R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("gstat-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('gstat') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "bpy.colors" > > ### * bpy.colors > > flush(stderr()); flush(stdout()) > > ### Name: bpy.colors > ### Title: blue-pink-yellow color scheme that prints well as grey tone > ### Aliases: bpy.colors > ### Keywords: color > > ### ** Examples > > bpy.colors(10) [1] "#000033" "#000099" "#0000FF" "#5000FF" "#9F0FF0" "#EF42BD" "#FF758A" [8] "#FFA857" "#FFDB24" "#FFFF60" > p <- expand.grid(x=1:30,y=1:30) > p$z <- p$x + p$y > image(p, col = bpy.colors(100)) > # require(lattice) > # trellis.par.set("regions", list(col=bpy.colors())) # make default > > > > cleanEx(); ..nameEx <- "bubble" > > ### * bubble > > flush(stderr()); flush(stdout()) > > ### Name: bubble > ### Title: Create a bubble plot of spatial data > ### Aliases: bubble > ### Keywords: dplot > > ### ** Examples > > data(meuse) > bubble(meuse, max = 2.5, main = "cadmium concentrations (ppm)", + key.entries = c(.5,1,2,4,8,16)) > bubble(meuse, "x", "y", "zinc", main = "zinc concentrations (ppm)", + key.entries = 100 * 2^(0:4)) > > > > cleanEx(); ..nameEx <- "fit.lmc" > > ### * fit.lmc > > flush(stderr()); flush(stdout()) > > ### Name: fit.lmc > ### Title: Fit a Linear Model of Coregionalization to a Multivariable > ### Sample Variogram > ### Aliases: fit.lmc > ### Keywords: models > > ### ** Examples > > > > > cleanEx(); ..nameEx <- "fit.variogram" > > ### * fit.variogram > > flush(stderr()); flush(stdout()) > > ### Name: fit.variogram > ### Title: Fit a Variogram Model to a Sample Variogram > ### Aliases: fit.variogram > ### Keywords: models > > ### ** Examples > > data(meuse) > vgm1 <- variogram(log(zinc)~1, ~x+y, meuse) > fit.variogram(vgm1, vgm(1,"Sph",300,1)) model psill range 1 Nug 0.0506555 0.0000 2 Sph 0.5906009 896.9702 > > > > cleanEx(); ..nameEx <- "fit.variogram.reml" > > ### * fit.variogram.reml > > flush(stderr()); flush(stdout()) > > ### Name: fit.variogram.reml > ### Title: REML Fit Direct Variogram Partial Sills to Data > ### Aliases: fit.variogram.reml > ### Keywords: models > > ### ** Examples > > data(meuse) > fit.variogram.reml(log(zinc)~1, ~x+y, meuse, model = vgm(1, "Sph", 900,1)) model psill range 1 Nug 0.02547708 0 2 Sph 0.61088826 900 > > > > cleanEx(); ..nameEx <- "fulmar" > > ### * fulmar > > flush(stderr()); flush(stdout()) > > ### Name: fulmar > ### Title: Fulmaris glacialis data > ### Aliases: fulmar > ### Keywords: datasets > > ### ** Examples > > data(fulmar) > summary(fulmar) year x y depth Min. :1998 Min. :476210 Min. :5694947 Min. : 1.0 1st Qu.:1998 1st Qu.:535522 1st Qu.:5806777 1st Qu.:13.0 Median :1999 Median :568618 Median :5896021 Median :25.0 Mean :1999 Mean :576982 Mean :5889112 Mean :23.6 3rd Qu.:1999 3rd Qu.:604579 3rd Qu.:5946550 3rd Qu.:32.0 Max. :1999 Max. :739042 Max. :6150942 Max. :54.0 coast fulmar Min. : 1.024 Min. : 0.000 1st Qu.: 4.857 1st Qu.: 0.000 Median : 38.696 Median : 0.000 Mean : 56.642 Mean : 1.005 3rd Qu.: 89.929 3rd Qu.: 0.000 Max. :263.205 Max. :46.487 > > > > cleanEx(); ..nameEx <- "get.contr" > > ### * get.contr > > flush(stderr()); flush(stdout()) > > ### Name: get.contr > ### Title: Calculate contrasts from multivariable predictions > ### Aliases: get.contr > ### Keywords: models > > ### ** Examples > > > > > cleanEx(); ..nameEx <- "gstat" > > ### * gstat > > flush(stderr()); flush(stdout()) > > ### Name: gstat > ### Title: Create gstat objects, or subset it > ### Aliases: gstat print.gstat [.gstat > ### Keywords: models > > ### ** Examples > > data(meuse) > # let's do some manual fitting of two direct variograms and a cross variogram > g <- gstat(id = "ln.zinc", formula = log(zinc)~1, locations = ~x+y, + data = meuse) > g <- gstat(g, id = "ln.lead", formula = log(lead)~1, locations = ~x+y, + data = meuse) > # examine variograms and cross variogram: > plot(variogram(g)) > # enter direct variograms: > g <- gstat(g, id = "ln.zinc", model = vgm(.55, "Sph", 900, .05)) > g <- gstat(g, id = "ln.lead", model = vgm(.55, "Sph", 900, .05)) > # enter cross variogram: > g <- gstat(g, id = c("ln.zinc", "ln.lead"), model = vgm(.47, "Sph", 900, .03)) > # examine fit: > plot(variogram(g), model = g$model, main = "models fitted by eye") > # see also demo(cokriging) for a more efficient approach > g["ln.zinc"] data: ln.zinc : formula = log(zinc)`~`1 ; locations = ~x + y ; data dim = 