R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("SparseM-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('SparseM') [1] "SparseM library loaded" > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "SparseM.hb" > > ### * SparseM.hb > > flush(stderr()); flush(stdout()) > > ### Name: SparseM.hb > ### Title: Harwell-Boeing Format Sparse Matrices > ### Aliases: SparseM.hb read.matrix.hb write.matrix.hb > ### model.matrix,ANY-method model.matrix,matrix.csc.hb-method > ### model.matrix,matrix.ssc.hb-method model.matrix.matrix.ssc.hb > ### model.response,ANY-method model.response,matrix.csc.hb-method > ### model.response,matrix.ssc.hb-method model.response model.matrix > ### Keywords: IO > > ### ** Examples > > read.matrix.hb(system.file("data","lsq.rra",package = "SparseM"))-> hb.o > class(hb.o) # -> [1] "matrix.csc.hb" [1] "matrix.csc.hb" attr(,"package") [1] "SparseM" > model.matrix(hb.o)->X > class(X) # -> "matrix.csr" [1] "matrix.csr" attr(,"package") [1] "SparseM" > dim(X) # -> [1] 1850 712 [1] 1850 712 > y <- model.response(hb.o) # extract the rhs > length(y) # [1] 1850 [1] 1850 > write.matrix.hb("lsq.out",as.matrix.csc(X),title="lsq.rra",key="WELL1850",mxtype="RRA",rhs=hb.o@rhs.ra) > > > > cleanEx(); ..nameEx <- "SparseM.image" > > ### * SparseM.image > > flush(stderr()); flush(stdout()) > > ### Name: SparseM.image > ### Title: Image Plot for Sparse Matrices > ### Aliases: image,matrix.csr-method image.matrix.csc-method > ### image,ANY-method SparseM.image image > ### Keywords: hplot algebra > > ### ** Examples > > a <- rnorm(20*5) > A <- matrix(a,20,5) > A[row(A)>col(A)+4|row(A) b <- rnorm(20*5) > B <- matrix(b,20,5) > B[row(A)>col(A)+2|row(A) image(as.matrix.csr(A)%*%as.matrix.csr(t(B))) > > > > cleanEx(); ..nameEx <- "SparseM.ontology" > > ### * SparseM.ontology > > flush(stderr()); flush(stdout()) > > ### Name: SparseM.ontology > ### Title: Sparse Matrix Class > ### Aliases: SparseM.ontology matrix.csr matrix.csc initialize,ANY-method > ### initialize,matrix.csr-method initialize,matrix.coo-method > ### coerce,vector,matrix.diag.csr-method > ### coerce,matrix.csr,matrix.diag.csr-method > ### coerce,vector,matrix.csr-method coerce,numeric,matrix.diag.csr-method > ### as.matrix,ANY-method as.matrix,matrix.csr-method as.matrix,csr-method > ### is.matrix,csr-methods as.matrix,csc-methods is.matrix,csc-methods > ### as.matrix,ssr-methods is.matrix,ssr-methods as.matrix,ssc-methods > ### is.matrix,ssc-methods as.matrix,coo-methods is.matrix,coo-methods > ### as.matrix.csr,ANY-method as.matrix.csr,matrix.csc-method > ### as.matrix.csr,matrix.ssr-method as.matrix.csr,matrix.ssc-method > ### as.matrix.csr,matrix.coo-method as.matrix.csc,ANY-method > ### as.matrix.csc,matrix.csr-method as.matrix.csc,matrix.csc-method > ### as.matrix.csc,matrix.ssr-method as.matrix.csc,matrix.ssc-method > ### as.matrix.csc,matrix.coo-method as.matrix.ssr,ANY-method > ### as.matrix.ssr,matrix.csc-method as.matrix.ssr,matrix.ssr-method > ### as.matrix.ssr,matrix.ssc-method as.matrix.ssr,matrix.coo-method > ### as.matrix.ssc,ANY-method as.matrix.ssc,matrix.csr-method > ### as.matrix.ssc,matrix.csc-method as.matrix.ssc,matrix.ssr-method > ### as.matrix.ssc,matrix.ssc-method as.matrix.ssc,matrix.coo-method > ### as.matrix.coo,ANY-method as.matrix.coo,matrix.csr-method > ### as.matrix.coo,matrix.csc-method as.matrix.coo,matrix.ssr-method > ### as.matrix.coo,matrix.ssc-method as.matrix.coo,matrix.coo-method > ### as.matrix,matrix.csc-method as.matrix,matrix.ssc-method > ### as.matrix,matrix.ssr-method as.matrix,matrix.coo-method matrix.ssc > ### as.matrix.ssc,matrix.csc-method as.matrix.ssc.matrix.csr-method > ### as.matrix.ssc,matrix.ssr-method matrix.ssr > ### as.matrix.ssr,matrix.csc-method as.matrix.ssr,matrix.csr-method > ### as.matrix.ssr,matrix.ssc-method is.matrix.csr is.matrix.csc > ### is.matrix.ssr is.matrix.ssc is.matrix.coo is.matrix.csr as.matrix.csr > ### as.matrix.csc as.matrix.ssr as.matrix.ssc as.matrix.coo > ### Keywords: algebra > > ### ** Examples > > n1 <- 10 > p <- 5 > a <- rnorm(n1*p) > a[abs(a)<0.5] <- 0 > A <- matrix(a,n1,p) > B <- t(A)%*%A > A.csr <- as.matrix.csr(A) > A.csc <- as.matrix.csc(A) > B.ssr <- as.matrix.ssr(B) > B.ssc <- as.matrix.ssc(B) > is.matrix.csr(A.csr) # -> TRUE [1] TRUE > is.matrix.csc(A.csc) # -> TRUE [1] TRUE > is.matrix.ssr(B.ssr) # -> TRUE [1] TRUE > is.matrix.ssc(B.ssc) # -> TRUE [1] TRUE > as.matrix(A.csr) [,1] [,2] [,3] [,4] [,5] [1,] -0.6264538 1.5117812 0.9189774 1.3586796 0.0000000 [2,] 0.0000000 0.0000000 0.7821363 0.0000000 0.0000000 [3,] -0.8356286 -0.6212406 0.0000000 0.0000000 0.6969634 [4,] 1.5952808 -2.2146999 -1.9893517 0.0000000 0.5566632 [5,] 0.0000000 1.1249309 0.6198257 -1.3770596 -0.6887557 [6,] -0.8204684 0.0000000 0.0000000 0.0000000 -0.7074952 [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 [8,] 0.7383247 0.9438362 -1.4707524 0.0000000 0.7685329 [9,] 0.5757814 0.8212212 0.0000000 1.1000254 0.0000000 [10,] 0.0000000 0.5939013 0.0000000 0.7631757 0.8811077 > as.matrix(A.csc) An object of class "matrix.csc" Slot "ra": [1] -0.6264538 -0.8356286 1.5952808 -0.8204684 0.7383247 0.5757814 [7] 1.5117812 -0.6212406 -2.2146999 1.1249309 0.9438362 0.8212212 [13] 0.5939013 0.9189774 0.7821363 -1.9893517 0.6198257 -1.4707524 [19] 1.3586796 -1.3770596 1.1000254 0.7631757 0.6969634 0.5566632 [25] -0.6887557 -0.7074952 0.7685329 0.8811077 Slot "ja": [1] 1 3 4 6 8 9 1 3 4 5 8 9 10 1 2 4 5 8 1 5 9 10 3 4 5 [26] 6 8 10 Slot "ia": [1] 1 7 14 19 23 29 Slot "dimension": [1] 10 5 > as.matrix(B.ssr) [,1] [,2] [,3] [,4] [,5] [1,] 5.1854563 -2.791301 -4.8351643 -0.2177759 1.453536 [2,] -2.7913014 10.759737 5.1042215 1.8615445 -1.191966 [3,] -4.8351643 5.104221 7.9610733 0.3950588 -2.664629 [4,] -0.2177759 1.861545 0.3950588 5.5347962 1.620898 [5,] 1.4535358 -1.191966 -2.6646290 1.6208977 3.137559 > as.matrix(B.ssc) [,1] [,2] [,3] [,4] [,5] [1,] 5.1854563 -2.791301 -4.8351643 -0.2177759 1.453536 [2,] -2.7913014 10.759737 5.1042215 1.8615445 -1.191966 [3,] -4.8351643 5.104221 7.9610733 0.3950588 -2.664629 [4,] -0.2177759 1.861545 0.3950588 5.5347962 1.620898 [5,] 1.4535358 -1.191966 -2.6646290 