R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("evd-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('evd') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "abvnonpar" > > ### * abvnonpar > > flush(stderr()); flush(stdout()) > > ### Name: abvnonpar > ### Title: Non-parametric Estimates for Dependence Functions of the > ### Bivariate Extreme Value Distribution > ### Aliases: abvnonpar > ### Keywords: nonparametric > > ### ** Examples > > bvdata <- rbvevd(100, dep = 0.7, model = "log") > abvnonpar(seq(0, 1, length = 10), data = bvdata, convex = TRUE) [1] 1.0000000 0.9179923 0.8657633 0.8416603 0.8303880 0.8505473 0.8765786 [8] 0.9026100 0.9286414 1.0000000 > abvnonpar(data = bvdata, method = "d", plot = TRUE) > > M1 <- fitted(fbvevd(bvdata, model = "log")) > abvpar(dep = M1["dep"], model = "log", plot = TRUE) > abvnonpar(data = bvdata, add = TRUE, lty = 2) > > > > cleanEx(); ..nameEx <- "abvpar" > > ### * abvpar > > flush(stderr()); flush(stdout()) > > ### Name: abvpar > ### Title: Parametric Dependence Functions of Bivariate Extreme Value > ### Models > ### Aliases: abvpar > ### Keywords: distribution > > ### ** Examples > > abvpar(dep = 2.7, model = "hr") [1] 0.6444467 > abvpar(seq(0,1,0.25), dep = 0.3, asy = c(.7,.9), model = "alog") [1] 1.0000000 0.8272414 0.7012552 0.7841595 1.0000000 > abvpar(alpha = 0.3, beta = 1.2, model = "negbi", plot = TRUE) > > bvdata <- rbvevd(100, dep = 0.7, model = "log") > M1 <- fitted(fbvevd(bvdata, model = "log")) > abvpar(dep = M1["dep"], model = "log", plot = TRUE) > abvnonpar(data = bvdata, add = TRUE, lty = 2) > > > > cleanEx(); ..nameEx <- "anova.evd" > > ### * anova.evd > > flush(stderr()); flush(stdout()) > > ### Name: anova.evd > ### Title: Compare Nested EVD Objects > ### Aliases: anova.evd > ### Keywords: models > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > trend <- (-49:50)/100 > M1 <- fgev(uvdata, nsloc = trend) > M2 <- fgev(uvdata) > M3 <- fgev(uvdata, shape = 0) > anova(M1, M2, M3) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 4 312.34 M2 3 312.39 1 0.0470 0.8283 M3 2 313.07 1 0.6777 0.4104 > > bvdata <- rbvevd(100, dep = 0.75, model = "log") > M1 <- fbvevd(bvdata, model = "log") > M2 <- fbvevd(bvdata, model = "log", dep = 0.75) > anova(M1, M2) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 7 589.37 M2 6 590.79 1 1.4215 0.2332 > > > > cleanEx(); ..nameEx <- "atvnonpar" > > ### * atvnonpar > > flush(stderr()); flush(stdout()) > > ### Name: atvnonpar > ### Title: Non-parametric Estimates for Dependence Functions of the > ### Trivariate Extreme Value Distribution > ### Aliases: atvnonpar > ### Keywords: nonparametric > > ### ** Examples > > s3pts <- matrix(rexp(30), nrow = 10, ncol = 3) > s3pts <- s3pts/rowSums(s3pts) > sdat <- rmvevd(100, dep = 0.6, model = "log", d = 3) > atvnonpar(s3pts, sdat) [1] 0.7370036 0.7415682 0.8081422 0.8921579 0.7591557 0.8272619 0.7325760 [8] 0.8058710 0.7273751 0.7863050 > > ## Not run: atvnonpar(data = sdat, plot = TRUE) > ## Not run: atvnonpar(data = sdat, plot = TRUE, ord = c(2,3,1), lab = LETTERS[1:3]) > ## Not run: atvpar(dep = 0.6, model = "log", plot = TRUE) > ## Not run: atvpar(dep = 0.6, model = "log", plot = TRUE, blty = 1) > > > > cleanEx(); ..nameEx <- "atvpar" > > ### * atvpar > > flush(stderr()); flush(stdout()) > > ### Name: atvpar > ### Title: Parametric Dependence Functions of Trivariate Extreme Value > ### Models > ### Aliases: atvpar > ### Keywords: distribution > > ### ** Examples > > atvpar(dep = 0.5, model = "log") [1] 0.5773503 > s3pts <- matrix(rexp(30), nrow = 10, ncol = 3) > s3pts <- s3pts/rowSums(s3pts) > atvpar(s3pts, dep = 0.5, model = "log") [1] 0.6308126 0.5977948 0.7633046 0.8698869 0.7177790 0.7707636 0.6287513 [8] 0.7856694 0.6286950 0.6735762 > ## Not run: atvpar(dep = 0.05, model = "log", plot = TRUE, blty = 1) > atvpar(dep = 0.95, model = "log", plot = TRUE, lower = 0.94) > > asy <- list(.4, .1, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.3,.2)) > atvpar(s3pts, dep = 0.15, asy = asy, model = "alog") [1] 0.7626463 0.7621025 0.8953048 0.9505544 0.8376848 0.8646419 0.7806575 [8] 0.8559940 0.7756313 0.7962283 > atvpar(dep = 0.15, asy = asy, model = "al", plot = TRUE, lower = 0.7) > > > > cleanEx(); ..nameEx <- "bvevd" > > ### * bvevd > > flush(stderr()); flush(stdout()) > > ### Name: bvevd > ### Title: Parametric Bivariate Extreme Value Distributions > ### Aliases: dbvevd pbvevd rbvevd > ### Keywords: distribution > > ### ** Examples > > pbvevd(matrix(rep(0:4,2), ncol=2), dep = 0.7, model = "log") [1] 0.1970092 0.5501183 0.8026369 0.9223050 0.9706844 > pbvevd(c(2,2), dep = 0.7, asy = c(0.6,0.8), model = "alog") [1] 0.7899611 > pbvevd(c(1,1), dep = 1.7, model = "hr") [1] 0.5879695 > > margins <- cbind(0, 1, seq(-0.5,0.5,0.1)) > rbvevd(11, dep = 1.7, model = "hr", mar1 = margins) [,1] [,2] [1,] -0.4254010 0.01150467 [2,] 1.3751118 1.51970181 [3,] 0.7563853 1.62772995 [4,] 1.7945053 0.80787193 [5,] -0.3046369 -1.07817137 [6,] -0.8011408 -0.55049599 [7,] 0.5100566 0.04421376 [8,] 1.0386106 0.37314890 [9,] 10.7654622 10.78886330 [10,] 0.8422491 1.84067903 [11,] 1.4112151 -0.39381881 > rbvevd(10, dep = 1.2, model = "neglog", mar1 = c(10, 1, 1)) [,1] [,2] [1,] 9.913010 9.481925 [2,] 9.703035 10.050837 [3,] 9.260082 10.040237 [4,] 11.611403 9.927830 [5,] 10.605372 10.954845 [6,] 9.772099 9.594941 [7,] 13.678683 11.482815 [8,] 10.226106 9.449207 [9,] 10.865629 10.125499 [10,] 13.288596 11.297182 > rbvevd(10, alpha = 0.7, beta = 0.52, model = "bilog") [,1] [,2] [1,] 1.1077395 0.5236886 [2,] 0.9589463 1.4416483 [3,] -1.2007599 0.3014341 [4,] 1.2222786 1.0020863 [5,] 1.1548124 1.9010108 [6,] -0.2123668 -0.3416906 [7,] -1.2814224 -0.8363544 [8,] -0.1202873 0.4207468 [9,] 0.5038912 0.1060725 [10,] 1.4298580 -0.2033697 > > dbvevd(c(0,0), dep = 1.2, asy = c(0.5,0.9), model = "aneglog") [1] 0.163507 > dbvevd(c(0,0), alpha = 0.75, beta = 0.5, model = "ct", log = TRUE) [1] -1.798680 > dbvevd(c(0,0), alpha = 0.7, beta = 1.52, model = "negbilog") [1] 0.1759396 > > > > cleanEx(); ..nameEx <- "chiplot" > > ### * chiplot > > flush(stderr()); flush(stdout()) > > ### Name: chiplot > ### Title: Dependence Measure Plots > ### Aliases: chiplot > ### Keywords: hplot > > ### ** Examples > > par(mfrow = c(1,2)) > smdat1 <- rbvevd(1000, dep = 0.6, model = "log") > smdat2 <- rbvevd(1000, dep = 1, model = "log") > chiplot(smdat1) > chiplot(smdat2) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "clusters" > > ### * clusters > > flush(stderr()); flush(stdout()) > > ### Name: clusters > ### Title: Identify Clusters of Exceedences > ### Aliases: clusters > ### Keywords: manip > > ### ** Examples > > data(portpirie) > clusters(portpirie, 4.2, 3) $cluster1 9 10 11 12 4.36 3.96 3.98 4.69 $cluster2 20 21 22 23 24 25 26 4.25 3.97 4.05 4.24 4.22 3.73 4.37 $cluster3 31 4.55 $cluster4 38 39 40 41 42 43 4.21 4.01 4.11 4.24 3.96 4.21 $cluster5 58 59 4.33 4.55 $cluster6 65 4.33 attr(,"acs") [1] 2.166667 > clusters(portpirie, 4.2, 3, cmax = TRUE) 12 26 31 41 59 65 4.69 4.37 4.55 4.24 4.55 4.33 attr(,"acs") [1] 2.166667 > clusters(portpirie, 4.2, 3, 3.8, plot = TRUE) > clusters(portpirie, 4.2, 3, 3.8, plot = TRUE, lvals = FALSE) > tvu <- c(rep(4.2, 20), rep(4.1, 25), rep(4.2, 20)) > clusters(portpirie, tvu, 3, plot = TRUE) > > > > cleanEx(); ..nameEx <- "evmc" > > ### * evmc > > flush(stderr()); flush(stdout()) > > ### Name: evmc > ### Title: Simulate Markov Chains With Extreme Value Dependence Structures > ### Aliases: evmc > ### Keywords: distribution > > ### ** Examples > > evmc(100, alpha = 0.1, beta = 0.1, model = "bilog") [1] 0.2655087 0.2493311 0.2614518 0.3454474 0.2964023 0.3769529 0.4796189 [8] 0.5018306 0.5186875 0.4197970 0.3698886 0.3140964 0.3436225 0.3270035 [15] 0.3718841 0.3716701 0.4059425 0.5723884 0.5544245 0.5927964 0.6684819 [22] 0.6284096 0.6445051 0.5826650 0.5476211 0.5302293 0.3737576 0.3563103 [29] 0.4260592 0.4013080 0.3984068 0.4129188 0.4115486 0.3571454 0.4148297 [36] 0.4398502 0.4872760 0.4096966 0.4442778 0.4304718 0.4843178 0.5042983 [43] 0.5464635 0.5517890 0.5539393 0.5945228 0.4646595 0.4603661 0.4949906 [50] 0.5217597 0.5171183 0.5760992 0.5660847 0.5264390 0.4331993 0.3519331 [57] 0.3243236 0.3278534 0.3531216 0.3397654 0.4262481 0.3935740 0.3873886 [64] 0.3617582 0.3848413 0.3461516 0.3435172 0.3875241 0.3008859 0.3729991 [71] 0.3487023 0.4097061 0.3861262 0.3607424 0.3575624 0.4350805 0.5001975 [78] 0.4830857 0.5251852 0.6252280 0.6151365 0.6398744 0.6256938 0.6012378 [85] 0.6333760 0.5890504 0.6148575 0.5491226 0.5090381 0.4438883 0.4010058 [92] 0.3001417 0.3224205 0.3948346 0.4404866 0.4885489 0.4809422 0.4668053 [99] 0.5166757 0.5296978 > evmc(100, dep = 10, model = "hr", margins = "exp") [1] 0.4235416 0.4608016 0.5243798 0.3274644 0.3101703 0.3674429 0.4639559 [8] 0.4736111 0.3611857 0.3480652 0.2384190 0.2141353 0.2337807 0.2454883 [15] 0.3060496 0.4804770 0.4340566 0.5614075 0.5808711 0.5458954 0.3435640 [22] 0.3486165 0.3556667 0.4329307 0.3822891 0.3956244 0.3979452 0.4720024 [29] 0.5508679 0.5298255 0.5151115 0.6856548 0.9765001 0.9105399 0.6873832 [36] 0.6587334 0.6433208 0.6392263 0.4207667 0.4237464 0.3902786 0.3753681 [43] 0.4364527 0.5006024 