155 x 14 variograms: model psill range ln.zinc[1] Nug 0.05 0 ln.zinc[2] Sph 0.55 900 > g["ln.lead"] data: ln.lead : formula = log(lead)`~`1 ; locations = ~x + y ; data dim = 155 x 14 variograms: model psill range ln.lead[1] Nug 0.05 0 ln.lead[2] Sph 0.55 900 > g[c("ln.zinc", "ln.lead")] data: ln.zinc : formula = log(zinc)`~`1 ; locations = ~x + y ; data dim = 155 x 14 ln.lead : formula = log(lead)`~`1 ; locations = ~x + y ; data dim = 155 x 14 variograms: model psill range ln.zinc[1] Nug 0.05 0 ln.zinc[2] Sph 0.55 900 ln.lead[1] Nug 0.05 0 ln.lead[2] Sph 0.55 900 ln.zinc.ln.lead[1] Nug 0.03 0 ln.zinc.ln.lead[2] Sph 0.47 900 > g[1] data: ln.zinc : formula = log(zinc)`~`1 ; locations = ~x + y ; data dim = 155 x 14 variograms: model psill range ln.zinc[1] Nug 0.05 0 ln.zinc[2] Sph 0.55 900 > g[2] data: ln.lead : formula = log(lead)`~`1 ; locations = ~x + y ; data dim = 155 x 14 variograms: model psill range ln.lead[1] Nug 0.05 0 ln.lead[2] Sph 0.55 900 > > # Inverse distance interpolation with inverse distance power set to .5: > # (kriging variants need a variogram model to be specified) > data(meuse) > data(meuse.grid) > meuse.gstat <- gstat(id = "zinc", formula = zinc ~ 1, locations = ~ x + y, + data = meuse, nmax = 7, set = list(idp = .5)) > meuse.gstat data: zinc : formula = zinc`~`1 ; locations = ~x + y ; data dim = 155 x 14 nmax = 7 set idp = 0.5; > z <- predict(meuse.gstat, meuse.grid) [inverse distance weighted interpolation] > library(lattice) # for levelplot > levelplot(zinc.pred~x+y, z, aspect = mapasp(z)) > # see demo(cokriging) and demo(examples) for further examples, > # and the manuals for predict.gstat and image > > > > > cleanEx(); ..nameEx <- "image" > > ### * image > > flush(stderr()); flush(stdout()) > > ### Name: image > ### Title: Image Gridded Coordinates in Data Frame > ### Aliases: image.data.frame image xyz2img > ### Keywords: dplot > > ### ** Examples > > data(meuse) > data(meuse.grid) > g <- gstat(formula=log(zinc)~1,locations=~x+y,data=meuse,model=vgm(1,"Exp",300)) > x <- predict(g, meuse.grid) [using ordinary kriging] > image(x, 4, main="kriging variance and data points") > points(meuse$x, meuse$y, pch = "+") > # non-square cell test: > image(x[((x$y - 20) %% 80) == 0,], main = "40 x 80 cells") > image(x[((x$x - 20) %% 80) == 0,], main = "80 x 40 cells") > # the following works for square cells only: > oldpin <- par("pin") > ratio <- length(unique(x$x))/length(unique(x$y)) > par(pin = c(oldpin[2]*ratio,oldpin[2])) > image(x, main="Exactly square cells, using par(pin)") > par(pin = oldpin) > library(lattice) > levelplot(var1.var~x+y, x, aspect = mapasp(x), main = "kriging variance") > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "jura" > > ### * jura > > flush(stderr()); flush(stdout()) > > ### Name: jura > ### Title: Jura data set > ### Aliases: jura prediction.dat validation.dat transect.dat > ### Keywords: datasets > > ### ** Examples > > data(jura) > summary(prediction.dat) Xloc Yloc Landuse Rock Min. :0.626 Min. :0.580 Min. :1.000 Min. :1.000 1st Qu.:2.282 1st Qu.:1.487 1st Qu.:2.000 1st Qu.:2.000 Median :3.043 Median :2.581 Median :3.000 Median :2.000 Mean :2.980 Mean :2.665 Mean :2.548 Mean :2.699 3rd Qu.:3.665 3rd Qu.:3.752 3rd Qu.:3.000 3rd Qu.:3.000 Max. :4.920 Max. :5.690 Max. :4.000 Max. :5.000 Cd Co Cr Cu Min. :0.1350 Min. : 1.552 Min. : 8.72 Min. : 3.96 1st Qu.:0.6375 1st Qu.: 6.520 1st Qu.:27.44 1st Qu.: 11.02 Median :1.0700 Median : 9.760 Median :34.84 Median : 17.60 Mean :1.3091 Mean : 9.303 Mean :35.07 Mean : 23.73 3rd Qu.:1.7150 3rd Qu.:11.980 3rd Qu.:42.22 3rd Qu.: 27.82 Max. :5.1290 Max. :17.720 Max. :67.60 Max. :166.40 Ni Pb Zn Min. : 4.20 Min. : 18.96 Min. : 25.20 1st Qu.:13.80 1st Qu.: 36.52 1st Qu.: 55.00 Median :20.56 Median : 46.40 Median : 73.56 Mean :19.73 Mean : 53.92 Mean : 75.08 3rd Qu.:25.42 3rd Qu.: 60.40 3rd Qu.: 89.92 Max. :53.20 Max. :229.56 Max. :219.32 > summary(validation.dat) Xloc Yloc Landuse Rock Cd Min. :0.491 Min. :0.524 Min. :1.00 Min. :1.00 Min. :0.3250 1st Qu.:2.207 1st Qu.:1.593 1st Qu.:2.00 1st Qu.:2.00 1st Qu.:0.6765 Median :3.001 Median :2.389 Median :3.00 Median :2.00 Median :1.1865 Mean :2.921 Mean :2.546 Mean :2.41 Mean :2.36 Mean :1.2343 3rd Qu.:3.716 3rd Qu.:3.339 3rd Qu.:3.00 3rd Qu.:3.00 3rd Qu.:1.6350 Max. :4.745 Max. :5.285 Max. :4.00 Max. :5.00 Max. :3.7800 Co Cr Cu Ni Min. : 1.652 Min. : 3.32 Min. : 3.552 Min. : 1.98 1st Qu.: 7.950 1st Qu.:28.44 1st Qu.: 9.150 