiment > ### Aliases: actuator > ### Keywords: datasets > > ### ** Examples > > bplot(actuator$force,by=actuator$act) > lplot(actuator$act,actuator$force,actuator$press) > anova( lm(force ~ (act+press+nozzle+line)^2, data=actuator) ) Analysis of Variance Table Response: force Df Sum Sq Mean Sq F value Pr(>F) act 1 0.01358 0.01358 34.9902 0.001967 ** press 1 0.55048 0.55048 1418.7390 2.485e-07 *** nozzle 1 0.00095 0.00095 2.4577 0.177734 line 1 0.00095 0.00095 2.4538 0.178019 act:press 1 0.00603 0.00603 15.5408 0.010936 * act:nozzle 1 0.00010 0.00010 0.2466 0.640529 act:line 1 0.00039 0.00039 1.0009 0.363024 press:nozzle 1 0.00001 0.00001 0.0229 0.885684 press:line 1 0.00004 0.00004 0.1011 0.763334 nozzle:line 1 0.00010 0.00010 0.2613 0.631011 Residuals 5 0.00194 0.00039 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > > > > cleanEx(); ..nameEx <- "airplane" > > ### * airplane > > flush(stderr()); flush(stdout()) > > ### Name: airplane > ### Title: Distances flown by paper airplanes in an experiment with four > ### treatments. > ### Aliases: airplane > ### Keywords: datasets > > ### ** Examples > > # Make side by side boxplots of the four treatments: > > bplot(airplane$distance,airplane$treatment) > > > > cleanEx(); ..nameEx <- "bplot" > > ### * bplot > > flush(stderr()); flush(stdout()) > > ### Name: bplot > ### Title: boxplot > ### Aliases: bplot > ### Keywords: hplot > > ### ** Examples > > # > set.seed(123) > temp<- matrix( rnorm(12*8), ncol=12) > pos<- c(1:6,9:14) > bplot(temp) > # > bplot( temp, pos=pos, labels=paste( "D",1:12), horizontal=TRUE) > # > bplot( temp, pos=pos, label.cex=0, horizontal=TRUE) > # add an axis > axis( 2) > > > > cleanEx(); ..nameEx <- "bplot.xy" > > ### * bplot.xy > > flush(stderr()); flush(stdout()) > > ### Name: bplot.xy > ### Title: Boxplots for conditional distribution > ### Aliases: bplot.xy > ### Keywords: hplot > > ### ** Examples > > # bivariate normal corr= .6 > set.seed( 123) > x<-rnorm( 1000) > y<- .6*x + sqrt( 1- .6**2)*rnorm( 1000) > # > # > bplot.xy( x,y, breaks=seq( -3, 3,,15) ,xlim =c(-4,4), ylim =c(-4,4)) > points( x,y, pch=".", col=3) > > > > cleanEx(); ..nameEx <- "capac" > > ### * capac > > flush(stderr()); flush(stdout()) > > ### Name: capac > ### Title: Capacitance of different shaped capacitors. > ### Aliases: capac > ### Keywords: datasets > > ### ** Examples > > # Make a means plot of capacitance by shape and area. > mplot(capac$capac,capac$shape,capac$area,both=TRUE) plot window will lay out plots in a 2 by 1 matrix > > > > cleanEx(); ..nameEx <- "cavendish" > > ### * cavendish > > flush(stderr()); flush(stdout()) > > ### Name: cavendish > ### Title: Cavendish's 1798 determinations of the density of the earth > ### Aliases: cavendish > ### Keywords: datasets > > ### ** Examples > > plot(cavendish) > > > > cleanEx(); ..nameEx <- "count" > > ### * count > > flush(stderr()); flush(stdout()) > > ### Name: count > ### Title: Counts elements which meet specified conditions > ### Aliases: count > ### Keywords: univar > > ### ** Examples > > > set.seed(1) > x <- rnorm(100) > > # Count the number of times the values in x are greater then 0 > count( x>0 ) [1] 54 > > # Count the number of times the values in x are within the 95 > count( (x>-1.96) & (x<1.96) ) [1] 95 > # Or could have used > count( abs(x)<1.96 ) [1] 95 > > # Count the number of times the values in x are the same as the first element > count( x==x[1] ) [1] 1 > > > > cleanEx(); ..nameEx <- "drill" > > ### * drill > > flush(stderr()); flush(stdout()) > > ### Name: drill > ### Title: Drill testing results > ### Aliases: drill > ### Keywords: datasets > > ### ** Examples > > lplot(drill$brand,drill$price/drill$holes, + main='Price per Hole for Drill Bits',ylab='Price per Hole') > > > > cleanEx(); ..nameEx <- "hplot" > > ### * hplot > > flush(stderr()); flush(stdout()) > > ### Name: hplot > ### Title: Histogram allowing forced number of bins > ### Aliases: hplot > ### Keywords: hplot > > ### ** Examples > > # Create and graph some Normal data > set.seed(100) > set.panel(3,1) plot window will lay out plots in a 3 by 1 matrix > z<- rnorm(100) > hplot(z, nclass=5, main="Standard Normal", xlim=c(-10,10), ylim=c(0,.4)) > z<- rnorm(100, sd=2) > hplot(z, nclass=10, main="Std Dev of 2", xlim=c(-10,10), ylim=c(0,.4)) > z<- rnorm(100, sd=3) > hplot(z, nclass=15, main="Std Dev of 3", xlim=c(-10,10), ylim=c(0,.4)) > > > > cleanEx(); ..nameEx <- "jet" > > ### * jet > > flush(stderr()); flush(stdout()) > > ### Name: jet > ### Title: Jet (actuator) force experiment > ### Aliases: jet > ### Keywords: datasets > > ### ** Examples > > bplot(jet$force,by=jet$act) > mplot(jet$force,jet$act,jet$press,both=TRUE) plot window will lay out plots in a 2 by 1 matrix > anova( lm(force ~ act+press+act:press, data=jet) ) Analysis of Variance Table Response: force Df Sum Sq Mean Sq F value Pr(>F) act 1 0.01357 0.01357 36.360 5.938e-05 *** press 1 0.55045 0.55045 1475.279 6.245e-14 *** act:press 1 0.00603 0.00603 16.170 0.001696 ** Residuals 12 0.00448 0.00037 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > > > > cleanEx(); ..nameEx <- "lplot" > > ### * lplot > > flush(stderr()); flush(stdout()) > > ### Name: lplot > ### Title: Label plot > ### Aliases: lplot > ### Keywords: hplot > > ### ** Examples > > # Create some Normal data > set.seed(123) > temp<- data.frame(matrix(rnorm(12*8), ncol=12)) > pos<- c(1:6,9:14) > lplot(temp) > > # Now see some labels > lplot(temp, labels=paste("Y",1:12), tcex=.5) > > # Create a data set with two factors (age and gender) > race<-data.frame(c(1.02,.99,1.11,1.30,1.09,1.26,1.21,1.19,1.30,1.45,1.34,1.49), + c('M','M','M','M','M','M','F','F','F','F','F','F'), + c('under 50','under 50','under 50','over 50','over 50','over 50', + 'under 50','under 50','under 50','over 50','over 50','over 50')) > names(race)<-c("time","gender","age") > > # Plot the data to see the factors > lplot(race$gender, race$time, race$age) > > > > cleanEx(); ..nameEx <- "ls.rlab" > > ### * ls.rlab > > flush(stderr()); flush(stdout()) > > ### Name: ls.rlab > ### Title: List of objects in Rlab > ### Aliases: ls.rlab ls.summary.rlab > ### Keywords: list > > ### ** Examples > > > # list all Rlab datasets and their sizes > ls.summary.rlab() Dataset Class Mode Dimension 1 SpGravity data.frame list 40 x 40 2 US.dat list list 3 3 actuator data.frame list 16 x 16 4 airplane data.frame list 24 x 24 5 alka data.frame list 8 x 8 6 bread data.frame list 48 x 48 7 bread2 data.frame list 6 x 6 8 cancer data.frame list 25 x 25 9 capac data.frame list 15 x 15 10 cavendish numeric numeric 29 11 climate data.frame list 50 x 50 12 college data.frame list 15 x 15 13 draft data.frame list 12 x 12 14 drill data.frame list 14 x 14 15 earthq data.frame list 148 x 148 16 etruscan data.frame list 154 x 154 17 framerate data.frame list 36 x 36 18 ftp data.frame list 6 x 6 19 ftptime numeric numeric 40 20 golf data.frame list 195 x 195 21 insulate data.frame list 56 x 56 22 jet data.frame list 16 x 16 23 magnet data.frame list 6 x 6 24 marathon data.frame list 21 x 21 25 metalcut data.frame list 18 x 18 26 michelson data.frame list 100 x 100 27 monarch data.frame list 