0.4484915 0.4637566 0.5618934 0.4977375 0.6411323 [50] 0.5210076 0.4965995 0.4873643 0.5363050 0.5533407 0.5576959 0.6709124 [57] 0.6651221 0.8828558 0.9893672 1.1501960 1.2755854 1.0000088 1.0252507 [64] 0.8839541 0.7058467 0.7399824 0.9960942 1.0789504 0.9618150 1.0414859 [71] 0.9762565 0.8065645 0.6591158 0.6992525 0.7452191 0.5869092 0.5503058 [78] 0.4892170 0.4687821 0.3670632 0.4131233 0.4953980 0.3948404 0.3986918 [85] 0.3210746 0.3866802 0.3409739 0.3070887 0.2275040 0.2255305 0.2050093 [92] 0.2201386 0.2875949 0.2186991 0.2486509 0.2411302 0.3115681 0.2594161 [99] 0.2888665 0.2510050 > > > > cleanEx(); ..nameEx <- "exi" > > ### * exi > > flush(stderr()); flush(stdout()) > > ### Name: exi > ### Title: Estimates of the Extremal Index > ### Aliases: exi > ### Keywords: manip > > ### ** Examples > > data(portpirie) > exi(portpirie, 4.2, 3, 3.8) [1] 0.5384615 > us <- seq(3.9, 4.2, len = 10) > exi(portpirie, us, 3) [1] 0.1388889 0.1764706 0.2413793 0.2692308 0.2608696 0.3500000 0.3888889 [8] 0.4666667 0.4666667 0.4615385 > exi(portpirie, us, 1:3) [,1] [,2] [,3] [1,] 0.4722222 0.2500000 0.1388889 [2,] 0.4411765 0.2647059 0.1764706 [3,] 0.5517241 0.3448276 0.2413793 [4,] 0.6153846 0.3846154 0.2692308 [5,] 0.6956522 0.3913043 0.2608696 [6,] 0.8000000 0.5000000 0.3500000 [7,] 0.8333333 0.5555556 0.3888889 [8,] 0.8666667 0.6666667 0.4666667 [9,] 0.8666667 0.6666667 0.4666667 [10,] 0.8461538 0.6923077 0.4615385 > tvu <- c(rep(4.2, 20), rep(4.1, 25), rep(4.2, 20)) > exi(portpirie, as.matrix(tvu), 1:3) [1] 0.8 0.6 0.4 > > us <- seq(3.9, 4.2, len = 100) > eis <- exi(portpirie, us, 1:3) > matplot(us, eis, type = "l", xlab = "Threshold", ylab = "Ext. Index") > > > > cleanEx(); ..nameEx <- "extreme" > > ### * extreme > > flush(stderr()); flush(stdout()) > > ### Name: extreme > ### Title: Distributions of Maxima and Minima > ### Aliases: dextreme pextreme qextreme rextreme > ### Keywords: distribution > > ### ** Examples > > dextreme(2:4, dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5) [1] 0.48689660 0.17602941 0.02346192 > dextreme(2:4, distn = "norm", mean = 0.5, sd = 1.2, mlen = 5) [1] 0.48689660 0.17602941 0.02346192 > dextreme(2:4, distn = "exp", mlen = 2, largest = FALSE) [1] 0.0366312778 0.0049575044 0.0006709253 > pextreme(2:4, distn = "exp", rate = 1.2, mlen = 2) [1] 0.8267938 0.9460991 0.9836082 > qextreme(seq(0.9, 0.6, -0.1), distn = "exp", rate = 1.2, mlen = 2) [1] 2.474783 1.873629 1.509935 1.241553 > rextreme(5, qgamma, shape = 1, mlen = 10) [1] 1.529282 2.668003 5.146046 2.888284 1.279281 > p <- (1:9)/10 > pexp(qextreme(p, distn = "exp", rate = 1.2, mlen = 1), rate = 1.2) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "fbvevd" > > ### * fbvevd > > flush(stderr()); flush(stdout()) > > ### Name: fbvevd > ### Title: Maximum-likelihood Fitting of Bivariate Extreme Value > ### Distributions > ### Aliases: fbvevd print.bvevd > ### Keywords: models > > ### ** Examples > > bvdata <- rbvevd(100, dep = 0.6, model = "log", mar1 = c(1.2,1.4,0.4)) > M1 <- fbvevd(bvdata, model = "log") > M2 <- fbvevd(bvdata, model = "log", dep = 0.75) > anova(M1, M2) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 7 809.29 M2 6 819.10 1 9.8085 0.001737 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > par(mfrow = c(2,2)) > plot(M1) > plot(M1, mar = 1) > plot(M1, mar = 2) > ## Not run: par(mfrow = c(1,1)) > ## Not run: M1P <- profile(M1, which = "dep") > ## Not run: plot(M1P) > > trend <- (-49:50)/100 > rnd <- runif(100, min = -.5, max = .5) > fbvevd(bvdata, model = "log", nsloc1 = trend) Call: fbvevd(x = bvdata, model = "log", nsloc1 = trend) Deviance: 809.2756 AIC: 825.2756 Estimates loc1 loc1trend scale1 shape1 loc2 scale2 shape2 1.28198 -0.03981 1.37525 0.43585 1.29947 1.41485 0.41422 dep 0.56473 Standard Errors loc1 loc1trend scale1 shape1 loc2 scale2 shape2 0.15306 0.32455 0.14334 0.08051 0.16026 0.14779 0.08598 dep 0.05488 Dependence Structure Dependence One: 0.5208874 Dependence Two: 0.6838701 Asymmetry: 0 Optimization Information Convergence: successful Function Evaluations: 51 Gradient Evaluations: 15 > fbvevd(bvdata, model = "log", nsloc1 = trend, nsloc2 = data.frame(trend + = trend, random = rnd)) Call: fbvevd(x = bvdata, model = "log", nsloc1 = trend, nsloc2 = data.frame(trend = trend, random = rnd)) Deviance: 809.2208 AIC: 829.2208 Estimates loc1 loc1trend scale1 shape1 loc2 loc2trend 1.28138 -0.02438 1.37503 0.43638 1.29627 0.03587 loc2random scale2 shape2 dep -0.06761 1.40886 0.41810 0.56557 Standard Errors loc1 loc1trend scale1 shape1 loc2 loc2trend 0.1531 0.3447 0.1433 0.0807 0.1603 0.3294 