1st Qu.:15.28 Median :10.060 Median :34.54 Median : 16.140 Median :21.28 Mean : 9.793 Mean :34.88 Mean : 23.218 Mean :20.76 3rd Qu.:12.490 3rd Qu.:40.59 3rd Qu.: 23.190 3rd Qu.:25.36 Max. :20.600 Max. :70.00 Max. :154.600 Max. :43.68 Pb Zn Min. : 18.68 Min. : 25.00 1st Qu.: 35.31 1st Qu.: 53.19 Median : 47.00 Median : 73.92 Mean : 56.48 Mean : 77.96 3rd Qu.: 60.10 3rd Qu.: 90.40 Max. :300.00 Max. :259.84 > summary(transect.dat) X Rock.type Block.Ni Cd Min. :1.000 Min. :1.000 Min. : 6.61 Min. : 0.135 1st Qu.:2.312 1st Qu.:1.000 1st Qu.:17.94 1st Qu.: 0.655 Median :3.625 Median :2.000 Median :20.24 Median : 1.317 Mean :3.625 Mean :2.047 Mean :19.99 Mean : 1.486 3rd Qu.:4.938 3rd Qu.:2.000 3rd Qu.:23.57 3rd Qu.: 1.961 Max. :6.250 Max. :4.000 Max. :37.05 Max. : 3.925 NA's :96.000 Ni Min. : 4.20 1st Qu.:13.31 Median :20.52 Mean :19.62 3rd Qu.:24.98 Max. :43.68 NA's :90.00 > > > > cleanEx(); ..nameEx <- "krige" > > ### * krige > > flush(stderr()); flush(stdout()) > > ### Name: krige > ### Title: Simple, Ordinary or Universal, global or local, Point or Block > ### Kriging, or simulation. > ### Aliases: krige > ### Keywords: models > > ### ** Examples > > data(meuse) > data(meuse.grid) > m <- vgm(.59, "Sph", 874, .04) > # ordinary kriging: > x <- krige(log(zinc)~1, ~x+y, model = m, data = meuse, newd = meuse.grid) [using ordinary kriging] > library(lattice) > levelplot(var1.pred~x+y, x, aspect = mapasp(x), + main = "ordinary kriging predictions") > levelplot(var1.var~x+y, x, aspect = mapasp(x), + main = "ordinary kriging variance") > # simple kriging: > x <- krige(log(zinc)~1, ~x+y, model = m, data = meuse, newdata = meuse.grid, + beta=5.9) [using simple kriging] > # residual variogram: > m <- vgm(.4, "Sph", 954, .06) > # universal block kriging: > x <- krige(log(zinc)~x+y, ~x+y, model = m, data = meuse, newdata = + meuse.grid, block = c(40,40)) [using universal kriging] > levelplot(var1.pred~x+y, x, aspect = mapasp(x), + main = "universal kriging predictions") > # add grid: > levelplot(var1.var~x+y, x, aspect = mapasp(x), + panel = function(...) { + panel.levelplot(...) + panel.abline(h = 0:3*1000 + 330000, v= 0:2*1000 + 179000, col = "grey") + }, + main = "universal kriging variance") > > > > > cleanEx(); ..nameEx <- "krige.cv" > > ### * krige.cv > > flush(stderr()); flush(stdout()) > > ### Name: krige.cv > ### Title: (co)kriging cross validation, n-fold or leave-one-out > ### Aliases: krige.cv gstat.cv > ### Keywords: models > > ### ** Examples > > data(meuse) > m <- vgm(.59, "Sph", 874, .04) > # five-fold cross validation: > x <- krige.cv(log(zinc)~1, ~x+y, model = m, data = meuse, nmax = 40, nfold=5) [using ordinary kriging] [using ordinary kriging] [using ordinary kriging] [using ordinary kriging] [using ordinary kriging] > bubble(x, z = "residual", main = "log(zinc): 5-fold CV residuals") > > > > cleanEx(); ..nameEx <- "makegrid" > > ### * makegrid > > flush(stderr()); flush(stdout()) > > ### Name: makegrid > ### Title: make regular grid with square cells and round numbers > ### Aliases: makegrid > ### Keywords: dplot > > ### ** Examples > > data(meuse) > grd <- makegrid(meuse$x, meuse$y, 1000) > diff(grd$x) [1] 110 110 110 110 110 110 110 110 110 110 110 110 [13] 110 110 110 110 110 110 110 110 110 110 110 110 [25] 110 110 -2860 110 110 110 110 110 110 110 110 110 [37] 110 110 110 110 110 110 110 110 110 110 110 110 [49] 110 110 110 110 110 -2860 110 110 110 110 110 110 [61] 110 110 110 110 110 110 110 110 110 110 110 110 [73] 110 110 110 110 110 110 110 110 -2860 110 110 110 [85] 110 110 110 110 110 110 110 110 110 110 110 110 [97] 110 110 110 110 110 110 110 110 110 110 110 -2860 [109] 110 110 110 110 110 110 110 110 110 110 110 110 [121] 110 110 110 110 110 110 110 110 110 110 110 110 [133] 110 110 -2860 110 110 110 110 110 110 110 110 110 [145] 110 110 110 110 110 110 110 110 110 110 110 110 [157] 110 110 110 110 110 -2860 110 110 110 110 110 110 [169] 110 110 110 110 110 110 110 110 110 110 110 110 [181] 110 110 110 110 110 110 110 110 > diff(grd$y) [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [19] 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 [37] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 [55] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [73] 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 [91] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 [109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [127] 