72 x 72 28 ncsu data.frame list 92 x 92 29 oil data.frame list 8 x 8 30 ozone data.frame list 518 x 518 31 ping data.frame list 12 x 12 32 popcorn data.frame list 16 x 16 33 precip data.frame list 45 x 45 34 quake data.frame list 496 x 496 35 raleigh.snow data.frame list 30 x 30 36 raleigh.temp data.frame list 480 x 480 37 randomdata numeric numeric 200 38 salt data.frame list 24 x 24 39 solar data.frame list 18 x 18 40 us.age data.frame list 10 x 10 41 us.pop data.frame list 100 x 100 42 viscosity data.frame list 26 x 26 43 vocab data.frame list 10 x 10 44 webhost data.frame list 15 x 15 45 wire data.frame list 27 x 27 46 world.dat list list 2 47 yarn data.frame list 60 x 60 48 yarnred data.frame list 6 x 6 > > # list all Rlab functions > ls.rlab("functions") [1] "US" "bplot" "bplot.obj" "bplot.old" [5] "bplot.xy" "cat.to.list" "count" "dbern" [9] "describe" "describe.bplot" "dexp" "dgamma" [13] "draw.bplot" "draw.bplot.obj" "dtri" "dweibull" [17] "ex" "hplot" "lplot" "ls.rlab" [21] "ls.summary.rlab" "make.surface" "means" "means.2way" [25] "message2" "mfit" "mfit.2way" "mklevel" [29] "mplot" "nplot" "pbern" "pexp" [33] "pgamma" "ptri" "pweibull" "qbern" [37] "qexp" "qgamma" "qtri" "qweibull" [41] "random.walk" "rbern" "read.data" "rexp" [45] "rgamma" "rweibull" "set.panel" "simulate.reg" [49] "simulate.samples" "simulate.sums" "stats" "stats.bplot" [53] "view" "world" "write.data" "xline" [57] "yline" > > > > cleanEx(); ..nameEx <- "make.surface" > > ### * make.surface > > flush(stderr()); flush(stdout()) > > ### Name: make.surface > ### Title: Creates a surface > ### Aliases: make.surface > ### Keywords: manip > > ### ** Examples > > > # Generate a 2-dim grid > seq(-1,1,length=50)->xgrid > seq(-1.5,.8,length=50)->ygrid > > # Create a surface for x^2-y^2 > make.surface(xgrid,ygrid,"xgrid**2-ygrid**2")->look xgrid ygrid Evaluating the formula on the grid formed from x and y > > # Plot it various ways > image(look) > contour(look) > persp(look,theta=45) > > > > cleanEx(); ..nameEx <- "means" > > ### * means > > flush(stderr()); flush(stdout()) > > ### Name: means > ### Title: Computes one-way and two-way means tables > ### Aliases: means > ### Keywords: univar > > ### ** Examples > > > # Create a data set with two factors (age and gender) > race<-data.frame(c(1.02,.99,1.11,1.30,1.09,1.26,1.21,1.19,1.30,1.45,1.34,1.49), + c('M','M','M','M','M','M','F','F','F','F','F','F'), + c('under 50','under 50','under 50','over 50','over 50','over 50', + 'under 50','under 50','under 50','over 50','over 50','over 50')) > names(race)<-c("time","gender","age") > > # Show mean times broken by age, gender and age & gender > means(race$time, race$age, race$gender) Mean of Y variable race$time by X variable race$age over 50 under 50 N 6.000 6.000 mean 1.322 1.137 Std.Dev. 0.144 0.119 ****************************** Mean of Y variable race$time by X variable race$gender F M N 6.000 6.000 mean 1.330 1.128 Std.Dev. 0.122 0.126 ****************************** Note: in the following, if sample sizes are not equal row and col means will not be the average of cell means. Mean of Y variable race$time by X variables race$age and race$gender F M Row Mean over 50 1.427 1.217 1.322 under 50 1.233 1.040 1.137 Col Mean 1.330 1.128 1.229 > > > > cleanEx(); ..nameEx <- "mfit" > > ### * mfit > > flush(stderr()); flush(stdout()) > > ### Name: mfit > ### Title: Computes main and interaction fitted effects > ### Aliases: mfit > ### Keywords: univar > > ### ** Examples > > > # Create a data set with two factors (age and