loc2random scale2 shape2 dep 0.3516 0.1496 0.0882 0.0551 Dependence Structure Dependence One: 0.5200316 Dependence Two: 0.6829166 Asymmetry: 0 Optimization Information Convergence: successful Function Evaluations: 56 Gradient Evaluations: 15 > fbvevd(bvdata, model = "log", nsloc1 = trend, nsloc2 = data.frame(trend + = trend, random = rnd), loc2random = 0) Call: fbvevd(x = bvdata, model = "log", loc2random = 0, nsloc1 = trend, nsloc2 = data.frame(trend = trend, random = rnd)) Deviance: 809.2574 AIC: 827.2574 Estimates loc1 loc1trend scale1 shape1 loc2 loc2trend scale2 1.28188 -0.02397 1.37538 0.43550 1.29840 0.04441 1.41243 shape2 dep 0.41525 0.56530 Standard Errors loc1 loc1trend scale1 shape1 loc2 loc2trend scale2 0.15306 0.34532 0.14333 0.08046 0.16030 0.32800 0.14876 shape2 dep 0.08661 0.05504 Dependence Structure Dependence One: 0.520307 Dependence Two: 0.6832235 Asymmetry: 0 Optimization Information Convergence: successful Function Evaluations: 57 Gradient Evaluations: 14 > > bvdata <- rbvevd(100, dep = 1, asy = c(0.5,0.5), model = "anegl") > anlog <- fbvevd(bvdata, model = "anegl") > mixed <- fbvevd(bvdata, model = "anegl", dep = 1, sym = TRUE) > anova(anlog, mixed) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) anlog 9 616.71 mixed 7 618.05 2 1.3402 0.5116 > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "fbvpot" > > ### * fbvpot > > flush(stderr()); flush(stdout()) > > ### Name: fbvpot > ### Title: Maximum-likelihood Fitting of Bivariate Extreme Value > ### Distributions to Threshold Exceedances > ### Aliases: fbvpot print.bvpot plot.bvpot > ### Keywords: models > > ### ** Examples > > bvdata <- rbvevd(1000, dep = 0.5, model = "log") > u <- apply(bvdata, 2, quantile, probs = 0.9) > M1 <- fbvpot(bvdata, u, model = "log") > M2 <- fbvpot(bvdata, u, "log", dep = 0.5) > anova(M1, M2) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 5 1411.8 M2 4 1412.2 1 0.3234 0.5696 > > > > cleanEx(); ..nameEx <- "fextreme" > > ### * fextreme > > flush(stderr()); flush(stdout()) > > ### Name: fextreme > ### Title: Maximum-likelihood Fitting of Maxima and Minima > ### Aliases: fextreme > ### Keywords: models > > ### ** Examples > > uvdata <- rextreme(100, qnorm, mean = 0.56, mlen = 365) > fextreme(uvdata, list(mean = 0, sd = 1), distn = "norm", mlen = 365) Call: fextreme(x = uvdata, start = list(mean = 0, sd = 1), distn = "norm", mlen = 365) Deviance: 84.84415 Estimates mean sd 0.5076 1.0127 Standard Errors mean sd 0.20817 0.07593 Optimization Information Convergence: successful Function Evaluations: 63 > fextreme(uvdata, list(rate = 1), distn = "exp", mlen = 365) Warning in optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, : one-diml optimization by Nelder-Mead is unreliable: use optimize Call: fextreme(x = uvdata, start = list(rate = 1), distn = "exp", mlen = 365) Deviance: 126.1562 Estimates rate 1.784 Standard Errors rate 0.03163 Optimization Information Convergence: successful Function Evaluations: 26 > fextreme(uvdata, list(scale = 1), shape = 1, distn = "gamma", mlen = 365) Warning in optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, : one-diml optimization by Nelder-Mead is unreliable: use optimize Call: fextreme(x = uvdata, start = list(scale = 1), shape = 1, distn = "gamma", mlen = 365) Deviance: 126.1562 Estimates scale 0.5607 Standard Errors scale 0.009943 Optimization Information Convergence: successful Function Evaluations: 30 > fextreme(uvdata, list(shape = 1, scale = 1), distn = "gamma", mlen = 365) Call: fextreme(x = uvdata, start = list(shape = 1, scale = 1), distn = "gamma", mlen = 365) Deviance: 85.27312 Estimates shape scale 5.7105 0.2272 Standard Errors shape scale 1.18200 0.02957 Optimization Information Convergence: successful Function Evaluations: 123 > > > > cleanEx(); ..nameEx <- "fgev" > > ### * fgev > > flush(stderr()); flush(stdout()) > > ### Name: fgev > ### Title: Maximum-likelihood Fitting of the Generalized Extreme Value > ### Distribution > ### Aliases: fgev fitted.evd std.errors std.errors.evd print.evd logLik.evd > ### Keywords: models > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > trend <- (-49:50)/100 > M1 <- fgev(uvdata, nsloc = trend, control = list(trace = 1)) initial value 156.827545 final value 156.171376 converged > M2 <- fgev(uvdata) > M3 <- fgev(uvdata, shape = 0) > M4 <- fgev(uvdata, scale = 1, shape = 0) > anova(M1, M2, M3, M4) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 4 312.34 M2 3 312.39 1 0.0470 0.8283 M3 2 313.07 1 0.6777 0.4104 M4 1 313.21 1 0.1402 0.7081 > par(mfrow = c(2,2)) > plot(M2) > ## Not run: M2P <- profile(M2) > ## Not