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 [145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 [163] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [181] 0 0 0 0 0 0 0 0 > summary(grd) x y Min. :178570 Min. :329670 1st Qu.:179230 1st Qu.:329780 Median :180000 Median :330000 Mean :180000 Mean :330000 3rd Qu.:180770 3rd Qu.:330220 Max. :181430 Max. :330330 > grd <- makegrid(meuse$x, meuse$y, cell.size = 40) > diff(grd$x) [1] 40 40 40 40 40 40 40 40 40 40 40 40 [13] 40 40 40 40 40 40 40 40 40 40 40 40 [25] 40 40 40 40 40 40 40 40 40 40 40 40 [37] 40 40 40 40 40 40 40 40 40 40 40 40 [49] 40 40 40 40 40 40 40 40 40 40 40 40 [61] 40 40 40 40 40 40 40 40 40 40 -2800 40 [73] 40 40 40 40 40 40 40 40 40 40 40 40 [85] 40 40 40 40 40 40 40 40 40 40 40 40 [97] 40 40 40 40 40 40 40 40 40 40 40 40 [109] 40 40 40 40 40 40 40 40 40 40 40 40 [121] 40 40 40 40 40 40 40 40 40 40 40 40 [133] 40 40 40 40 40 40 40 40 40 -2800 40 40 [145] 40 40 40 40 40 40 40 40 40 40 40 40 [157] 40 40 40 40 40 40 40 40 40 40 40 40 [169] 40 40 40 40 40 40 40 40 40 40 40 40 [181] 40 40 40 40 40 40 40 40 40 40 40 40 [193] 40 40 40 40 40 40 40 40 40 40 40 40 [205] 40 40 40 40 40 40 40 40 -2800 40 40 40 [217] 40 40 40 40 40 40 40 40 40 40 40 40 [229] 40 40 40 40 40 40 40 40 40 40 40 40 [241] 40 40 40 40 40 40 40 40 40 40 40 40 [253] 40 40 40 40 40 40 40 40 40 40 40 40 [265] 40 40 40 40 40 40 40 40 40 40 40 40 [277] 40 40 40 40 40 40 40 -2800 40 40 40 40 [289] 40 40 40 40 40 40 40 40 40 40 40 40 [301] 40 40 40 40 40 40 40 40 40 40 40 40 [313] 40 40 40 40 40 40 40 40 40 40 40 40 [325] 40 40 40 40 40 40 40 40 40 40 40 40 [337] 40 40 40 40 40 40 40 40 40 40 40 40 [349] 40 40 40 40 40 40 -2800 40 40 40 40 40 [361] 40 40 40 40 40 40 40 40 40 40 40 40 [373] 40 40 40 40 40 40 40 40 40 40 40 40 [385] 40 40 40 40 40 40 40 40 40 40 40 40 [397] 40 40 40 40 40 40 40 40 40 40 40 40 [409] 40 40 40 40 40 40 40 40 40 40 40 40 [421] 40 40 40 40 40 -2800 40 40 40 40 40 40 [433] 40 40 40 40 40 40 40 40 40 40 40 40 [445] 40 40 40 40 40 40 40 40 40 40 40 40 [457] 40 40 40 40 40 40 40 40 40 40 40 40 [469] 40 40 40 40 40 40 40 40 40 40 40 40 [481] 40 40 40 40 40 40 40 40 40 40 40 40 [493] 40 40 40 40 -2800 40 40 40 40 40 40 40 [505] 40 40 40 40 40 40 40 40 40 40 40 40 [517] 40 40 40 40 40 40 40 40 40 40 40 40 [529] 40 40 40 40 40 40 40 40 40 40 40 40 [541] 40 40 40 40 40 40 40 40 40 40 40 40 [553] 40 40 40 40 40 40 40 40 40 40 40 40 [565] 40 40 40 -2800 40 40 40 40 40 40 40 40 [577] 40 40 40 40 40 40 40 40 40 40 40 40 [589] 40 40 40 40 40 40 40 40 40 40 40 40 [601] 40 40 40 40 40 40 40 40 40 40 40 40 [613] 40 40 40 40 40 40 40 40 40 40 40 40 [625] 40 40 40 40 40 40 40 40 40 40 40 40 [637] 40 40 -2800 40 40 40 40 40 40 40 40 40 [649] 40 40 40 40 40 40 40 40 40 40 40 40 [661] 40 40 40 40 40 40 40 40 40 40 40 40 [673] 40 40 40 40 40 40 40 40 40 40 40 40 [685] 40 40 40 40 40 40 40 40 40 40 40 40 [697] 40 40 40 40 40 40 40 40 40 40 40 40 [709] 40 -2800 40 40 40 40 40 40 40 40 40 40 [721] 40 40 40 40 40 40 40 40 40 40 40 40 [733] 40 40 40 40 40 40 40 40 40 40 40 40 [745] 40 40 40 40 40 40 40 40 40 40 40 40 [757] 40 40 40 40 40 40 40 40 40 40 40 40 [769] 40 40 40 40 40 40 40 40 40 40 40 40 [781] -2800 40 40 40 40 40 40 40 40 40 40 40 [793] 40 40 40 40 40 40 40 40 40 40 40 40 [805] 40 40 40 40 40 40 40 40 40 40 40 40 [817] 40 40 40 40 40 40 40 40 40 40 40 40 [829] 40 40 40 40 40 40 40 40 40 40 40 40 [841] 40 40 40 40 40 40 40 40 40 40 40 -2800 [853] 40 40 40 40 40 40 40 40 40 40 40 40 [865] 40 40 40 40 40 40 40 40 40 40 40 40 [877] 40 40 40 40 40 40 40 40 40 40 40 40 [889] 40 40 40 40 40 40 40 40 40 40 40 40 [901] 40 40 40 40 40 40 40 40 40 40 40 40 [913] 40 40 40 40 40 40 40 40 40 40 -2800 40 [925] 40 40 40 40 40 40 40 40 40 40 40 40 [937] 40 40 40 40 40 40 40 40 40 40 40 40 [949] 40 40 40 40 40 40 40 40 40 40 40 40 [961] 40 40 40 40 40 40 40 40 40 40 40 40 [973] 40 40 40 40 40 40 40 40 40 40 40 40 [985] 40 40 40 40 40 40 40 40 40 -2800 40 40 [997] 40 40 40 40 40 40 40 40 40 40 40 40 [1009] 40 40 40 40 40 40 40 40 40 40 40 40 [1021] 40 40 40 40 40 40 40 40 40 40 40 40 [1033] 40 40 40 40 40 40 40 40 40 40 40 40 [1045] 40 40 40 40 40 40 40 40 40 40 40 40 [1057] 40 40 40 40 40 40 40 40 -2800 40 40 40 [1069] 40 40 40 40 40 40 40 40 40 40 40 40 [1081] 40 40 40 40 40 40 40 40 40 40 40 40 [1093] 40 40 40 40 40 40 40 40 40 40 40 40 [1105] 40 40 40 40 40 40 40 40 40 40 40 40 [1117] 40 40 40 40 40 40 40 40 40 40 40 