1.6208977 3.137559 > as.matrix.csr(rep(0,9),3,3) #sparse matrix of all zeros An object of class "matrix.csr" Slot "ra": [1] 0 Slot "ja": [1] 1 Slot "ia": [1] 1 2 2 2 Slot "dimension": [1] 3 3 > as(4,"matrix.diag.csr") #identity matrix of dimension 4 An object of class "matrix.diag.csr" Slot "ra": [1] 1 1 1 1 Slot "ja": [1] 1 2 3 4 Slot "ia": [1] 1 2 3 4 5 Slot "dimension": [1] 4 4 > > > > cleanEx(); ..nameEx <- "SparseM.ops" > > ### * SparseM.ops > > flush(stderr()); flush(stdout()) > > ### Name: SparseM.ops > ### Title: Basic Linear Algebra for Sparse Matrices > ### Aliases: Ops.matrix.csr Ops.matrix.diag.csr \%*\%-methods > ### \%*\%,ANY,ANY-method \%*\%,matrix.csr,matrix.csr-method > ### \%*\%,matrix.csr,matrix-method \%*\%,matrix.csr,numeric-method > ### \%*\%,matrix,matrix.csr-method \%*\%,numeric,matrix.csr-method > ### \%x\%-methods \%x\%,ANY,ANY-method \%x\%,matrix.csr,matrix.csr-method > ### \%x\%,matrix.csr,matrix-method \%x\%,matrix.csr,numeric-method > ### \%x\%,matrix,matrix.csr-method \%x\%,numeric,matrix.csr-method > ### +,matrix.csr-method -,matrix.csr-method *,matrix.csr-method > ### /,matrix.csr-method ^,matrix.csr-method \%\%,matrix.csr-method > ### \%/\%,matrix.csr-method >,matrix.csr-method >=,matrix.csr-method > ### <,matrix.csr-method <=,matrix.csr-method ==,matrix.csr-method > ### !=,matrix.csr-method &,matrix.csr-method |,matrix.csr-method norm > ### norm,ANY-method norm,matrix.csr-method det,ANY-method > ### det,matrix-method det,matrix.csr-method det,matrix.csr.chol-method > ### t,ANY-method t,matrix.csr-method t,matrix.csc-method > ### t,matrix.coo-method diag,ANY-method diag,matrix.csr-method > ### diag<-,ANY-method diag<-,matrix.csr-method > ### diag<-,matrix.diag.csr-method diff,matrix.csr-method > ### diff<-,ANY-method diff<-,matrix.csr-method > ### diag.assign,matrix.csr-method ncol,matrix.csr-method > ### nrow,matrix.csr-method dim,ANY-method dim,matrix.csr-method > ### dim,matrix.csc-method dim,matrix.ssr-method dim,matrix.ssc-method > ### dim,matrix.coo-method rbind.matrix.csr cbind.matrix.csr [.matrix.csr > ### [.matrix.diag.csr [<-.matrix.csr [<-.matrix.diag.csr [.matrix.coo > ### [<-.matrix.coo > ### Keywords: algebra > > ### ** Examples > > n1 <- 10 > n2 <- 10 > p <- 6 > y <- rnorm(n1) > a <- rnorm(n1*p) > a[abs(a)<0.5] <- 0 > A <- matrix(a,n1,p) > A.csr <- as.matrix.csr(A) > b <- rnorm(n2*p) > b[abs(b)<1.0] <- 0 > B <- matrix(b,n2,p) > B.csr <- as.matrix.csr(B) > > # matrix transposition and multiplication > A.csr%*%t(B.csr) An object of class "matrix.csr" Slot "ra": [1] 0.26077880 2.65925060 -1.40012341 -0.75751504 4.86657118 -1.66385612 [7] 0.04483007 -1.19163690 0.83148897 0.77880794 1.23173450 1.17241512 [13] 0.92634674 2.77642175 -3.96119607 3.03091020 -2.11487946 0.98378378 [19] 0.93640552 -3.59541515 1.18475954 -0.94434593 2.41688015 -2.66155068 [25] 1.68636450 -1.21722917 -1.15860835 -1.25034718 -1.19013143 2.83649160 [31] -2.42412952 -1.18322460 -3.22816974 2.24078950 -1.56355662 1.35821845 [37] 1.29280770 1.96829708 0.71604674 1.32868523 2.09247162 -1.40428382 [43] -1.34710495 0.46649828 3.83971724 0.88559113 -0.97426421 -0.93459465 [49] 1.55717047 1.48217834 Slot "ja": [1] 5 3 4 7 2 9 3 4 7 5 6 10 2 5 3 4 7 6 10 5 3 4 7 2 9 [26] 6 10 6 10 3 2 5 3 4 7 6 10 2 5 2 3 7 9 5 2 3 7 9 6 10 Slot "ia": [1] 1 7 10 14 20 28 31 32 39 44 51 Slot "dimension": [1] 10 10 > > # kronecker product > A.csr %x% matrix(1:4,2,2) An object of class "matrix.csr" Slot "ra": [1] 1.5117812 4.5353435 0.9189774 2.7569321 1.3586796 4.0760387 [7] 2.4016178 7.2048533 3.0235623 6.0471247 1.8379547 3.6759095 [13] 2.7173591 5.4347182 4.8032355 9.6064710 0.7821363 2.3464089 [19] -0.6120264 -1.8360792 1.5642726 3.1285452 -1.2240528 -2.4481056 [25] -0.6212406 -1.8637217 0.6969634 2.0908901 0.6897394 2.0692181 [31] -1.2424812 -2.4849623 1.3939268 2.7878535 1.3794787 2.7589574 [37] -2.2146999 -6.6440997 -1.9893517 -5.9680551 0.5566632 1.6699896 [43] -1.1293631 -3.3880893 -4.4293998 -8.8587995 -3.9787034 -7.9574068 [49] 1.1133264 2.2266528 -2.2587262 -4.5174524 1.1249309 3.3747928 [55] 0.6198257 1.8594772 -1.3770596 -4.1311787 -0.6887557 -2.0662671 [61] 1.4330237 4.2990711 -0.7432732 -2.2298196 2.2498618 4.4997237 [67] 1.2396515 2.4793030 -2.7541191 -5.5082382 -1.3775114 -2.7550228 [73] 2.8660474 5.7320948 -1.4865464 -2.9730928 -0.7074952 -2.1224855 [79] 1.9803999 5.9411997 -1.4149903 -2.8299806 3.9607998 7.9215996 [85] -1.8049586 -5.4148759 -3.6099173 -7.2198345 0.9438362 2.8315086 [91] -1.4707524 -4.4122572 0.7685329 2.3055988 -1.0441346 -3.1324039 [97] 1.4655549 4.3966646 1.8876724 3.7753448 -2.9415048 -5.8830095 [103] 1.5370658 3.0741317 -2.0882693 -4.1765385 2.9311097 5.8622194 [109] 0.8212212 2.4636636 1.1000254 3.3000761 0.5697196 1.7091589 [115] 1.6424424 3.2848848 2.2000507 4.4001015 1.1394393 2.2788785 [121] 0.5939013 1.7817040 0.7631757 2.2895272 0.8811077 2.6433232 [127] 2.1726117 6.5178350 1.1878026 2.3756053 1.5263515 3.0527030 [133] 1.7622155 3.5244309 4.3452233 8.6904467 Slot "ja": [1] 1 2 3 4 5 6 11 12 1 2 3 4 5 6 11 12 3 4 9 10 3 4 9 10 1 [26] 2 7 8 11 12 1 2 7 8 11 12 1 2 3 4 7 8 9 10 1 2 3 4 7 8 [51] 9 10 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 [76] 12 7 8 9 10 7 8 9 10 11 12 11 12 1 2 3 4 7 8 9 10 11 12 1 2 [101] 3 4 7 8 9 10 11 12 1 2 5 6 9 10 1 2 5 6 9 10 1 2 5 6 7 [126] 8 11 12 1 2 5 6 7 8 11 12 Slot "ia": [1] 1 9 17 21 25 31 37 45 53 65 77 81 85 87 89 99 109 115 121 [20] 129 137 Slot "dimension": [1] 20 12 > > > > > cleanEx(); ..nameEx <- "SparseM.solve" > > ### * SparseM.solve > > flush(stderr()); flush(stdout()) > > ### Name: SparseM.solve > ### Title: Linear Equation Solving for Sparse Matrices > ### Aliases: SparseM.solve chol,ANY-method chol,matrix.csr-method > ### chol,matrix.csc-method chol,matrix-method chol chol.default > ### backsolve-methods backsolve,ANY-method backsolve solve > ### backsolve,matrix.csr.chol-method solve,ANY-method > ### solve,matrix.csr-method > ### Keywords: algebra > > ### ** Examples > > data(lsq) > class(lsq) # -> [1] "matrix.csc.hb" [1] "matrix.csc.hb" > model.matrix(lsq)->design.o > class(design.o) # -> "matrix.csr" [1] "matrix.csr" attr(,"package") [1] "SparseM" > dim(design.o) # -> [1] 