run: plot(M2P) > > rnd <- runif(100, min = -.5, max = .5) > fgev(uvdata, nsloc = data.frame(trend = trend, random = rnd)) Call: fgev(x = uvdata, nsloc = data.frame(trend = trend, random = rnd)) Deviance: 312.3426 Estimates loc loctrend locrandom scale shape 0.089361 0.073210 -0.003946 0.948606 0.061243 Standard Errors loc loctrend locrandom scale shape 0.10745 0.33720 0.30948 0.07989 0.07804 Optimization Information Convergence: successful Function Evaluations: 30 Gradient Evaluations: 10 > fgev(uvdata, nsloc = data.frame(trend = trend, random = rnd), locrandom = 0) Call: fgev(x = uvdata, locrandom = 0, nsloc = data.frame(trend = trend, random = rnd)) Deviance: 312.3428 Estimates loc loctrend scale shape 0.08928 0.07308 0.94853 0.06139 Standard Errors loc loctrend scale shape 0.10727 0.33697 0.07962 0.07721 Optimization Information Convergence: successful Function Evaluations: 35 Gradient Evaluations: 8 > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata, prob = 0.1) > M2 <- fgev(uvdata, prob = 0.01) > ## Not run: M1P <- profile(M1, which = "quantile") > ## Not run: M2P <- profile(M2, which = "quantile") > ## Not run: plot(M1P) > ## Not run: plot(M2P) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "forder" > > ### * forder > > flush(stderr()); flush(stdout()) > > ### Name: forder > ### Title: Maximum-likelihood Fitting of Order Statistics > ### Aliases: forder > ### Keywords: models > > ### ** Examples > > uvd <- rorder(100, qnorm, mean = 0.56, mlen = 365, j = 2) > forder(uvd, list(mean = 0, sd = 1), distn = "norm", mlen = 365, j = 2) Call: forder(x = uvd, start = list(mean = 0, sd = 1), distn = "norm", mlen = 365, j = 2) Deviance: -5.755266 Estimates mean sd 0.7668 0.9038 Standard Errors mean sd 0.16546 0.06538 Optimization Information Convergence: successful Function Evaluations: 67 > forder(uvd, list(rate = 1), distn = "exp", mlen = 365, j = 2) Warning in optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, : one-diml optimization by Nelder-Mead is unreliable: use optimize Call: forder(x = uvd, start = list(rate = 1), distn = "exp", mlen = 365, j = 2) Deviance: 47.80988 Estimates rate 1.705 Standard Errors rate 0.02364 Optimization Information Convergence: successful Function Evaluations: 30 > forder(uvd, list(scale = 1), shape = 1, distn = "gamma", mlen = 365, j = 2) Warning in optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, : one-diml optimization by Nelder-Mead is unreliable: use optimize Call: forder(x = uvd, start = list(scale = 1), shape = 1, distn = "gamma", mlen = 365, j = 2) Deviance: 47.80988 Estimates scale 0.5864 Standard Errors scale 0.008129 Optimization Information Convergence: successful Function Evaluations: 30 > forder(uvd, list(shape = 1, scale = 1), distn = "gamma", mlen = 365, j = 2) Call: forder(x = uvd, start = list(shape = 1, scale = 1), distn = "gamma", mlen = 365, j = 2) Deviance: -4.912165 Estimates shape scale 6.4968 0.2073 Standard Errors shape scale 1.25585 0.02666 Optimization Information Convergence: successful Function Evaluations: 189 > > > > cleanEx(); ..nameEx <- "fpot" > > ### * fpot > > flush(stderr()); flush(stdout()) > > ### Name: fpot > ### Title: Peaks Over Threshold Modelling using the Generalized Pareto or > ### Point Process Representation > ### Aliases: fpot print.pot > ### Keywords: models > > ### ** Examples > > uvdata <- rgpd(100, loc = 0, scale = 1.1, shape = 0.2) > M1 <- fpot(uvdata, 1) > M2 <- fpot(uvdata, 1, shape = 0) > anova(M1, M2) Analysis of Deviance Table M.Df Deviance Df Chisq Pr(>chisq) M1 2 94.422 M2 1 95.600 1 1.1786 0.2776 > par(mfrow = c(2,2)) > plot(M1) > ## Not run: M1P <- profile(M1) > ## Not run: plot(M1P) > > M1 <- fpot(uvdata, 1, mper = 10) > M2 <- fpot(uvdata, 1, mper = 100) > ## Not run: M1P <- profile(M1, which = "rlevel", conf=0.975, mesh=0.1) > ## Not run: M2P <- profile(M2, which = "rlevel", conf=0.975, mesh=0.1) > ## Not run: plot(M1P) > ## Not run: plot(M2P) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "frechet" > > ### * frechet > > flush(stderr()); flush(stdout()) > > ### Name: frechet > ### Title: The Frechet Distribution > ### Aliases: dfrechet pfrechet qfrechet rfrechet > ### Keywords: distribution > > ### ** Examples > > dfrechet(2:4, 1, 0.5, 0.8) [1] 0.25871959 0.09487423 0.05010381 > pfrechet(2:4, 1, 0.5, 0.8) [1] 0.5630712 0.7190122 0.7878127 > qfrechet(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8) [1] 10.329571 5.260165 3.813966 3.157788 > rfrechet(6, 1, 0.5, 0.8) [1] 1.710241 1.405847 6.554187 6.849307 2.410998 1.132408 > p <- (1:9)/10 > pfrechet(qfrechet(p, 1, 2, 