gender) > race<-data.frame(c(1.02,.99,1.11,1.30,1.09,1.26,1.21,1.19,1.30,1.45,1.34,1.49), + c('M','M','M','M','M','M','F','F','F','F','F','F'), + c('under 50','under 50','under 50','over 50','over 50','over 50', + 'under 50','under 50','under 50','over 50','over 50','over 50')) > names(race)<-c("time","gender","age") > > # Show fitted effects for age, gender and age & gender > means(race$time, race$age, race$gender) Mean of Y variable race$time by X variable race$age over 50 under 50 N 6.000 6.000 mean 1.322 1.137 Std.Dev. 0.144 0.119 ****************************** Mean of Y variable race$time by X variable race$gender F M N 6.000 6.000 mean 1.330 1.128 Std.Dev. 0.122 0.126 ****************************** Note: in the following, if sample sizes are not equal row and col means will not be the average of cell means. Mean of Y variable race$time by X variables race$age and race$gender F M Row Mean over 50 1.427 1.217 1.322 under 50 1.233 1.040 1.137 Col Mean 1.330 1.128 1.229 > > > > cleanEx(); ..nameEx <- "michelson" > > ### * michelson > > flush(stderr()); flush(stdout()) > > ### Name: michelson > ### Title: Results from Michelson's determination of the velocity of light > ### in air. > ### Aliases: michelson > ### Keywords: datasets > > ### ** Examples > > lplot(michelson$velocity,michelson$set) > bplot(michelson$velocity,michelson$set) > > > > cleanEx(); ..nameEx <- "mplot" > > ### * mplot > > flush(stderr()); flush(stdout()) > > ### Name: mplot > ### Title: Plots factor means > ### Aliases: mplot > ### Keywords: hplot > > ### ** Examples > > > # Create a data set with three factors (age, gender and number of water breaks) > race<-data.frame(c(1.02,.99,1.11,1.30,1.09,1.26,1.21,1.19,1.30,1.45,1.34,1.49), + c('M','M','M','M','M','M','F','F','F','F','F','F'), + c('under 50','under 50','under 50','over 50','over 50','over 50', + 'under 50','under 50','under 50','over 50','over 50','over 50'), + c(1,0,2,2,0,1,2,1,0,2,1,0)) > names(race)<-c("time","gender","age","water") > > # Show mean times broken by age, gender and age & gender > mplot(race$time, race$age, race$gender) plot window will lay out plots in a 1 by 1 matrix > > # Show 2 plots, with age and then gender along the x-axis > mplot(race$time, race$age, race$gender, both=TRUE) plot window will lay out plots in a 2 by 1 matrix > > # Now also consider water breaks > mplot(race$time, race$age, race$gender, race$water, both=TRUE) plot window will lay out plots in a 3 by 2 matrix > > # Print the means for the above plots > means(race$time, race$age, race$gender, race$water) Mean of Y variable race$time by X variable race$age over 50 under 50 N 6.000 6.000 mean 1.322 1.137 Std.Dev. 0.144 0.119 ****************************** Mean of Y variable race$time by X variable race$gender F M N 6.000 6.000 mean 1.330 1.128 Std.Dev. 0.122 0.126 ****************************** Mean of Y variable race$time by X variable race$water 0 1 2 N 4.000 4.000 4.000 mean 1.218 1.203 1.268 Std.Dev. 0.223 0.136 0.144 ****************************** Note: in the following, if sample sizes are not equal row and col means will not be the average of cell means. Mean of Y Variable race$time by X variables race$age and race$gender F M Row Mean over 50 1.427 1.217 1.322 under 50 1.233 1.040 1.137 Col Mean 1.330 1.128 1.229 ****************************** Mean of Y Variable race$time by X variables race$age and race$water 0 1 2 Row Mean over 50 1.290 1.300 1.375 1.322 under 50 1.145 1.105 1.160 1.137 Col Mean 1.218 1.203 1.268 1.229 ****************************** Mean of Y Variable race$time by X variables race$gender and race$water 0 1 2 