1850 712 [1] 1850 712 > y <- model.response(lsq) # extract the rhs > length(y) # [1] 1850 [1] 1850 > t(design.o)%*%design.o -> XpX > t(design.o)%*%y -> Xpy > chol(XpX)->chol.o > backsolve(chol.o,Xpy)-> b1 # least squares solutions in two steps > solve(XpX,Xpy) -> b2 # least squares estimates in one step > > > > cleanEx(); ..nameEx <- "lsq" > > ### * lsq > > flush(stderr()); flush(stdout()) > > ### Name: lsq > ### Title: Least Squares Problems in Surveying > ### Aliases: lsq > ### Keywords: datasets > > ### ** Examples > > data(lsq) > class(lsq) # -> [1] "matrix.csc.hb" [1] "matrix.csc.hb" > model.matrix(lsq)->X > class(X) # -> "matrix.csr" [1] "matrix.csr" attr(,"package") [1] "SparseM" > dim(X) # -> [1] 1850 712 [1] 1850 712 > y <- model.response(lsq) # extract the rhs > length(y) # [1] 1850 [1] 1850 > > > > cleanEx(); ..nameEx <- "slm" > > ### * slm > > flush(stderr()); flush(stdout()) > > ### Name: slm > ### Title: Fit a linear regression model using sparse matrix algebra > ### Aliases: slm > ### Keywords: regression > > ### ** Examples > > data(lsq) > X <- model.matrix(lsq) #extract the design matrix > y <- model.response(lsq) # extract the rhs > X1 <- as.matrix(X) > slm.time <- unix.time(slm(y~X1-1) -> slm.o) # pretty fast > lm.time <- unix.time(lm(y~X1-1) -> lm.o) # very slow > cat("slm time =",slm.time,"\n") slm time = 1.74 1.03 2.78 0 0 > cat("slm Results: Reported Coefficients Truncated to 5 ","\n") slm Results: Reported Coefficients Truncated to 5 > sum.slm <- summary(slm.o) > sum.slm$coef <- sum.slm$coef[1:5,] > sum.slm Call: slm(formula = y ~ X1 - 1) Residuals: Min 1Q Median 3Q Max -0.19522 -0.01400 0.00000 0.01442 0.17833 Coefficients: Estimate Std. Error t value Pr(>|t|) [1,] 823.3613 0.1274 6460.4 <2e-16 *** [2,] 340.1156 0.1711 1987.3 <2e-16 *** [3,] 472.9760 0.1379 3429.6 <2e-16 *** [4,] 349.3175 0.1743 2004.0 <2e-16 *** [5,] 187.5595 0.2100 893.3 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.03789 on 1138 degrees of freedom Multiple R-Squared: 1, Adjusted R-squared: 1 F-statistic: 4.504e+07 on 712 and 1138 DF, p-value: 0 > cat("lm time =",lm.time,"\n") lm time = 3.94 1.3 5.3 0 0 > cat("lm Results: Reported Coefficients Truncated to 5 ","\n") lm Results: Reported Coefficients Truncated to 5 > sum.lm <- summary(lm.o) > sum.lm$coef <- sum.lm$coef[1:5,] > sum.lm Call: lm(formula = y ~ X1 - 1) Residuals: Min 1Q Median 3Q Max -1.952e-01 -1.400e-02 1.859e-19 1.442e-02 1.783e-01 Coefficients: Estimate Std. Error t value Pr(>|t|) X11 8.234e+02 1.274e-01 6460.386 < 2e-16 *** X12 3.401e+02 1.711e-01 1987.263 < 2e-16 *** X13 4.730e+02 1.379e-01 3429.576 < 2e-16 *** X14 3.493e+02 1.743e-01 2004.020 < 2e-16 *** X15 1.876e+02 2.100e-01 893.267 < 2e-16 *** X16 1.591e+02 2.201e-01 722.478 < 2e-16 *** X17 -5.488e+01 3.198e-01 -171.592 < 2e-16 *** X18 4.977e+02 1.403e-01 3546.771 < 2e-16 *** X19 5.748e+02 1.421e-01 4045.421 < 2e-16 *** X110 5.844e+02 1.943e-01 3007.059 < 2e-16 *** X111 4.434e+02 1.699e-01 2609.047 < 2e-16 *** X112 4.598e+02 1.657e-01 2775.764 < 2e-16 *** X113 4.378e+02 2.098e-01 2086.192 < 2e-16 *** X114 4.719e+02 2.739e-01 1722.694 < 2e-16 *** X115 2.519e+02 1.544e-01 1631.287 < 2e-16 *** X116 3.870e+02 2.107e-01 1837.190 < 2e-16 *** X117 3.069e+02 1.895e-01 1619.806 < 2e-16 *** X118 4.240e+02 2.062e-01 2056.508 < 2e-16 *** X119 2.789e+02 1.923e-01 1450.341 < 2e-16 *** X120 2.793e+02 2.229e-01 1252.998 < 2e-16 *** X121 1.343e+02 2.137e-01 628.730 < 2e-16 *** X122 1.752e+02 1.836e-01 953.829 < 2e-16 *** X123 1.964e+02 2.276e-01 863.032 < 2e-16 *** X124 1.841e+02 1.929e-01 954.249 < 2e-16 *** X125 1.475e+02 2.229e-01 661.807 < 2e-16 *** X126 1.251e+02 1.835e-01 681.786 < 2e-16 *** X127 2.065e+02 1.628e-01 1268.282 < 2e-16 *** X128 2.070e+02 1.491e-01 1388.127 < 2e-16 *** X129 2.293e+02 1.824e-01 1256.784 < 2e-16 *** X130 1.559e+02 1.820e-01 856.952 < 2e-16 *** X131 1.519e+02 1.684e-01 902.168 < 2e-16 *** X132 7.015e+01 1.937e-01 362.217 < 2e-16 *** X133 3.906e+01 2.060e-01 189.602 < 2e-16 *** X134 8.531e+01 2.364e-01 360.904 < 2e-16 *** X135 1.544e+02 2.777e-01 555.831 < 2e-16 *** X136 2.057e+02 1.804e-01 1140.298 < 2e-16 *** X137 2.319e+02 1.793e-01 1293.165 < 2e-16 *** X138 9.777e+02 8.520e-02 11475.452 < 2e-16 *** X139 7.926e+02 7.892e-02 10043.139 < 2e-16 *** X140 8.881e+02 9.262e-02 9588.906 < 2e-16 *** X141 2.354e+02 1.977e-01 1190.706 < 2e-16 *** X142 4.793e+02 1.907e-01 2513.556 < 2e-16 *** X143 3.281e+02 1.495e-01 2194.986 < 2e-16 *** X144 4.430e+02 2.242e-01 1975.946 < 2e-16 *** X145 2.186e+02 2.098e-01 1042.052 < 2e-16 *** X146 1.564e+02 2.314e-01 675.964 < 2e-16 *** X147 2.958e+02 1.734e-01 1705.497 < 2e-16 *** X148 3.844e+02 1.675e-01 2295.125 < 2e-16 *** X149 4.234e+02 1.678e-01 2523.020 < 2e-16 *** X150 5.510e+02 1.528e-01 3606.014 < 2e-16 *** X151 6.759e+02 1.417e-01 4768.629 < 2e-16 *** X152 8.036e+02 1.964e-01 4091.324 < 2e-16 *** X153 6.622e+02 1.545e-01 4284.931 < 2e-16 *** X154 6.011e+02 2.545e-01 2362.287 < 2e-16 *** X155 3.681e+02 2.146e-01 1714.845 < 2e-16 *** X156 5.664e+02 2.542e-01 2227.752 < 2e-16 *** X157 3.950e+02 1.507e-01 2620.673 < 2e-16 *** X158 2.959e+02 2.237e-01 1323.095 < 2e-16 *** X159 4.336e+02 3.498e-01 1239.563 < 2e-16 *** X160 3.105e+02 2.865e-01 1083.648 < 2e-16 *** X161 2.954e+02 3.152e-01 937.051 < 2e-16 *** X162 4.065e+02 4.372e-01 929.880 < 2e-16 *** X163 3.047e+02 4.024e-01 757.320 < 2e-16 *** X164 3.896e+02 5.658e-01 688.553 < 2e-16 *** X165 3.645e+02 4.785e-01 761.672 < 2e-16 *** X166 4.792e+02 5.960e-01 804.073 < 2e-16 *** X167 4.739e+02 6.084e-01 778.969 < 2e-16 *** X168 3.893e+02 4.971e-01 783.194 < 2e-16 *** X169 4.115e+02 2.522e-01 1631.809 < 2e-16 *** X170 3.263e+02 1.784e-01 1828.540 < 2e-16 *** X171 3.522e+02 1.278e-01 2756.070 < 2e-16 *** X172 2.109e+02 2.847e-01 740.936 < 2e-16 *** X173 4.868e+01 1.068e-01 455.766 < 2e-16 *** X174 2.854e+02 3.118e-01 915.273 < 2e-16 *** X175 1.666e+02 2.430e-01 685.463 < 2e-16 *** X176 2.158e+02 1.152e-01 1873.721 < 2e-16 *** X177 2.943e+02 1.981e-01 1485.412 < 2e-16 *** X178 1.275e+03 6.370e-02 20019.793 < 2e-16 *** X179 4.377e+02 7.123e-02 6145.514 < 2e-16 *** X180 1.141e+03 7.149e-02 