0.8), 1, 2, 0.8) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "gev" > > ### * gev > > flush(stderr()); flush(stdout()) > > ### Name: gev > ### Title: The Generalized Extreme Value Distribution > ### Aliases: dgev pgev qgev rgev > ### Keywords: distribution > > ### ** Examples > > dgev(2:4, 1, 0.5, 0.8) [1] 0.17210639 0.06706381 0.03428205 > pgev(2:4, 1, 0.5, 0.8) [1] 0.7386812 0.8467772 0.8948490 > qgev(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8) [1] 5.157141 3.449973 2.800811 2.444700 > rgev(6, 1, 0.5, 0.8) [1] 1.1574179 0.9218788 3.2930742 3.3913800 1.5890488 0.6420330 > p <- (1:9)/10 > pgev(qgev(p, 1, 2, 0.8), 1, 2, 0.8) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "gpd" > > ### * gpd > > flush(stderr()); flush(stdout()) > > ### Name: gpd > ### Title: The Generalized Pareto Distribution > ### Aliases: dgpd pgpd qgpd rgpd > ### Keywords: distribution > > ### ** Examples > > dgpd(2:4, 1, 0.5, 0.8) [1] 0.23299144 0.07919889 0.03831043 > pgpd(2:4, 1, 0.5, 0.8) [1] 0.6971111 0.8336823 0.8888998 > qgpd(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8) [1] 5.318483 3.639936 3.012506 2.675864 > rgpd(6, 1, 0.5, 0.8) [1] 2.180581 1.753256 1.350990 1.050044 2.624813 1.055939 > p <- (1:9)/10 > pgpd(qgpd(p, 1, 2, 0.8), 1, 2, 0.8) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "gumbel" > > ### * gumbel > > flush(stderr()); flush(stdout()) > > ### Name: gumbel > ### Title: The Gumbel Distribution > ### Aliases: dgumbel pgumbel qgumbel rgumbel > ### Keywords: distribution > > ### ** Examples > > dgumbel(-1:2, -1, 0.5) [1] 0.735758882 0.236409903 0.035966459 0.004945231 > pgumbel(-1:2, -1, 0.5) [1] 0.3678794 0.8734230 0.9818511 0.9975243 > qgumbel(seq(0.9, 0.6, -0.1), 2, 0.5) [1] 3.125184 2.749970 2.515465 2.335863 > rgumbel(6, -1, 0.5) [1] -0.85960164 -1.08345283 -0.03692030 -0.01621183 -0.58502218 -1.53148712 > p <- (1:9)/10 > pgumbel(qgumbel(p, -1, 2), -1, 2) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "marma" > > ### * marma > > flush(stderr()); flush(stdout()) > > ### Name: marma > ### Title: Simulate MARMA(p,q) Processes > ### Aliases: marma mar mma > ### Keywords: distribution > > ### ** Examples > > marma(100, p = 1, q = 1, psi = 0.75, theta = 0.65) [1] 0.8607199 6.8631011 7.1533183 5.3649887 4.0237415 3.0178061 [7] 2.2633546 1.6975160 6.8005935 5.1004451 3.8253338 2.8690004 [13] 2.1517503 1.6138127 1.2103595 0.9077696 1.5273083 2.9679449 [19] 2.2259587 1.6694690 1.5578930 3.3999683 2.5499762 9.4275032 [25] 16.8239254 12.6179440 9.4634580 7.0975935 5.3231951 3.9923964 [31] 26.8322925 20.1242194 15.0931645 11.3198734 8.4899050 6.3674288 [37] 4.7755716 3.5816787 4.2548221 3.1911166 2.3933375 1.7950031 [43] 1.3462523 1.8029668 3.3191385 2.4893539 1.8670154 1.9448658 [49] 1.4586493 2.3683076 1.7762307 1.3321730 1.7926629 1.6817530 [55] 1.2613147 4.7649321 3.5736991 2.6802743 2.0102057 11.1514946 [61] 8.3636209 6.2727157 4.7045368 3.5284026 2.6463019 1.9847265 [67] 1.4885448 1.2294554 1.1947339 0.8960504 0.6720378 0.5040283 [73] 3.5015111 2.6261333 19.2102852 14.4077139 10.8057854 8.1043391 [79] 6.0782543 4.5586907 3.4190180 2.5642635 16.8744458 12.6558343 [85] 9.4918757 7.1189068 5.3391801 4.0043851 3.0032888 2.2524666 [91] 2.2348771 1.6761578 3.8339406 2.8754555 3.7916379 2.8437284 [97] 4.7481827 7.5431047 5.6573286 4.2429964 > mar(100, psi = 0.85, n.start = 20) [1] 7.520366 6.392311 5.433465 49.381709 41.974452 35.678285 30.326542 [8] 25.777561 21.910926 18.624288 15.830644 13.456048 11.437641 9.721994 [15] 8.263695 7.024141 10.116786 8.599268 7.309378 6.212971 5.281026 [22] 4.488872 3.815541 4.549012 3.866661 3.286661 2.793662 2.374613 [29] 2.018421 1.963051 4.152478 3.529606 3.000165 2.550140 2.167619 [36] 1.842477 1.566105 18.307791 30.081759 25.569495 21.734071 18.473960 [43] 15.702866 13.347436 11.345321 9.643523 8.196994 6.967445 5.922328 [50] 5.033979 4.278882 3.637050 3.091492 2.627769 2.233603 1.898563 [57] 1.613778 2.273616 1.932574 1.642688 4.009167 3.407792 2.896623 [64] 2.462130 2.092810 1.778889 1.907294 4.913719 4.176661 3.550162 [71] 3.017637 8.176131 6.949712 5.907255 5.021167 4.267992 3.627793 [78] 3.083624 17.542662 14.911263 12.674573 10.773387 9.157379 7.783772 [85] 6.616207 5.623776 4.780209 4.063178 3.453701 6.504083 5.528470 [92] 4.699200 8.141871 6.920590 6.214197 5.282067 4.489757 3.816294 [99] 9.316665 7.919165 > mma(100, q = 2, theta = c(0.75, 0.8)) [1] 0.8508496 3.1470766 2.3603074 2.5176613 2.2352288 1.6764216 [7] 1.7881830 1.3344363 4.0365748 3.0274311 3.2292599 2.4288469 [13] 1.8216351 2.5639415 1.9229562 2.0511532 1.2391831 0.9336225 [19] 