Row Mean F 1.395 1.265 1.330 1.330 M 1.040 1.140 1.205 1.128 Col Mean 1.218 1.203 1.268 1.229 ****************************** > > > > > cleanEx(); ..nameEx <- "stats" > > ### * stats > > flush(stderr()); flush(stdout()) > > ### Name: stats > ### Title: Calculate summary statistics > ### Aliases: stats > ### Keywords: univar > > ### ** Examples > > #Statistics for 8 normal random samples: > zork<- matrix( rnorm(200), ncol=8) > stats(zork) [,1] [,2] [,3] [,4] [,5] N 25.0000000 25.00000000 25.0000000 25.00000000 25.0000000 mean 0.1686652 0.03223135 0.1654091 0.06924384 0.1047730 Std.Dev. 0.9501080 0.70628065 1.1051952 0.83071749 0.7834642 min -2.2146999 -1.47075238 -1.8049586 -1.52356680 -0.9109216 Q1 -0.3053884 -0.39428995 -0.7099464 -0.54252003 -0.4616447 median 0.3898432 -0.05931340 0.1532533 0.07434132 -0.1795565 Q3 0.7821363 0.55666320 0.6107264 0.59394619 0.4941883 max 1.5952808 1.35867955 2.4016178 1.58683345 1.7672873 missing values 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 [,6] [,7] [,8] N 25.00000000 25.00000000 25.00000000 mean -0.40974386 0.08186525 0.07187332 Std.Dev. 0.94926150 1.04846008 0.98889447 min -1.91435943 -1.48746031 -1.46725003 Q1 -1.11592011 -0.61924305 -0.76608200 median -0.46353040 -0.07715294 -0.03472603 Q3 0.01739562 0.45699881 0.83037317 max 2.08716655 2.30797840 2.07524501 missing values 0.00000000 0.00000000 0.00000000 > > zork<- rnorm( 200) > id<- sample( 1:8, 200, replace=TRUE) > stats( zork, by=id) 7 1 8 6 3 N 20.0000000 31.0000000 30.00000000 25.00000000 27.00000000 mean -0.0870513 0.2785115 -0.08431315 -0.08174414 -0.08016774 Std.Dev. 0.9223204 0.9243022 1.09643708 0.91234158 1.30152812 min -1.1864586 -1.8697888 -2.88892067 -1.36329126 -2.59232767 Q1 -0.8699710 -0.1324568 -0.86771313 -0.45413691 -0.46497113 median -0.2668835 0.2441649 0.03369048 -0.25567071 0.17048947 Q3 0.4847286 0.9530747 0.77929008 0.37996269 0.77178164 max 1.8874745 1.8031419 1.58658843 2.49766159 1.97133739 missing values 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 4 5 2 N 24.00000000 16.000000000 27.0000000 mean -0.14069755 0.118826273 0.3499169 Std.Dev. 1.00722745 0.964964832 0.8439739 min -2.26488936 -2.129360648 -1.1676623 Q1 -0.64123101 -0.352820471 -0.3492914 median -0.02606136 -0.001606084 0.3747244 Q3 0.63153533 0.835102364 0.7510879 max 1.31400217 1.577891795 2.6491669 missing values 0.00000000 0.000000000 0.0000000 > > > > cleanEx(); ..nameEx <- "world" > > ### * world > > flush(stderr()); flush(stdout()) > > ### Name: world > ### Title: Plot of the world > ### Aliases: world > ### Keywords: hplot > > ### ** Examples > > # Draw map in device color number 2 > world( col=2 ) > # add the US > US( add=TRUE ) > > ## Western Europe (*which* big island is missing ?) > ## with a (light color!) coordinate grid: > > world(xlim=c(-10,18),ylim=c(36,60), xaxt = "s", yaxt = "s") > grid() > > > > > cleanEx(); ..nameEx <- "xline" > > ### * xline > > flush(stderr()); flush(stdout()) > > ### Name: xline > ### Title: Draw a vertical line > ### Aliases: xline > ### Keywords: aplot > > ### ** Examples > > > plot( 1:10) > xline( 6.5, col=2) > > world( col=3) > yline( seq( -80,80,10),col=4, lty=2) > xline( seq( -180,180,10),col=4,lty=2) > yline( 0, lwd=2, col=4) > > > > cleanEx(); ..nameEx <- "yline" > > ### * yline > > flush(stderr()); flush(stdout()) > > ### Name: yline > ### Title: Draw horizontal lines > ### Aliases: yline > ### Keywords: aplot > > ### ** Examples > > world( col=3) > yline( seq( -80,80,10),col=4, lty=2) > xline( seq( -180,180,10),col=4,lty=2) > yline( 0, lwd=2, col=4) > > > > ### *