15967.053 < 2e-16 *** X181 6.744e+02 6.639e-02 10157.186 < 2e-16 *** X182 5.796e+02 9.957e-02 5821.384 < 2e-16 *** X183 8.076e+02 1.078e-01 7491.859 < 2e-16 *** X184 3.486e+02 1.955e-01 1783.574 < 2e-16 *** X185 3.109e+02 1.538e-01 2021.958 < 2e-16 *** X186 3.236e+02 1.620e-01 1997.389 < 2e-16 *** X187 3.141e+02 1.395e-01 2251.087 < 2e-16 *** X188 2.645e+02 2.033e-01 1301.360 < 2e-16 *** X189 2.516e+02 2.290e-01 1098.599 < 2e-16 *** X190 2.668e+01 3.111e-01 85.769 < 2e-16 *** X191 1.040e+02 2.809e-01 370.280 < 2e-16 *** X192 4.310e+02 1.585e-01 2719.302 < 2e-16 *** X193 6.200e+02 1.271e-01 4878.706 < 2e-16 *** X194 6.680e+02 1.432e-01 4665.654 < 2e-16 *** X195 6.721e+02 1.219e-01 5511.232 < 2e-16 *** X196 2.009e+02 1.099e-01 1827.308 < 2e-16 *** X197 1.034e+02 1.202e-01 860.686 < 2e-16 *** X198 1.984e+02 1.065e-01 1862.161 < 2e-16 *** X199 1.734e+02 1.209e-01 1434.641 < 2e-16 *** X1100 1.182e+02 9.987e-02 1183.055 < 2e-16 *** X1101 2.293e+02 1.053e-01 2176.799 < 2e-16 *** X1102 1.520e+02 7.065e-02 2151.755 < 2e-16 *** X1103 1.810e+02 1.219e-01 1484.616 < 2e-16 *** X1104 8.823e+01 8.825e-02 999.766 < 2e-16 *** X1105 7.352e+01 9.662e-02 760.974 < 2e-16 *** X1106 7.937e+02 6.290e-02 12618.209 < 2e-16 *** X1107 9.773e+02 9.477e-02 10311.581 < 2e-16 *** X1108 6.511e+02 8.438e-02 7716.399 < 2e-16 *** X1109 5.467e+02 1.396e-01 3916.731 < 2e-16 *** X1110 4.611e+02 1.346e-01 3425.340 < 2e-16 *** X1111 3.752e+02 1.337e-01 2806.966 < 2e-16 *** X1112 6.065e+02 1.214e-01 4993.764 < 2e-16 *** X1113 1.147e+03 1.132e-01 10128.942 < 2e-16 *** X1114 8.705e+02 1.400e-01 6218.146 < 2e-16 *** X1115 7.477e+02 9.636e-02 7759.706 < 2e-16 *** X1116 1.567e+03 1.214e-01 12906.907 < 2e-16 *** X1117 1.109e+03 1.311e-01 8463.654 < 2e-16 *** X1118 1.234e+03 1.281e-01 9639.834 < 2e-16 *** X1119 3.679e+02 1.150e-01 3198.621 < 2e-16 *** X1120 1.603e+03 2.128e-01 7530.155 < 2e-16 *** X1121 6.098e+02 1.272e-01 4792.892 < 2e-16 *** X1122 1.056e+03 7.865e-02 13432.586 < 2e-16 *** X1123 1.026e+03 8.464e-02 12126.140 < 2e-16 *** X1124 1.153e+03 1.038e-01 11111.348 < 2e-16 *** X1125 9.730e+02 1.446e-01 6730.978 < 2e-16 *** X1126 8.504e+02 1.063e-01 8003.102 < 2e-16 *** X1127 1.178e+03 1.073e-01 10976.791 < 2e-16 *** X1128 1.540e+03 1.226e-01 12558.779 < 2e-16 *** X1129 4.387e+02 1.198e-01 3661.832 < 2e-16 *** X1130 9.095e+02 1.757e-01 5177.348 < 2e-16 *** X1131 5.232e+02 1.616e-01 3237.408 < 2e-16 *** X1132 4.384e+02 1.544e-01 2840.400 < 2e-16 *** X1133 5.248e+02 2.436e-01 2154.298 < 2e-16 *** X1134 3.541e+02 3.496e-01 1012.775 < 2e-16 *** X1135 9.983e+01 1.209e-01 825.465 < 2e-16 *** X1136 1.415e+02 1.646e-01 859.264 < 2e-16 *** X1137 3.041e+02 1.712e-01 1776.904 < 2e-16 *** X1138 4.789e+02 2.187e-01 2189.907 < 2e-16 *** X1139 7.907e+02 2.940e-01 2689.450 < 2e-16 *** X1140 1.281e+03 1.889e-01 6779.784 < 2e-16 *** X1141 7.797e+02 2.281e-01 3417.965 < 2e-16 *** X1142 1.187e+03 2.240e-01 5297.147 < 2e-16 *** X1143 9.128e+02 1.420e-01 6426.088 < 2e-16 *** X1144 5.313e+02 1.603e-01 3314.124 < 2e-16 *** X1145 8.118e+02 1.912e-01 4245.266 < 2e-16 *** X1146 4.575e+02 1.322e-01 3461.520 < 2e-16 *** X1147 5.216e+02 1.238e-01 4214.364 < 2e-16 *** X1148 1.585e+03 1.365e-01 11611.155 < 2e-16 *** X1149 1.317e+03 1.219e-01 10801.832 < 2e-16 *** X1150 9.140e+02 2.189e-01 4174.664 < 2e-16 *** X1151 1.217e+03 1.420e-01 8568.757 < 2e-16 *** X1152 4.148e+02 1.809e-01 2292.191 < 2e-16 *** X1153 1.186e+03 2.170e-01 5467.456 < 2e-16 *** X1154 7.412e+02 1.689e-01 4388.878 < 2e-16 *** X1155 1.027e+03 1.483e-01 6923.778 < 2e-16 *** X1156 1.075e+03 2.188e-01 4916.076 < 2e-16 *** X1157 5.818e+02 1.979e-01 2939.852 < 2e-16 *** X1158 5.458e+02 5.405e-02 10097.381 < 2e-16 *** X1159 1.213e+03 1.052e-01 11528.368 < 2e-16 *** X1160 1.540e+03 7.850e-02 19622.334 < 2e-16 *** X1161 1.236e+03 7.629e-02 16206.498 < 2e-16 *** X1162 1.852e+03 8.476e-02 21845.605 < 2e-16 *** X1163 9.306e+02 9.751e-02 9544.293 < 2e-16 *** X1164 1.372e+03 9.910e-02 13844.984 < 2e-16 *** X1165 1.363e+03 8.391e-02 16239.980 < 2e-16 *** X1166 1.813e+03 1.215e-01 14922.853 < 2e-16 *** X1167 1.286e+03 9.872e-02 13031.072 < 2e-16 *** X1168 1.235e+03 1.674e-01 7377.502 < 2e-16 *** X1169 1.149e+03 1.154e-01 9962.512 < 2e-16 *** X1170 8.808e+02 1.013e-01 8693.858 < 2e-16 *** X1171 5.961e+02 1.435e-01 4153.097 < 2e-16 *** X1172 1.694e+03 2.470e-01 6858.168 < 2e-16 *** X1173 1.596e+03 1.265e-01 12614.228 < 2e-16 *** X1174 1.444e+03 1.071e-01 13489.562 < 2e-16 *** X1175 2.077e+03 1.573e-01 13206.200 < 2e-16 *** X1176 1.325e+03 1.049e-01 12635.881 < 2e-16 *** X1177 1.261e+03 1.033e-01 12204.144 < 2e-16 *** X1178 2.005e+03 1.751e-01 11449.359 < 2e-16 *** X1179 9.713e+02 1.097e-01 8851.314 < 2e-16 *** X1180 8.840e+02 1.405e-01 6292.842 < 2e-16 *** X1181 1.402e+03 1.948e-01 7197.303 < 2e-16 *** X1182 1.215e+03 1.675e-01 7255.140 < 2e-16 *** X1183 1.240e+03 2.028e-01 6114.595 < 2e-16 *** X1184 9.551e+02 1.034e-01 9237.498 < 2e-16 *** X1185 1.063e+03 1.338e-01 7944.332 < 2e-16 *** X1186 1.200e+03 1.700e-01 7058.801 < 2e-16 *** X1187 1.308e+03 1.355e-01 9654.111 < 2e-16 *** X1188 5.451e+02 1.251e-01 4357.843 < 2e-16 *** X1189 1.182e+03 2.327e-01 5078.543 < 2e-16 *** X1190 6.112e+02 1.301e-01 4699.360 < 2e-16 *** X1191 1.265e+03 2.500e-01 5058.889 < 2e-16 *** X1192 1.604e+03 1.382e-01 11604.956 < 2e-16 *** X1193 5.883e+02 1.179e-01 4988.456 < 2e-16 *** X1194 1.501e+03 1.251e-01 11996.706 < 2e-16 *** X1195 1.119e+03 1.994e-01 5614.454 < 2e-16 *** X1196 4.965e+02 9.883e-02 5023.705 < 2e-16 *** X1197 1.198e+03 1.121e-01 10681.700 < 2e-16 *** X1198 1.606e+03 1.277e-01 12580.585 < 2e-16 *** X1199 1.549e+03 1.093e-01 14172.536 < 2e-16 *** X1200 1.698e+03 1.370e-01 12391.530 < 2e-16 *** X1201 1.883e+03 3.267e-01 5762.772 < 2e-16 *** X1202 1.071e+03 1.439e-01 7440.859 < 2e-16 *** X1203 8.124e+02 1.421e-01 5718.640 < 2e-16 *** X1204 1.149e+03 2.005e-01 5730.789 < 2e-16 *** X1205 9.166e+02 1.693e-01 5413.110 < 2e-16 *** X1206 1.337e+03 2.484e-01 5382.088 < 2e-16 *** X1207 1.206e+03 2.084e-01 5787.657 < 2e-16 *** X1208 1.723e+03 2.229e-01 7730.322 < 2e-16 *** X1209 1.364e+03 1.406e-01 9697.856 < 2e-16 *** X1210 1.329e+03 1.295e-01 10256.725 < 2e-16 *** X1211 