0.7597621 0.7468980 1.7208045 19.9100528 14.9325396 15.9280423 [25] 10.5638668 2.0864478 1.5648359 1.6691583 1.1505965 587.8982779 [31] 440.9237084 470.3186223 3.6446823 1.0664628 20.6003120 15.4502340 [37] 16.4802496 3.1170460 22.2124226 16.6593169 17.7699380 8.8462508 [43] 6.6346881 7.0770006 2.7244792 2.9061111 1.9207625 1.4405719 [49] 2.4518151 222.1417303 166.6062977 177.7133842 0.4200503 8.7794384 [55] 6.5845788 7.0235507 1.4440610 1.0830458 3.1634046 3.0610485 [61] 2.5307237 2.7087716 177.4869855 133.1152391 141.9895884 1.7561806 [67] 3.4230802 11.9106379 8.9329784 9.5285103 2.7191898 2.9004692 [73] 1.7944713 1.9141027 0.8029155 1.9015436 2.3789537 1.7842153 [79] 1.9031630 0.9609283 0.7206962 4.1059911 3.0794933 4.3885099 [85] 3.2913824 3.5108079 8.0660652 6.0495489 130.7254223 98.0440667 [91] 104.5803378 3.0173649 1.5568452 1.5182602 3.2313753 2.4235315 [97] 2.5851003 2.1610260 5.9719335 4.4789501 > > > > cleanEx(); ..nameEx <- "mrlplot" > > ### * mrlplot > > flush(stderr()); flush(stdout()) > > ### Name: mrlplot > ### Title: Empirical Mean Residual Life Plot > ### Aliases: mrlplot > ### Keywords: hplot > > ### ** Examples > > data(portpirie) > mrlplot(portpirie) > > > > cleanEx(); ..nameEx <- "mvevd" > > ### * mvevd > > flush(stderr()); flush(stdout()) > > ### Name: mvevd > ### Title: Parametric Multivariate Extreme Value Distributions > ### Aliases: pmvevd rmvevd dmvevd > ### Keywords: distribution > > ### ** Examples > > pmvevd(matrix(rep(0:4,5), ncol=5), dep = .7, model = "log", d = 5) [1] 0.04572229 0.32143165 0.65867024 0.85761368 0.94506001 > pmvevd(rep(4,5), dep = .7, model = "log", d = 5) [1] 0.94506 > rmvevd(10, dep = .7, model = "log", d = 5) [,1] [,2] [,3] [,4] [,5] [1,] 0.76277608 0.7917679 -0.004566544 -1.3296175 -0.73019614 [2,] 1.63991195 0.0671223 0.488243717 0.1487812 -0.74291554 [3,] -0.93506965 -0.1982024 0.266851603 -0.1235083 -1.09705836 [4,] 1.26740216 2.4393649 2.844784385 1.2516877 -0.09435917 [5,] 0.55018216 -0.1149002 -0.370089258 2.1855896 0.67175161 [6,] 0.03645401 0.8909146 0.277085707 0.2521231 1.06582113 [7,] -0.66706290 -0.6455245 -0.074983720 0.3522065 -0.66753023 [8,] -0.78411600 0.3073459 -0.841310159 -1.1142631 0.11241454 [9,] 1.49337275 1.2215504 0.329989857 0.5796330 2.08857592 [10,] 0.45597383 -0.1615263 0.165302084 0.5067765 -0.78527294 > dmvevd(rep(-1,20), dep = .7, model = "log", d = 20, log = TRUE) [1] -15.94830 > > asy <- list(.4, .1, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.3,.2)) > pmvevd(rep(2,3), dep = c(.6,.5,.8,.3), asy = asy, model = "alog", d = 3) [1] 0.7206158 > asy <- list(.4, .0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2)) > rmvevd(10, dep = c(.6,.5,.8,.3), asy = asy, model = "alog", d = 3) [,1] [,2] [,3] [1,] -0.5177859 -0.7896065 -0.3042543 [2,] -0.6485173 0.5556615 -0.2928822 [3,] 1.9463989 0.8921011 0.2899117 [4,] 1.0359059 0.9633195 0.6959547 [5,] -0.3182253 -0.9797469 1.3425462 [6,] -0.2417911 -0.4652638 0.9128796 [7,] -1.5432141 -0.6532295 -1.2595984 [8,] -0.3041101 0.2085277 -0.2425012 [9,] -0.5230009 -0.2366470 -0.2883650 [10,] 0.2242628 -0.5753941 0.2739568 > dmvevd(rep(0,3), dep = c(.6,.5,.8,.3), asy = asy, model = "alog", d = 3) [1] 0.06688153 > > asy <- list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), + c(.2,.1,.2), c(.1,.1,.2), c(.3,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5)) > rmvevd(10, dep = .7, asy = asy, model = "alog", d = 4) [,1] [,2] [,3] [,4] [1,] 0.03960371 1.65070704 0.1169132 1.02866031 [2,] -0.07336469 -1.04614880 0.5198222 0.57585211 [3,] -0.04739408 -0.59249764 0.6281898 -0.01544431 [4,] 0.04957722 0.29027643 -0.4341733 -0.58607627 [5,] 1.41372886 0.08340703 1.0034009 0.99921066 [6,] -0.55533207 0.85032644 -1.5267018 -0.79288766 [7,] -0.38224882 -0.12235251 -0.4949282 1.33373167 [8,] -0.22545362 0.44718478 3.4981291 0.10547575 [9,] -0.87603526 -0.42115158 -1.1047570 1.29297254 [10,] -0.98209988 1.20687004 0.3790307 -0.40629204 > rmvevd(10, dep = c(rep(1,6), rep(.7,5)), asy = asy, model = "alog", d = 4) [,1] [,2] [,3] [,4] [1,] 7.2134931221 6.9106500 7.21182122 1.0182006 [2,] 0.9920807997 -0.1880452 -0.43933165 -0.1885301 [3,] -0.6722461069 0.3715169 -0.16742472 -0.8321245 [4,] 0.0007447578 -0.8028974 1.21222317 0.6671544 [5,] -0.2911107207 -0.6922242 -0.04528853 -1.3108664 [6,] -0.0671249838 -0.6821777 -0.32476913 -1.1036482 [7,] -0.3866065687 3.2108672 -1.14491191 -0.7340268 [8,] 1.0105847312 2.7393343 0.55862424 1.0609543 [9,] 4.4580686597 -0.6178543 3.45306245 1.1977051 [10,] 2.3756933696 -0.8413361 0.57596720 0.7727093 > > > > cleanEx(); ..nameEx <- "order" > > ### * order > > flush(stderr()); flush(stdout()) > > ### Name: order > ### Title: Distributions of Order Statistics > ### Aliases: dorder porder rorder > ### Keywords: distribution > > ### ** Examples > > dorder(2:4, dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5, j = 2) [1] 0.2300687782 0.0133524232 0.0001663078 > dorder(2:4, distn = "norm", mean = 0.5, sd = 1.2, mlen = 5, j = 2) [1] 0.2300687782 0.0133524232 0.0001663078 > dorder(2:4, distn = "exp", mlen = 2, j = 2) [1] 0.0366312778 0.0049575044 0.0006709253 > porder(2:4, distn = "exp", rate = 1.2, mlen = 2, j = 2) [1] 0.9917703 0.9992534 0.9999323 > rorder(5, qgamma, shape = 1, mlen = 10, j = 2) [1] 2.228533 1.563058 2.422454 1.453327 2.408000 > > > > cleanEx(); ..nameEx <- "plot.bvevd" > > ### * plot.bvevd > > flush(stderr()); flush(stdout()) > > ### Name: plot.bvevd > ### Title: Plot Diagnostics for a Bivariate EVD Object > ### Aliases: plot.bvevd > ### Keywords: hplot > > ### ** Examples > > bvdata <- rbvevd(100, dep = 0.6, model = "log") > M1 <- fbvevd(bvdata, model = "log") > ## Not run: par(mfrow = c(2,2)) > ## Not run: plot(M1) > ## Not run: plot(M1, mar = 1) > ## Not run: plot(M1, mar = 2) > > > > cleanEx(); ..nameEx <- "plot.profile.evd" > > ### * plot.profile.evd > > flush(stderr()); flush(stdout()) > > ### Name: plot.profile.evd > ### Title: Plot Profile Deviances and Calculate Profile Confidence > ### Intervals > ### Aliases: plot.profile.evd > ### Keywords: hplot > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata) > ## Not run: M1P <- profile(M1) > ## Not run: par(mfrow = c(2,2)) > ## Not run: cint <- plot(M1P, ci = c(0.95, 0.99)) > ## Not run: cint > > > > cleanEx(); ..nameEx <- "plot.profile2d.evd" > > ### * plot.profile2d.evd > > flush(stderr()); flush(stdout()) > > ### Name: plot.profile2d.evd > ### Title: Plot Joint Profile Devainces > ### Aliases: plot.profile2d.evd > ### Keywords: hplot > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata) > ## Not run: M1P <- profile(M1) > ## Not run: M1JP <- profile2d(M1, M1P, which = c("scale", "shape")) > ## Not run: plot(M1JP) > > > > cleanEx(); ..nameEx <- "plot.uvevd" > > ### * plot.uvevd > > flush(stderr()); flush(stdout()) > > ### Name: plot.uvevd > ### Title: Plot Diagnostics for a Univariate EVD Object > ### Aliases: plot.uvevd > ### Keywords: hplot > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata) > ## Not run: par(mfrow = c(2,2)) > ## Not run: plot(M1) > > uvdata <- rgpd(100, loc = 0, scale = 1.1, shape = 0.2) > M1 <- fpot(uvdata, 1) > ## Not run: par(mfrow = c(2,2)) > ## Not run: plot(M1) > > > > cleanEx(); ..nameEx <- "profile.evd" > > ### * profile.evd > > flush(stderr()); flush(stdout()) > > ### Name: profile.evd > ### Title: Method for Profiling EVD Objects > ### Aliases: profile.evd > ### Keywords: models > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata) > ## Not run: M1P <- profile(M1) > ## Not run: par(mfrow = c(2,2)) > ## Not run: cint <- plot(M1P) > ## Not run: cint > > > > cleanEx(); ..nameEx <- "profile2d.evd" > > ### * profile2d.evd > > flush(stderr()); flush(stdout()) > > ### Name: profile2d.evd > ### Title: Method for Profiling EVD Objects > ### Aliases: profile2d profile2d.evd > ### Keywords: models > > ### ** Examples > > uvdata <- rgev(100, loc = 0.13, scale = 1.1, shape = 0.2) > M1 <- fgev(uvdata) > ## Not run: M1P <- profile(M1) > ## Not run: M1JP <- profile2d(M1, M1P, which = c("scale", "shape")) > ## Not run: plot(M1JP) > > > > cleanEx(); ..nameEx <- "rweibull" > > ### * rweibull > > flush(stderr()); flush(stdout()) > > ### Name: rweibull > ### Title: The Reversed Weibull Distribution > ### Aliases: drweibull prweibull qrweibull rrweibull > ### Keywords: distribution > > ### ** Examples > > drweibull(-5:-3, -1, 0.5, 0.8) [1] 0.005386194 0.016885315 0.058502349 > prweibull(-5:-3, -1, 0.5, 0.8) [1] 0.005102464 0.015101477 0.048246445 > qrweibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8) [1] 1.969986 1.923317 1.862180 1.784071 > rrweibull(6, -1, 0.5, 0.8) [1] -1.351993 -1.615996 -1.045011 -1.042740 -1.177180 -2.888099 > p <- (1:9)/10 > prweibull(qrweibull(p, -1, 2, 0.8), -1, 2, 0.8) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "tcplot" > > ### * tcplot > > flush(stderr()); flush(stdout()) > > ### Name: tcplot > ### Title: Threshold Choice Plot > ### Aliases: tcplot > ### Keywords: hplot > > ### ** Examples > > data(portpirie) > tlim <- c(3.6, 4.2) > ## Not run: tcplot(portpirie, tlim) > ## Not run: tcplot(portpirie, tlim, nt = 100, lwd = 3, type = "l") > ## Not run: tcplot(portpirie, tlim, model = "pp") > > > > ### *