40 [1129] 40 40 40 40 40 40 40 -2800 40 40 40 40 [1141] 40 40 40 40 40 40 40 40 40 40 40 40 [1153] 40 40 40 40 40 40 40 40 40 40 40 40 [1165] 40 40 40 40 40 40 40 40 40 40 40 40 [1177] 40 40 40 40 40 40 40 40 40 40 40 40 [1189] 40 40 40 40 40 40 40 40 40 40 40 40 [1201] 40 40 40 40 40 40 > diff(grd$y) [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [25] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [49] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 [73] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [97] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 [145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 [217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 [289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 [361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 [433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 [505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 [577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 [649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [697] 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 [721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [769] 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 [793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [841] 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 [865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [913] 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 [937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [985] 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1057] 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1129] 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [1201] 0 0 0 0 0 0 > summary(grd) x y Min. :178600 Min. :329680 1st Qu.:179280 1st Qu.:329840 Median :180000 Median :330000 Mean :180000 Mean :330000 3rd Qu.:180720 3rd Qu.:330160 Max. :181400 Max. :330320 > > > > cleanEx(); ..nameEx <- "meuse" > > ### * meuse > > flush(stderr()); flush(stdout()) > > ### Name: meuse > ### Title: Meuse river data set > ### Aliases: meuse > ### Keywords: datasets > > ### ** Examples > > data(meuse) > summary(meuse) x y cadmium copper Min. :178605 Min. :329714 Min. : 0.200 Min. : 14.00 1st Qu.:179371 1st Qu.:330762 1st Qu.: 0.800 1st Qu.: 23.00 Median :179991 Median :331633 Median : 2.100 Median : 31.00 Mean :180005 Mean :331635 Mean : 3.246 Mean : 40.32 3rd Qu.:180630 3rd Qu.:332463 3rd Qu.: 3.850 3rd Qu.: 49.50 Max. :181390 Max. :333611 Max. :18.100 Max. :128.00 lead zinc elev dist Min. : 37.0 Min. : 113.0 Min. : 5.180 Min. :0.00000 1st Qu.: 72.5 1st Qu.: 198.0 1st Qu.: 7.546 1st Qu.:0.07569 Median :123.0 Median : 326.0 Median : 8.180 Median :0.21184 Mean :153.4 Mean : 469.7 Mean : 8.165 Mean :0.24002 3rd Qu.:207.0 3rd Qu.: 674.5 3rd Qu.: 8.955 3rd Qu.:0.36407 Max. :654.0 Max. :1839.0 Max. :10.520 Max. :0.88039 om ffreq soil lime landuse dist.m Min. : 1.000 1:84 1:97 0:111 W :50 Min. : 10.0 1st Qu.: 5.300 2:48 2:46 1: 44 Ah :39 1st Qu.: 80.0 Median : 6.900 3:23 3:12 Am :22 Median : 270.0 Mean : 7.478 Fw :10 Mean : 290.3 3rd Qu.: 9.000 Ab : 8 3rd Qu.: 450.0 Max. :17.000 (Other):25 Max. :1000.0 NA's : 2.000 NA's : 1 > > > > cleanEx(); ..nameEx <- "meuse.all" > > ### * meuse.all > > flush(stderr()); flush(stdout()) > > ### Name: meuse.all > ### Title: Meuse river data set - original, full data set > ### Aliases: meuse.all > ### Keywords: datasets > > ### ** Examples > > data(meuse.all) > summary(meuse.all) sample x y cadmium Min. : 1.00 Min. :178605 Min. :329714 Min. : 0.000 1st Qu.: 41.75 1st Qu.:179358 1st Qu.:330771 1st Qu.: 0.800 Median : 82.50 Median :179945 Median :331558 Median : 1.900 Mean : 82.50 Mean :179989 Mean :331614 Mean : 3.109 3rd Qu.:123.25 3rd Qu.:180626 3rd Qu.:332410 3rd Qu.: 3.725 Max. :164.00 Max. :181390 Max. :333611 Max. :18.100 copper lead zinc elev Min. : 14.00 Min. : 27.00 Min. : 107.0 Min. : 0.000 1st Qu.: 23.00 1st Qu.: 68.75 1st Qu.: 191.8 1st Qu.: 7.390 Median : 29.50 Median :116.00 Median : 307.5 Median : 8.124 Mean : 39.42 Mean :148.55 Mean : 464.6 Mean : 7.775 3rd Qu.: 48.00 3rd Qu.:201.75 3rd Qu.: 662.5 3rd Qu.: 8.915 Max. :128.00 Max. :654.00 Max. :1839.0 Max. :10.520 dist.m om ffreq soil Min. : 10.0 Min. : 1.000 Min. :1.000 Min. :1.000 1st Qu.: 80.0 1st Qu.: 5.000 1st Qu.:1.000 1st Qu.:1.000 Median : 270.0 Median : 6.550 Median :1.000 Median :1.000 Mean : 294.2 Mean : 7.291 Mean :1.604 Mean :1.463 3rd Qu.: 450.0 3rd Qu.: 8.950 