1.010e+03 1.537e-01 6572.760 < 2e-16 *** X1212 3.485e+02 1.182e-01 2948.867 < 2e-16 *** X1213 9.050e+02 4.674e-02 19363.770 < 2e-16 *** X1214 9.050e+02 4.674e-02 19361.825 < 2e-16 *** X1215 4.532e+02 1.109e-01 4087.539 < 2e-16 *** X1216 1.222e+02 1.140e-01 1071.709 < 2e-16 *** X1217 1.274e+03 1.230e-01 10354.733 < 2e-16 *** X1218 5.744e+02 7.419e-02 7743.055 < 2e-16 *** X1219 6.686e+01 1.015e-01 658.750 < 2e-16 *** X1220 1.650e+02 1.258e-01 1311.849 < 2e-16 *** X1221 2.400e+02 9.453e-02 2538.480 < 2e-16 *** X1222 7.774e+01 7.347e-02 1058.189 < 2e-16 *** X1223 7.419e+02 4.787e-02 15496.456 < 2e-16 *** X1224 6.932e+02 4.876e-02 14215.033 < 2e-16 *** X1225 6.202e+02 4.474e-02 13863.481 < 2e-16 *** X1226 4.110e+02 4.758e-02 8639.744 < 2e-16 *** X1227 4.989e+02 4.605e-02 10834.409 < 2e-16 *** X1228 6.085e+02 4.813e-02 12642.358 < 2e-16 *** X1229 5.217e+02 4.573e-02 11406.058 < 2e-16 *** X1230 7.559e+02 4.832e-02 15642.958 < 2e-16 *** X1231 6.975e+02 4.853e-02 14372.650 < 2e-16 *** X1232 9.131e+02 4.714e-02 19367.700 < 2e-16 *** X1233 8.533e+02 4.716e-02 18093.190 < 2e-16 *** X1234 9.547e+02 4.730e-02 20184.688 < 2e-16 *** X1235 1.004e+03 4.705e-02 21330.548 < 2e-16 *** X1236 3.718e+02 4.858e-02 7653.333 < 2e-16 *** X1237 5.195e+02 4.580e-02 11342.799 < 2e-16 *** X1238 6.616e+02 4.756e-02 13910.194 < 2e-16 *** X1239 5.449e+02 4.553e-02 11968.303 < 2e-16 *** X1240 6.171e+02 4.466e-02 13817.739 < 2e-16 *** X1241 5.679e+02 4.517e-02 12572.227 < 2e-16 *** X1242 6.594e+02 4.322e-02 15256.352 < 2e-16 *** X1243 5.743e+02 4.273e-02 13441.371 < 2e-16 *** X1244 6.086e+02 4.286e-02 14200.494 < 2e-16 *** X1245 6.415e+02 4.499e-02 14258.335 < 2e-16 *** X1246 6.260e+02 5.065e-02 12359.675 < 2e-16 *** X1247 4.611e+02 4.679e-02 9855.173 < 2e-16 *** X1248 4.867e+02 5.006e-02 9722.877 < 2e-16 *** X1249 4.907e+02 4.938e-02 9938.538 < 2e-16 *** X1250 5.547e+02 5.156e-02 10759.058 < 2e-16 *** X1251 4.522e+02 1.446e-01 3127.363 < 2e-16 *** X1252 2.406e+02 7.456e-02 3227.480 < 2e-16 *** X1253 7.264e+02 5.024e-02 14458.804 < 2e-16 *** X1254 1.088e+03 5.170e-02 21036.946 < 2e-16 *** X1255 -5.978e+02 5.959e-02 -10031.977 < 2e-16 *** X1256 3.021e+02 5.299e-02 5701.379 < 2e-16 *** X1257 1.141e+02 5.050e-02 2259.390 < 2e-16 *** X1258 -3.286e+02 1.466e-01 -2241.274 < 2e-16 *** X1259 -2.646e+02 2.597e-01 -1018.794 < 2e-16 *** X1260 -9.350e+01 3.252e-01 -287.524 < 2e-16 *** X1261 8.480e+01 3.216e-01 263.680 < 2e-16 *** X1262 -4.076e+02 2.234e-01 -1824.687 < 2e-16 *** X1263 -4.906e+02 2.812e-01 -1744.847 < 2e-16 *** X1264 -2.346e+02 1.992e-01 -1177.763 < 2e-16 *** X1265 -3.517e+02 3.062e-01 -1148.421 < 2e-16 *** X1266 -2.621e+02 2.679e-01 -978.494 < 2e-16 *** X1267 -2.184e+02 2.728e-01 -800.480 < 2e-16 *** X1268 -2.932e+02 3.228e-01 -908.190 < 2e-16 *** X1269 -1.013e+02 2.362e-01 -428.692 < 2e-16 *** X1270 -1.418e+02 2.561e-01 -553.611 < 2e-16 *** X1271 -6.184e+01 3.432e-01 -180.213 < 2e-16 *** X1272 5.222e+01 3.863e-01 135.185 < 2e-16 *** X1273 -6.412e+00 2.368e-01 -27.077 < 2e-16 *** X1274 -9.959e+01 3.220e-01 -309.241 < 2e-16 *** X1275 -8.468e+01 2.405e-01 -352.152 < 2e-16 *** X1276 -2.986e+01 2.778e-01 -107.470 < 2e-16 *** X1277 2.176e+00 3.125e-01 6.962 5.65e-12 *** X1278 2.432e+00 3.685e-01 6.601 6.27e-11 *** X1279 5.447e+01 2.751e-01 198.045 < 2e-16 *** X1280 -6.729e+02 1.207e-01 -5576.025 < 2e-16 *** X1281 -3.931e+02 1.278e-01 -3075.689 < 2e-16 *** X1282 -2.133e+02 2.689e-01 -793.244 < 2e-16 *** X1283 -2.612e+02 3.306e-01 -790.080 < 2e-16 *** X1284 -1.294e+02 3.064e-01 -422.492 < 2e-16 *** X1285 -1.452e+02 2.005e-01 -724.200 < 2e-16 *** X1286 -1.729e+02 2.039e-01 -847.833 < 2e-16 *** X1287 -3.642e+02 2.767e-01 -1316.159 < 2e-16 *** X1288 -3.458e+02 2.009e-01 -1721.365 < 2e-16 *** X1289 -3.454e+02 2.035e-01 -1697.560 < 2e-16 *** X1290 -5.181e+02 3.222e-01 -1607.727 < 2e-16 *** X1291 -3.862e+02 2.719e-01 -1420.575 < 2e-16 *** X1292 -3.862e+02 3.193e-01 -1209.376 < 2e-16 *** X1293 -4.575e+02 6.386e-01 -716.348 < 2e-16 *** X1294 -5.558e+02 9.159e-01 -606.903 < 2e-16 *** X1295 -4.696e+02 7.453e-01 -630.071 < 2e-16 *** X1296 -5.181e+02 5.513e-01 -939.699 < 2e-16 *** X1297 -4.881e+02 3.504e-01 -1393.079 < 2e-16 *** X1298 -1.069e+02 2.385e-01 -448.064 < 2e-16 *** X1299 -1.921e+01 2.404e-01 -79.941 < 2e-16 *** X1300 -6.811e+01 4.759e-01 -143.114 < 2e-16 *** X1301 -1.375e+02 3.201e-01 -429.403 < 2e-16 *** X1302 -2.399e+02 2.810e-01 -853.860 < 2e-16 *** X1303 -7.670e+02 9.237e-02 -8303.720 < 2e-16 *** X1304 -7.797e+02 1.031e-01 -7558.933 < 2e-16 *** X1305 -3.011e+02 1.669e-01 -1804.620 < 2e-16 *** X1306 -3.115e+02 1.698e-01 -1834.420 < 2e-16 *** X1307 -1.895e+02 2.721e-01 -696.415 < 2e-16 *** X1308 -1.159e+02 3.140e-01 -369.194 < 2e-16 *** X1309 1.282e+01 2.765e-01 46.348 < 2e-16 *** X1310 1.096e+01 2.486e-01 44.115 < 2e-16 *** X1311 7.316e+01 3.109e-01 235.322 < 2e-16 *** X1312 -1.727e+01 2.740e-01 -63.015 < 2e-16 *** X1313 -1.036e+02 2.436e-01 -425.122 < 2e-16 *** X1314 -2.639e+02 2.942e-01 -896.852 < 2e-16 *** X1315 -2.643e+02 2.912e-01 -907.719 < 2e-16 *** X1316 -4.597e+01 2.690e-01 -170.850 < 2e-16 *** X1317 -3.480e+01 1.536e-01 -226.584 < 2e-16 *** X1318 -2.596e+01 1.044e-01 -248.742 < 2e-16 *** X1319 -1.480e+02 1.823e-01 -811.620 < 2e-16 *** X1320 -6.501e+02 8.256e-02 -7873.410 < 2e-16 *** X1321 -4.910e+02 9.023e-02 -5441.986 < 2e-16 *** X1322 -4.220e+02 9.804e-02 -4304.608 < 2e-16 *** X1323 -4.129e+02 1.240e-01 -3330.518 < 2e-16 *** X1324 -3.376e+02 1.509e-01 -2238.029 < 2e-16 *** X1325 -1.413e+02 1.662e-01 -850.622 < 2e-16 *** X1326 -4.620e+02 1.735e-01 -2663.615 < 2e-16 *** X1327 -3.773e+02 1.486e-01 -2539.451 < 2e-16 *** X1328 -5.899e+02 1.332e-01 -4428.250 < 2e-16 *** X1329 -7.455e+02 1.374e-01 -5427.016 < 2e-16 *** X1330 -4.561e+02 8.432e-02 -5409.146 < 2e-16 *** X1331 -5.890e+02 1.245e-01 -4732.464 < 2e-16 *** X1332 -5.894e+02 1.511e-01 -3901.201 < 2e-16 *** X1333 -3.981e+02 1.286e-01 -3095.966 < 2e-16 *** X1334 -5.142e+02 1.615e-01 -3183.897 < 2e-16 *** X1335 -5.994e+02 1.394e-01 -4298.138 < 2e-16 *** X1336 -1.029e+03 1.882e-01 -5467.410 < 2e-16 *** X1337 -1.140e+03 2.032e-01 -5609.246 < 2e-16 *** X1338 -6.884e+02 1.830e-01 -3762.894 < 2e-16 *** X1339 -3.897e+02 1.613e-01 -2415.081 < 2e-16 *** X1340 -5.064e+02 1.484e-01 -3411.980 < 2e-16 *** X1341 -3.034e+02 2.323e-01 -1306.129 < 2e-16 *** X1342 -2.818e+02 2.353e-01 -1197.584 < 2e-16 *** X1343 -9.205e+01 2.533e-01 -363.379 < 2e-16 *** X1344 -2.283e+02 2.053e-01 -1111.863 < 2e-16 *** X1345 -8.896e+01 2.592e-01 -343.202 < 2e-16 *** X1346 -1.620e+02 2.492e-01 -650.030 < 2e-16 *** X1347 -2.308e+02 1.985e-01 -1162.318 < 2e-16 *** X1348 -3.658e+02 1.472e-01 -2485.884 < 2e-16 *** X1349 -2.333e+02 1.965e-01 -1187.355 < 2e-16 *** X1350 -3.597e+02 1.802e-01 -1996.328 < 2e-16 *** X1351 -2.922e+02 1.999e-01 -1461.909 < 2e-16 *** X1352 -3.922e+02 1.744e-01 -2248.539 < 2e-16 *** X1353 -6.113e+02 1.713e-01 -3567.951 < 2e-16 *** X1354 -8.086e+02 2.450e-01 -3299.838 < 2e-16 *** X1355 -5.712e+02 1.800e-01 -3173.672 < 2e-16 *** X1356 -6.494e+02 1.756e-01 -3698.300 < 2e-16 *** X1357 -9.424e+02 3.286e-01 -2867.400 < 2e-16 *** X1358 -5.153e+02 2.203e-01 -2339.123 < 2e-16 *** X1359 -8.230e+02 3.205e-01 -2568.325 < 2e-16 *** X1360 -6.840e+02 2.186e-01 -3129.218 < 2e-16 *** X1361 -7.122e+02 2.718e-01 -2619.770 < 2e-16 *** X1362 -1.325e+03 1.234e-01 -10738.008 < 2e-16 *** X1363 -7.963e+02 8.047e-02 -9896.364 < 2e-16 *** X1364 -1.125e+03 1.467e-01 -7673.811 < 2e-16 *** X1365 -1.101e+03 1.718e-01 -6410.384 < 2e-16 *** X1366 -1.767e+03 2.066e-01 -8551.651 < 2e-16 *** X1367 -8.479e+02 1.517e-01 -5589.468 < 2e-16 *** X1368 -1.126e+03 2.271e-01 -4957.110 < 2e-16 *** X1369 -5.946e+02 1.704e-01 -3489.348 < 2e-16 *** X1370 -1.109e+03 1.638e-01 -6766.316 < 2e-16 *** X1371 -1.108e+03 1.882e-01 -5887.378 < 2e-16 *** X1372 -1.360e+03 2.300e-01 -5915.697 < 2e-16 *** X1373 -7.511e+02 1.453e-01 -5168.079 < 2e-16 *** X1374 -1.226e+03 2.326e-01 -5270.160 < 2e-16 *** X1375 -7.567e+02 1.658e-01 -4562.637 < 2e-16 *** X1376 -5.474e+02 1.524e-01 -3591.551 < 2e-16 *** X1377 -5.654e+02 1.828e-01 -3092.401 < 2e-16 *** X1378 -7.081e+02 3.125e-01 -2266.099 < 2e-16 *** X1379 -5.923e+02 2.523e-01 -2347.476 < 2e-16 *** X1380 -7.931e+02 1.715e-01 -4624.906 < 2e-16 *** X1381 -1.012e+03 2.352e-01 -4302.116 < 2e-16 *** X1382 -7.623e+02 2.036e-01 -3743.684 < 2e-16 *** X1383 -9.025e+02 2.587e-01 -3488.197 < 2e-16 *** X1384 -7.947e+02 1.870e-01 -4250.705 < 2e-16 *** X1385 -1.210e+03 2.702e-01 -4480.245 < 2e-16 *** X1386 -1.055e+03 2.268e-01 -4649.297 < 2e-16 *** X1387 -1.764e+03 3.691e-01 -4778.763 < 2e-16 *** X1388 -1.050e+03 2.233e-01 -4701.595 < 2e-16 *** X1389 -8.759e+02 1.898e-01 -4615.746 < 2e-16 *** X1390 -1.175e+03 2.358e-01 -4983.001 < 2e-16 *** X1391 -9.273e+02 1.757e-01 -5278.472 < 2e-16 *** X1392 -1.385e+03 2.550e-01 -5433.220 < 2e-16 *** X1393 -1.093e+03 2.034e-01 -5374.731 < 2e-16 *** X1394 -1.112e+03 2.265e-01 -4909.467 < 2e-16 *** X1395 -1.151e+03 2.172e-01 -5296.823 < 2e-16 *** X1396 -8.561e+02 1.655e-01 -5171.622 < 2e-16 *** X1397 -9.969e+02 1.919e-01 -5193.965 < 2e-16 *** X1398 -1.124e+03 2.328e-01 -4826.232 < 2e-16 *** X1399 -1.181e+03 2.263e-01 -5218.913 < 2e-16 *** X1400 -1.298e+03 2.397e-01 -5415.992 < 2e-16 *** X1401 -1.742e+03 3.199e-01 -5443.806 < 2e-16 *** X1402 -1.005e+03 1.784e-01 -5636.698 < 2e-16 *** X1403 -1.231e+03 1.985e-01 -6198.697 < 2e-16 *** X1404 -9.532e+02 1.545e-01 -6171.309 < 2e-16 *** X1405 -4.946e+02 2.010e-01 -2461.020 < 2e-16 *** X1406 -2.747e+02 9.066e-02 -3030.091 < 2e-16 *** X1407 -6.867e+02 1.037e-01 -6623.807 < 2e-16 *** X1408 -1.412e+03 2.068e-01 -6827.410 < 2e-16 *** X1409 -5.811e+02 2.969e-01 -1957.492 < 2e-16 *** X1410 -9.800e+02 2.004e-01 -4890.944 < 2e-16 *** X1411 -4.884e+02 6.403e-02 -7627.350 < 2e-16 *** X1412 -9.263e+02 1.196e-01 -7745.618 < 2e-16 *** X1413 -7.240e+02 7.563e-02 -9573.390 < 2e-16 *** X1414 -7.241e+02 7.603e-02 -9524.942 < 2e-16 *** X1415 -8.508e+02 8.757e-02 -9715.509 < 2e-16 *** X1416 -8.219e+02 8.844e-02 -9292.725 < 2e-16 *** X1417 -1.447e+03 2.698e-01 -5360.865 < 2e-16 *** X1418 -5.960e+02 1.624e-01 -3669.541 < 2e-16 *** X1419 -1.023e+03 2.748e-01 -3724.477 < 2e-16 *** X1420 -1.071e+03 1.759e-01 -6090.807 < 2e-16 *** X1421 -7.290e+02 1.225e-01 -5952.801 < 2e-16 *** X1422 -8.630e+02 1.394e-01 -6190.662 < 2e-16 *** X1423 -1.169e+03 1.906e-01 -6135.066 < 2e-16 *** X1424 -7.314e+02 1.240e-01 -5899.393 < 2e-16 *** X1425 -6.988e+02 1.245e-01 -5612.268 < 2e-16 *** X1426 -1.573e+03 9.793e-02 -16061.504 < 2e-16 *** X1427 -1.471e+03 2.274e-01 -6469.047 < 2e-16 *** X1428 4.810e-02 4.453e-02 1.080 0.280298 X1429 9.282e-02 5.758e-02 1.612 0.107225 X1430 2.396e-02 5.532e-02 0.433 0.664950 X1431 -1.576e-01 3.789e-02 -4.159 3.44e-05 *** X1432 -7.802e-02 5.813e-02 -1.342 0.179759 X1433 9.321e-02 4.682e-02 1.991 0.046733 * X1434 -3.559e-02 4.324e-02 -0.823 0.410689 X1435 2.103e-02 5.012e-02 0.420 0.674815 X1436 -6.825e-03 1.750e-01 -0.039 0.968901 X1437 -2.042e-02 5.104e-02 -0.400 0.689127 X1438 -1.770e-02 4.055e-02 -0.437 0.662550 X1439 -9.955e-03 3.790e-02 -0.263 0.792851 X1440 5.246e-02 5.159e-02 1.017 0.309421 X1441 -5.148e-02 5.038e-02 -1.022 0.307075 X1442 8.216e-03 4.282e-02 0.192 0.847863 X1443 -4.135e-02 7.928e-02 -0.522 0.602099 X1444 3.611e-02 6.075e-02 0.594 0.552383 X1445 8.504e-02 5.807e-02 1.464 0.143370 X1446 2.164e-02 5.789e-02 0.374 0.708650 X1447 -1.059e-01 4.614e-02 -2.295 0.021942 * X1448 4.351e-03 4.234e-02 0.103 0.918168 X1449 2.226e-01 5.834e-02 3.816 0.000143 *** X1450 -2.523e-03 4.252e-02 -0.059 0.952705 X1451 -4.096e-02 5.801e-02 -0.706 0.480272 X1452 3.475e-02 6.689e-02 0.520 0.603487 X1453 1.006e-01 5.569e-02 1.805 0.071262 . X1454 3.660e-03 4.279e-02 0.086 0.931850 X1455 -1.712e-02 4.177e-02 -0.410 0.681924 X1456 1.766e-02 5.854e-02 0.302 0.762902 X1457 -6.476e-03 4.188e-02 -0.155 0.877144 X1458 1.521e-02 4.270e-02 0.356 0.721784 X1459 -9.333e-02 6.657e-02 -1.402 0.161201 X1460 -1.184e-02 3.789e-02 -0.312 0.754783 X1461 -7.011e-02 1.039e-01 -0.675 0.500066 X1462 -2.388e-01 1.648e-01 -1.449 0.147564 X1463 -1.048e-01 6.521e-02 -1.607 0.108282 X1464 1.657e-01 1.206e-01 1.374 0.169610 X1465 2.588e-01 2.309e-01 1.121 0.262680 X1466 1.542e-03 6.044e-02 0.026 0.979649 X1467 2.387e-02 1.376e-01 0.173 0.862299 X1468 1.587e-01 3.802e-02 4.173 3.23e-05 *** X1469 -1.071e-01 1.785e-01 -0.600 0.548401 X1470 -5.617e-02 5.559e-02 -1.010 0.312535 X1471 -2.899e-03 5.297e-02 -0.055 0.956362 X1472 1.104e-01 6.930e-02 1.592 0.111572 X1473 5.841e-04 1.447e-01 0.004 0.996781 X1474 -1.269e-01 9.029e-02 -1.406 0.160009 X1475 -1.359e-02 6.778e-02 -0.201 0.841099 X1476 -2.052e-01 1.248e-01 -1.644 0.100441 X1477 -4.728e-02 5.797e-02 -0.816 0.414939 X1478 -1.940e-02 6.772e-02 -0.287 0.774525 X1479 1.071e-01 9.281e-02 1.154 0.248785 X1480 9.360e-02 5.993e-02 1.562 0.118610 X1481 2.722e-01 6.402e-02 4.251 2.30e-05 *** X1482 2.080e-01 8.557e-02 2.430 0.015237 * X1483 1.261e-01 4.148e-02 3.040 0.002423 ** X1484 1.264e-01 6.154e-02 2.054 0.040248 * X1485 3.788e-02 4.976e-02 0.761 0.446674 X1486 -4.923e-02 8.437e-02 -0.584 0.559644 X1487 -2.419e-03 5.226e-02 -0.046 0.963098 X1488 2.467e-01 3.885e-02 6.349 3.12e-10 *** X1489 -8.668e-02 5.029e-02 -1.723 0.085088 . X1490 -1.350e-01 6.722e-02 -2.008 0.044920 * X1491 3.507e-02 7.514e-02 0.467 0.640773 X1492 1.838e-01 7.238e-02 2.540 0.011230 * X1493 2.741e-02 6.640e-02 0.413 0.679825 X1494 7.079e-01 1.249e-01 5.668 1.83e-08 *** X1495 1.174e-01 1.003e-01 1.170 0.242100 X1496 -1.111e-01 1.372e-01 -0.810 0.418149 X1497 8.523e-04 9.759e-02 0.009 0.993033 X1498 -4.450e-02 3.791e-02 -1.174 0.240737 X1499 -1.845e-02 3.874e-02 -0.476 0.634080 X1500 5.875e-02 4.716e-02 1.246 0.213153 X1501 4.520e-01 8.510e-02 5.311 1.31e-07 *** X1502 -2.231e-02 8.552e-02 -0.261 0.794224 X1503 5.158e-01 7.971e-02 6.471 1.44e-10 *** X1504 2.731e-01 1.210e-01 2.257 0.024211 * X1505 2.584e-03 4.492e-02 0.058 0.954139 X1506 2.545e-01 8.214e-02 3.098 0.001996 ** X1507 8.097e-02 4.709e-02 1.720 0.085782 . X1508 1.655e-02 4.056e-02 0.408 0.683213 X1509 1.074e-02 8.397e-02 0.128 0.898217 X1510 -1.200e-01 8.028e-02 -1.495 0.135211 X1511 6.675e-02 3.877e-02 1.722 0.085375 . X1512 6.689e-02 4.355e-02 1.536 0.124815 X1513 2.933e-01 9.908e-02 2.960 0.003139 ** X1514 3.664e-02 8.409e-02 0.436 0.663104 X1515 8.501e-02 6.205e-02 1.370 0.170959 X1516 1.073e-01 5.868e-02 1.829 0.067727 . X1517 -1.067e-01 4.937e-02 -2.160 0.030956 * X1518 1.241e-02 4.262e-02 0.291 0.770973 X1519 4.323e-01 8.391e-02 5.152 3.03e-07 *** X1520 4.055e-02 3.790e-02 1.070 0.284865 X1521 -5.427e-02 4.584e-02 -1.184 0.236779 X1522 -2.938e-01 4.318e-02 -6.803 1.65e-11 *** X1523 1.220e-02 5.602e-02 0.218 0.827635 X1524 8.334e-02 5.713e-02 1.459 0.144929 X1525 -5.151e-02 1.186e-01 -0.434 0.664100 X1526 6.183e-02 5.217e-02 1.185 0.236217 X1527 1.178e-01 7.603e-02 1.550 0.121518 X1528 -1.604e-03 4.135e-02 -0.039 0.969066 X1529 -1.665e-01 1.472e-01 -1.131 0.258428 X1530 -3.113e-01 3.807e-02 -8.178 7.64e-16 *** X1531 4.760e-02 4.653e-02 1.023 0.306580 X1532 -3.821e-02 4.922e-02 -0.776 0.437683 X1533 -3.080e-02 3.790e-02 -0.813 0.416573 X1534 3.012e-03 3.815e-02 0.079 0.937088 X1535 1.319e-02 3.789e-02 0.348 0.727729 X1536 -6.578e-02 3.790e-02 -1.735 0.082940 . X1537 4.349e-02 8.228e-02 0.529 0.597213 X1538 8.559e-02 5.251e-02 1.630 0.103422 X1539 -3.577e-01 2.421e-01 -1.477 0.139860 X1540 2.091e-02 4.117e-02 0.508 0.611622 X1541 5.775e-02 4.056e-02 1.424 0.154722 X1542 -1.219e-01 6.428e-02 -1.896 0.058161 . X1543 -8.115e-02 4.232e-02 -1.918 0.055381 . X1544 -3.532e-02 6.579e-02 -0.537 0.591405 X1545 -3.110e-01 8.209e-02 -3.789 0.000159 *** X1546 -2.505e-01 4.762e-02 -5.261 1.72e-07 *** X1547 4.720e-01 1.512e-01 3.122 0.001844 ** X1548 -1.431e-01 6.290e-02 -2.274 0.023137 * X1549 -4.010e-01 4.637e-02 -8.648 < 2e-16 *** X1550 -1.193e-01 1.248e-01 -0.956 0.339437 X1551 -3.685e-01 1.312e-01 -2.809 0.005058 ** X1552 -5.531e-01 1.622e-01 -3.410 0.000673 *** X1553 -3.168e+00 1.092e-01 -29.005 < 2e-16 *** X1554 -6.960e-01 1.945e-01 -3.578 0.000360 *** X1555 -1.106e-01 7.607e-02 -1.454 0.146206 X1556 -1.580e-01 1.011e-01 -1.562 0.118545 X1557 -3.145e-02 1.141e-01 -0.276 0.782825 X1558 -1.123e-01 8.969e-02 -1.252 0.210811 X1559 -6.677e-02 1.173e-01 -0.569 0.569210 X1560 1.697e-02 9.848e-02 0.172 0.863187 X1561 9.299e-03 1.337e-01 0.070 0.944581 X1562 -2.776e-01 1.335e-01 -2.080 0.037762 * X1563 -5.091e-03 1.310e-01 -0.039 0.969018 X1564 6.528e-02 1.353e-01 0.482 0.629617 X1565 1.021e-01 1.411e-01 0.724 0.469358 X1566 -1.185e-02 1.500e-01 -0.079 0.937069 X1567 1.041e-01 1.755e-01 0.593 0.553188 X1568 7.468e-02 1.448e-01 0.516 0.606132 X1569 4.092e-01 1.362e-01 3.004 0.002722 ** X1570 3.681e-02 1.143e-01 0.322 0.747497 X1571 1.212e-02 1.233e-01 0.098 0.921705 X1572 -3.380e-02 1.061e-01 -0.319 0.750006 X1573 5.753e-02 1.187e-01 0.484 0.628129 X1574 -4.950e-02 1.372e-01 -0.361 0.718259 X1575 -1.077e-01 1.463e-01 -0.736 0.461886 X1576 -1.812e-01 1.288e-01 -1.407 0.159666 X1577 -3.296e-01 1.862e-01 -1.770 0.076960 . X1578 -1.106e-01 6.371e-02 -1.735 0.082977 . X1579 1.365e-01 6.936e-02 1.968 0.049358 * X1580 -6.824e-02 1.014e-01 -0.673 0.501012 X1581 -8.247e-01 1.572e-01 -5.245 1.86e-07 *** X1582 -4.494e-01 1.344e-01 -3.343 0.000854 *** X1583 -5.389e-01 1.895e-01 -2.845 0.004528 ** X1584 -1.704e-01 1.246e-01 -1.367 0.171748 X1585 -9.067e-02 1.202e-01 -0.754 0.450796 X1586 1.089e-02 1.203e-01 0.091 0.927881 X1587 -3.509e-02 1.438e-01 -0.244 0.807214 X1588 1.014e-01 1.616e-01 0.628 0.530413 X1589 3.140e-02 2.084e-01 0.151 0.880284 X1590 -6.786e-02 1.699e-01 -0.399 0.689663 X1591 1.238e-01 1.491e-01 0.830 0.406659 X1592 1.550e-01 1.624e-01 0.955 0.339828 X1593 4.156e-02 1.483e-01 0.280 0.779331 X1594 -7.720e-02 1.278e-01 -0.604 0.545937 X1595 6.440e-02 1.230e-01 0.524 0.600523 X1596 -1.208e-02 1.386e-01 -0.087 0.930541 X1597 6.569e-02 2.548e-01 0.258 0.796585 X1598 1.102e-01 2.416e-01 0.456 0.648305 X1599 1.190e-02 1.532e-01 0.078 0.938114 X1600 7.778e-02 5.693e-02 1.366 0.172098 X1601 -1.053e-01 7.138e-02 -1.475 0.140425 X1602 3.548e-02 1.202e-01 0.295 0.767906 X1603 -1.577e-01 1.880e-01 -0.839 0.401868 X1604 -1.604e-01 1.882e-01 -0.852 0.394332 X1605 -1.456e-01 1.758e-01 -0.828 0.407954 X1606 -2.466e-01 2.136e-01 -1.155 0.248480 X1607 -3.019e-01 3.112e-01 -0.970 0.332218 X1608 2.045e-01 2.047e-01 0.999 0.317934 X1609 2.629e-01 1.678e-01 1.566 0.117544 X1610 2.424e-01 1.785e-01 1.358 0.174630 X1611 1.856e-01 1.581e-01 1.174 0.240513 X1612 2.132e-02 9.794e-02 0.218 0.827747 X1613 -4.123e-02 9.346e-02 -0.441 0.659177 X1614 