3rd Qu.:2.000 3rd Qu.:2.000 Max. :1000.0 Max. :17.000 Max. :3.000 Max. :3.000 NA's : 2.000 lime landuse in.pit in.meuse155 in.BMcD Min. :0.0000 W :54 Mode :logical Mode :logical Mode :logical 1st Qu.:0.0000 Ah :42 FALSE:156 FALSE:9 FALSE:66 Median :0.0000 Am :22 TRUE :8 TRUE :155 TRUE :98 Mean :0.2988 Fw :10 3rd Qu.:1.0000 Ab : 8 Max. :1.0000 (Other):27 NA's : 1 > > > > cleanEx(); ..nameEx <- "meuse.alt" > > ### * meuse.alt > > flush(stderr()); flush(stdout()) > > ### Name: meuse.alt > ### Title: Meuse river altitude data set > ### Aliases: meuse.alt > ### Keywords: datasets > > ### ** Examples > > data(meuse.alt) > library(lattice) > xyplot(y~x, meuse.alt, aspect = "iso") > > > > cleanEx(); ..nameEx <- "meuse.grid" > > ### * meuse.grid > > flush(stderr()); flush(stdout()) > > ### Name: meuse.grid > ### Title: Prediction Grid for Meuse Data Set > ### Aliases: meuse.grid > ### Keywords: datasets > > ### ** Examples > > data(meuse.grid) > library(lattice) > xyplot(y~x, meuse.grid, asp=mapasp(meuse.grid), pch="+") > > > > cleanEx(); ..nameEx <- "ncp.grid" > > ### * ncp.grid > > flush(stderr()); flush(stdout()) > > ### Name: ncp.grid > ### Title: Grid for the NCP, the Dutch part of the North Sea > ### Aliases: ncp.grid > ### Keywords: datasets > > ### ** Examples > > data(ncp.grid) > summary(ncp.grid) x y depth coast Min. :466500 Min. :5699000 Min. : 1.00 Min. : 1.00 1st Qu.:531500 1st Qu.:5859000 1st Qu.:25.00 1st Qu.: 38.00 Median :566500 Median :5954000 Median :31.00 Median : 76.00 Mean :572625 Mean :5940147 Mean :31.79 Mean : 89.72 3rd Qu.:606500 3rd Qu.:6024000 3rd Qu.:40.00 3rd Qu.:136.00 Max. :736500 Max. :6129000 Max. :59.00 Max. :248.00 area Min. : 1.00 1st Qu.: 1.00 Median : 1.00 Mean : 1.87 3rd Qu.: 2.00 Max. :19.00 > > > > cleanEx(); ..nameEx <- "ossfim" > > ### * ossfim > > flush(stderr()); flush(stdout()) > > ### Name: ossfim > ### Title: Kriging standard errors as function of grid spacing and block > ### size > ### Aliases: ossfim > ### Keywords: models > > ### ** Examples > > x <- ossfim(1:15,1:15, model = vgm(1,"Exp",15)) > library(lattice) > levelplot(kriging.se~spacing+block.size, x, + main = "Ossfim results, variogram 1 Exp(15)") > # if you wonder about the decrease in the upper left corner of the graph, > # try the above with nmax set to 100, or perhaps 200. > > > > cleanEx(); ..nameEx <- "oxford" > > ### * oxford > > flush(stderr()); flush(stdout()) > > ### Name: oxford > ### Title: Oxford soil samples > ### Aliases: oxford > ### Keywords: datasets > > ### ** Examples > > data(oxford) > summary(oxford) PROFILE XCOORD YCOORD ELEV PROFCLASS Min. : 1.00 Min. :100 Min. : 100 Min. :540.0 Cr:19 1st Qu.: 32.25 1st Qu.:200 1st Qu.: 600 1st Qu.:558.0 Ct:36 Median : 63.50 Median :350 Median :1100 Median :573.0 Ia:71 Mean : 63.50 Mean :350 Mean :1100 Mean :573.6 3rd Qu.: 94.75 3rd Qu.:500 3rd Qu.:1600 3rd Qu.:584.5 Max. :126.00 Max. :600 Max. :2100 Max. :632.0 MAPCLASS VAL1 CHR1 LIME1 VAL2 Cr:31 Min. :2.000 Min. :1.000 Min. :0.000 Min. :4.00 Ct:36 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:4.00 Ia:59 Median :4.000 Median :2.000 Median :4.000 Median :8.00 Mean :3.508 Mean :2.468 Mean :2.643 Mean :6.23 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:8.00 Max. :4.000 Max. :4.000 Max. :4.000 Max. :8.00 CHR2 LIME2 DEPTHCM DEP2LIME PCLAY1 Min. :2 Min. :0.000 Min. :10.00 Min. :20.00 Min. :10.00 1st Qu.:2 1st Qu.:4.000 1st Qu.:25.00 1st Qu.:20.00 1st Qu.:20.00 Median :2 Median :5.000 Median :36.00 Median :20.00 Median :24.50 Mean :3 Mean :3.889 Mean :46.25 Mean :30.32 Mean :24.44 3rd Qu.:4 3rd Qu.:5.000 3rd Qu.:64.75 3rd Qu.:40.00 3rd Qu.:28.00 Max. :6 Max. :5.000 Max. :91.00 Max. :90.00 Max. :37.00 PCLAY2 MG1 OM1 CEC1 Min. :10.00 Min. : 19.00 Min. : 2.600 Min. : 7.00 1st Qu.:10.00 1st Qu.: 44.00 1st Qu.: 4.100 1st Qu.:12.00 Median :10.00 Median : 72.00 Median : 5.350 Median :15.00 Mean :14.76 Mean : 93.53 Mean : 5.995 Mean :18.88 3rd Qu.:20.00 3rd Qu.:123.25 3rd Qu.: 7.175 3rd Qu.:25.25 Max. :40.00 Max. :308.00 Max. :13.100 Max. :43.00 PH1 PHOS1 POT1 Min. :4.200 Min. : 1.700 Min. : 83.0 1st Qu.:7.200 1st Qu.: 6.200 1st Qu.:127.0 Median :7.500 Median : 8.500 Median :164.0 Mean :7.152 Mean : 8.752 Mean :181.7 3rd Qu.:7.600 3rd Qu.:10.500 3rd Qu.:194.8 Max. :7.700 Max. :25.000 Max. :847.0 > > > > cleanEx(); ..nameEx <- "pcb" > > ### * pcb > > flush(stderr()); flush(stdout()) > > ### Name: pcb > ### Title: PCB138 measurements in sediment