6.041e-02 9.446e-02 0.640 0.522582 X1615 8.698e-03 7.378e-02 0.118 0.906181 X1616 5.625e-02 6.895e-02 0.816 0.414803 X1617 1.008e-01 7.240e-02 1.392 0.164262 X1618 1.335e-01 5.626e-02 2.373 0.017811 * X1619 2.460e-01 6.862e-02 3.586 0.000350 *** X1620 9.080e-02 7.273e-02 1.248 0.212123 X1621 1.647e-03 9.048e-02 0.018 0.985480 X1622 -1.165e-02 1.086e-01 -0.107 0.914583 X1623 7.394e-02 8.744e-02 0.846 0.397911 X1624 5.827e-02 1.050e-01 0.555 0.578843 X1625 1.516e-01 6.234e-02 2.432 0.015154 * X1626 1.023e-01 7.009e-02 1.460 0.144486 X1627 3.551e-01 9.688e-02 3.665 0.000259 *** X1628 8.369e-02 8.812e-02 0.950 0.342440 X1629 5.245e-02 9.519e-02 0.551 0.581759 X1630 7.180e-02 1.319e-01 0.544 0.586267 X1631 1.122e-01 8.811e-02 1.274 0.203018 X1632 2.622e-01 8.927e-02 2.937 0.003382 ** X1633 5.722e-02 1.003e-01 0.571 0.568390 X1634 7.066e-03 6.853e-02 0.103 0.917894 X1635 -3.263e-01 1.085e-01 -3.007 0.002700 ** X1636 2.544e-02 1.195e-01 0.213 0.831429 X1637 6.530e-02 1.711e-01 0.382 0.702829 X1638 -5.156e-02 1.260e-01 -0.409 0.682493 X1639 3.977e-01 1.523e-01 2.612 0.009116 ** X1640 -2.602e-02 1.188e-01 -0.219 0.826758 X1641 6.309e-02 1.615e-01 0.391 0.696206 X1642 5.363e-02 1.393e-01 0.385 0.700291 X1643 -2.363e+00 1.066e-01 -22.177 < 2e-16 *** X1644 2.553e-01 1.684e-01 1.516 0.129872 X1645 5.613e-02 1.501e-01 0.374 0.708536 X1646 1.634e-01 1.682e-01 0.971 0.331653 X1647 7.537e-02 1.363e-01 0.553 0.580368 X1648 1.280e-01 6.512e-02 1.966 0.049551 * X1649 4.783e-01 1.664e-01 2.874 0.004124 ** X1650 6.879e-01 1.511e-01 4.552 5.89e-06 *** X1651 -1.024e+00 1.587e-01 -6.452 1.63e-10 *** X1652 -1.232e+00 1.975e-01 -6.239 6.21e-10 *** X1653 -1.780e+02 1.420e-01 -1253.827 < 2e-16 *** X1654 -1.541e+02 1.363e-01 -1130.817 < 2e-16 *** X1655 -7.056e-01 1.659e-01 -4.254 2.27e-05 *** X1656 -4.393e-01 1.565e-01 -2.807 0.005086 ** X1657 2.890e-02 7.931e-02 0.364 0.715628 X1658 2.159e-01 7.606e-02 2.839 0.004605 ** X1659 2.131e-01 1.071e-01 1.989 0.046916 * X1660 8.271e-03 6.431e-02 0.129 0.897690 X1661 1.587e-02 1.044e-01 0.152 0.879201 X1662 3.280e-02 8.464e-02 0.388 0.698431 X1663 2.726e-03 1.220e-01 0.022 0.982180 X1664 1.176e-01 9.868e-02 1.191 0.233821 X1665 3.683e-03 8.238e-02 0.045 0.964353 X1666 7.486e-02 1.136e-01 0.659 0.510241 X1667 -1.264e-01 9.971e-02 -1.268 0.205043 X1668 1.308e-01 1.265e-01 1.034 0.301312 X1669 8.924e-02 1.202e-01 0.743 0.457815 X1670 5.418e-02 1.739e-01 0.311 0.755488 X1671 2.097e-01 1.160e-01 1.808 0.070831 . X1672 2.155e-01 1.138e-01 1.894 0.058515 . X1673 1.299e-01 1.794e-01 0.724 0.469173 X1674 8.877e-02 1.085e-01 0.818 0.413469 X1675 1.066e-01 1.215e-01 0.878 0.380347 X1676 1.554e-01 1.491e-01 1.043 0.297368 X1677 -1.400e-02 1.482e-01 -0.094 0.924754 X1678 -5.358e-02 1.660e-01 -0.323 0.746985 X1679 4.318e-02 1.211e-01 0.356 0.721582 X1680 6.950e-02 1.127e-01 0.616 0.537697 X1681 1.117e-02 1.248e-01 0.089 0.928713 X1682 8.724e-02 1.354e-01 0.644 0.519418 X1683 7.642e-02 1.576e-01 0.485 0.627926 X1684 6.669e-02 1.423e-01 0.469 0.639426 X1685 3.623e-02 1.115e-01 0.325 0.745185 X1686 3.211e-01 1.395e-01 2.302 0.021542 * X1687 8.340e-02 1.359e-01 0.614 0.539463 X1688 2.308e-01 1.521e-01 1.517 0.129478 X1689 2.883e-01 8.804e-02 3.274 0.001091 ** X1690 2.940e-01 1.360e-01 2.162 0.030797 * X1691 2.025e-01 1.199e-01 1.689 0.091455 . X1692 1.326e-01 1.109e-01 1.195 0.232152 X1693 -2.477e-02 3.901e-02 -0.635 0.525622 X1694 -2.515e-02 3.901e-02 -0.645 0.519213 X1695 4.254e-01 9.995e-02 4.256 2.25e-05 *** X1696 3.295e-01 9.990e-02 3.298 0.001004 ** X1697 1.440e-01 7.824e-02 1.841 0.065860 . X1698 -1.307e+00 2.347e-01 -5.566 3.24e-08 *** X1699 -3.210e+00 2.137e-01 -15.023 < 2e-16 *** X1700 -3.036e+00 1.167e-01 -26.013 < 2e-16 *** X1701 -1.679e-01 1.027e-01 -1.634 0.102453 X1702 -6.456e-01 1.718e-01 -3.758 0.000180 *** X1703 1.274e-01 9.815e-02 1.298 0.194522 X1704 -1.604e-02 6.058e-02 -0.265 0.791187 X1705 -2.342e-01 6.086e-02 -3.849 0.000125 *** X1706 -1.510e-01 7.862e-02 -1.921 0.054974 . X1707 -2.080e+00 1.331e-01 -15.625 < 2e-16 *** X1708 -6.440e+00 1.429e-01 -45.050 < 2e-16 *** X1709 -1.260e-01 5.398e-02 -2.334 0.019763 * X1710 -1.192e-01 1.027e-01 -1.160 0.246312 X1711 -2.060e+00 5.817e-02 -35.418 < 2e-16 *** X1712 -7.849e+00 1.809e-01 -43.393 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.03789 on 1138 degrees of freedom Multiple R-Squared: 1, Adjusted R-squared: 1 F-statistic: 4.504e+07 on 712 and 1138 DF, p-value: < 2.2e-16 > > > > cleanEx(); ..nameEx <- "slm.methods" > > ### * slm.methods > > flush(stderr()); flush(stdout()) > > ### Name: slm.methods > ### Title: Methods for slm objects > ### Aliases: slm.methods summary.slm summary.mslm print.summary.slm > ### print.slm fitted.slm residuals.slm coef.slm > ### Keywords: regression > > ### ** Examples > > data(lsq) > X <- model.matrix(lsq) #extract the design matrix > y <- model.response(lsq) # extract the rhs > X1 <- as.matrix(X) > slm.time <- unix.time(slm(y~X1-1) -> slm.o) # pretty fast > cat("slm time =",slm.time,"\n") slm time = 1.3 1.01 2.29 0 0 > cat("slm Results: Reported Coefficients Truncated to 5 ","\n") slm Results: Reported Coefficients Truncated to 5 > sum.slm <- summary(slm.o) > sum.slm$coef <- sum.slm$coef[1:5,] > sum.slm Call: slm(formula = y ~ X1 - 1) Residuals: Min 1Q Median 3Q Max -0.19522 -0.01400 0.00000 0.01442 0.17833 Coefficients: Estimate Std. Error t value Pr(>|t|) [1,] 823.3613 0.1274 6460.4 <2e-16 *** [2,] 340.1156 0.1711 1987.3 <2e-16 *** [3,] 472.9760 0.1379 3429.6 <2e-16 *** [4,] 349.3175 0.1743 2004.0 <2e-16 *** [5,] 187.5595 0.2100 893.3 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.03789 on 1138 degrees of freedom Multiple R-Squared: 1, Adjusted R-squared: 1 F-statistic: 4.504e+07 on 712 and 1138 DF, p-value: 0 > fitted(slm.o)[1:10] [1] 64.040350 5.889029 64.069648 5.937578 76.388826 64.171021 76.414288 [8] 64.196320 64.214065 7.658347 > residuals(slm.o)[1:10] [1] 0.027275686 -0.005630865 -0.041783949 0.020139128 0.022659984 [6] 0.020583686 -0.037168247 -0.023604889 -0.012130877 0.023302606 > coef(slm.o)[1:10] [1] 823.36129 340.11555 472.97601 349.31746 187.55954 159.05176 -54.88358 [8] 497.65120 574.75533 584.40348 > > > > ### *