at the NCP, the Dutch part of > ### the North Sea > ### Aliases: pcb > ### Keywords: datasets > > ### ** Examples > > data(pcb) > library(lattice) > xyplot(y~x|as.factor(yf), pcb, aspect = "iso") > # demo(pcb) > > > > cleanEx(); ..nameEx <- "plot.gstatVariogram" > > ### * plot.gstatVariogram > > flush(stderr()); flush(stdout()) > > ### Name: plot.gstatVariogram > ### Title: Plot a Sample Variogram > ### Aliases: plot.gstatVariogram plot.variogramMap > ### Keywords: dplot > > ### ** Examples > > data(meuse) > vgm1 <- variogram(log(zinc)~1, ~x+y, meuse) > plot(vgm1) > model.1 <- fit.variogram(vgm1,vgm(1,"Sph",300,1)) > plot(vgm1, model=model.1) > plot(vgm1, plot.numbers = TRUE, pch = "+") > vgm2 <- variogram(log(zinc)~1, ~x+y, meuse, alpha=c(0,45,90,135)) > plot(vgm2) > # the following demonstrates plotting of directional models: > model.2 <- vgm(.59,"Sph",926,.06,anis=c(0,0.3)) > plot(vgm2, model=model.2) > > g = gstat(id="zinc < 200", form=I(zinc<200)~1,loc=~x+y,data=meuse) > g = gstat(g, id="zinc < 400", form=I(zinc<400)~1,loc=~x+y,data=meuse) > g = gstat(g, id="zinc < 800", form=I(zinc<800)~1,loc=~x+y,data=meuse) > # calculate multivariable, directional variogram: > v = variogram(g, alpha=c(0,45,90,135)) > plot(v, group.id = FALSE, auto.key = TRUE) # id and id pairs panels > plot(v, group.id = TRUE, auto.key = TRUE) # direction panels > > if (require(sp)) { + plot(variogram(g, cutoff=1000, width=100, map=TRUE), + main = "(cross) semivariance maps") + plot(variogram(g, cutoff=1000, width=100, map=TRUE), np=TRUE, + main = "number of point pairs") + } Loading required package: sp Attaching package: 'sp' The following object(s) are masked from package:gstat : bpy.colors bubble makegrid map.to.lev mapasp point.in.polygon select.spatial zerodist > > > > > cleanEx(); ..nameEx <- "plot.pointPairs" > > ### * plot.pointPairs > > flush(stderr()); flush(stdout()) > > ### Name: plot.pointPairs > ### Title: Plot a point pairs, identified from a variogram cloud > ### Aliases: plot.pointPairs > ### Keywords: dplot > > ### ** Examples > > ### The following requires interaction, and is therefore outcommented > #data(meuse) > #vgm1 <- variogram(log(zinc)~1, ~x+y, meuse, cloud = TRUE) > #pp <- plot(vgm1, id = TRUE) > ### Identify the point pairs > #plot(pp, data = meuse) # meuse has x and y as coordinates > > > > cleanEx(); ..nameEx <- "plot.variogramCloud" > > ### * plot.variogramCloud > > flush(stderr()); flush(stdout()) > > ### Name: plot.variogramCloud > ### Title: Plot and Identify Data Pairs on Sample Variogram Cloud > ### Aliases: plot.variogramCloud > ### Keywords: dplot > > ### ** Examples > > data(meuse) > plot(variogram(log(zinc)~1, loc=~x+y, data=meuse, cloud=TRUE)) > ## commands that require interaction: > # x <- variogram(log(zinc)~1, loc=~x+y, data=meuse, cloud=TRUE) > # plot(plot(x, idendify = TRUE), meuse) > # plot(plot(x, digitize = TRUE), meuse) > > > > cleanEx(); ..nameEx <- "point.in.polygon" > > ### * point.in.polygon > > flush(stderr()); flush(stdout()) > > ### Name: point.in.polygon > ### Title: do point(s) fall in a given polygon? > ### Aliases: point.in.polygon > ### Keywords: models > > ### ** Examples > > # open polygon: > point.in.polygon(1:10,1:10,c(3,4,4,3),c(3,3,4,4)) [1] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE > # closed polygon: > point.in.polygon(1:10,1:10,c(3,4,4,3,3),c(3,3,4,4,3)) [1] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE > > > > cleanEx(); ..nameEx <- "predict.gstat" > > ### * predict.gstat > > flush(stderr()); flush(stdout()) > > ### Name: predict.gstat > ### Title: Multivariable Geostatistical Prediction and Simulation > ### Aliases: predict.gstat > ### Keywords: models > > ### ** Examples > > # generate 5 conditional simulations > data(meuse) > data(meuse.grid) > v <- variogram(log(zinc)~1,~x+y, meuse) > m <- fit.variogram(v, vgm(1, "Sph", 300, 1)) > plot(v, model = m) > set.seed(131) > sim <- krige(formula = log(zinc)~1, locations = ~x+y, model = m, data + = meuse, newdata = meuse.grid, nmax = 15, beta = 5.9, nsim = 5) [using conditional Gaussian simulation] > # show all 5 simulation, using map.to.lev to rearrange sim: > if (require(sp) == FALSE) { + library(lattice) + levelplot(z~x+y|name, map.to.lev(sim, z=c(3:7)), aspect = mapasp(sim)) + + # calculate generalised least squares residuals w.r.t. constant trend: + g <- gstat(id = "log.zinc", formula = log(zinc)~1, locations = ~x+y, + model = m, data = meuse) + blue0 <- predict(g, newdata = meuse, BLUE = TRUE) + blue0$blue.res <- log(meuse$zinc) - blue0$log.zinc.pred + bubble(blue0, zcol = "blue.res", main = "GLS residuals w.r.t. constant") + + # calculate generalised least squares residuals w.r.t. linear trend: + m <- fit.variogram(variogram(log(zinc)~sqrt(dist.m),~x+y, meuse), + vgm(1, "Sph", 300, 1)) + g <- gstat(id = "log.zinc", formula = log(zinc)~sqrt(dist.m), + locations = ~x+y, model = m, data = meuse) + blue1 <- predict(g, newdata = meuse, BLUE = TRUE) + blue1$blue.res <- log(meuse$zinc) - blue1$log.zinc.pred + bubble(blue1, zcol = "blue.res", + main = "GLS residuals w.r.t. linear trend") + + # unconditional simulation on a 100 x 100 grid + xy <- expand.grid(1:100, 1:100) + names(xy) <- c("x","y") + g.dummy <- gstat(formula = z~1, locations = ~x+y, dummy = TRUE, beta = 0, + model = vgm(1,"Exp",15), nmax = 20) + yy <- predict(g.dummy, newdata = xy, nsim = 4) + # show one realisation: + levelplot(sim1~x+y, yy, aspect = mapasp(yy)) + # show all four: + levelplot(z~x+y|name, map.to.lev(yy, z=c(3:6)), aspect = mapasp(yy)) + } Loading required package: sp Attaching package: 'sp' The following object(s) are masked from package:gstat : bpy.colors bubble makegrid map.to.lev mapasp point.in.polygon select.spatial zerodist > > > > > cleanEx(); ..nameEx <- "select.spatial" > > ### * select.spatial > > flush(stderr()); flush(stdout()) > > ### Name: select.spatial > ### Title: select points spatially > ### Aliases: select.spatial > ### Keywords: models > > ### ** Examples > > data(meuse) > ## the following command requires user interaction: left mouse > ## selects points, right mouse ends digitizing > # select.spatial(data=meuse) > > > > cleanEx(); ..nameEx <- "show.vgms" > > ### * show.vgms > > flush(stderr()); flush(stdout()) > > ### Name: show.vgms > ### Title: Plot Variogram Model Functions > ### Aliases: show.vgms > ### Keywords: dplot > > ### ** Examples > > show.vgms() > show.vgms(models = c("Exp", "Mat", "Gau"), nugget = 0.1) > # show a set of Matern models with different smoothness: > show.vgms(kappa.range = c(.1, .2, .5, 1, 2, 5, 10), max = 10) > # show a set of Exponential class models with different shape parameter: > show.vgms(kappa.range = c(.05, .1, .2, .5, 1, 1.5, 1.8, 1.9, 2), models = "Exc", max = 10) > > > > cleanEx(); ..nameEx <- "sic2004" > > ### * sic2004 > > flush(stderr()); flush(stdout()) > > ### Name: sic2004 > ### Title: Spatial Interpolation Comparison 2004 data set: Natural Ambient > ### Radioactivity > ### Aliases: sic2004 sic.train sic.pred sic.grid sic.test sic.val > ### Keywords: datasets > > ### ** Examples > > data(sic2004) > # FIGURE 1. Locations of the 200 monitoring stations for the 11 data sets. > # The values taken by the variable are known. > plot(y~x,sic.train,pch=1,col="red", asp=1) > > # FIGURE 2. Locations of the 808 remaining monitoring stations at which > # the values of the variable must be estimated. > plot(y~x,sic.pred,pch="?", asp=1, cex=.8) # Figure 2 > > # FIGURE 3. Locations of the 1008 monitoring stations (exhaustive data sets). > # Red circles are used to estimate values located at the questions marks > plot(y~x,sic.train,pch=1,col="red", asp=1) > points(y~x, sic.pred, pch="?", cex=.8) > > > > > cleanEx(); ..nameEx <- "variogram" > > ### * variogram > > flush(stderr()); flush(stdout()) > > ### Name: variogram > ### Title: Calculate Sample or Residual Variogram or Variogram Cloud > ### Aliases: variogram variogram.gstat variogram.formula variogram.default > ### print.gstatVariogram print.variogramCloud > ### Keywords: models > > ### ** Examples > > data(meuse) > # no trend: > variogram(log(zinc)~1, loc=~x+y, meuse) np dist gamma dir.hor dir.ver id 1 57 79.29244 0.1234479 0 0 var1 2 299 163.97367 0.2162185 0 0 var1 3 419 267.36483 0.3027859 0 0 var1 4 457 372.73542 0.4121448 0 0 var1 5 547 478.47670 0.4634128 0 0 var1 6 533 585.34058 0.5646933 0 0 var1 7 574 693.14526 0.5689683 0 0 var1 8 564 796.18365 0.6186769 0 0 var1 9 589 903.14650 0.6471479 0 0 var1 10 543 1011.29177 0.6915705 0 0 var1 11 500 1117.86235 0.7033984 0 0 var1 12 477 1221.32810 0.6038770 0 0 var1 13 452 1329.16407 0.6517158 0 0 var1 14 457 1437.25620 0.5665318 0 0 var1 15 415 1543.20248 0.5748227 0 0 var1 > # residual variogram w.r.t. a linear trend: > variogram(log(zinc)~x+y, loc=~x+y, meuse) np dist gamma dir.hor dir.ver id 1 57 79.29244 0.1060834 0 0 var1 2 299 163.97367 0.1829983 0 0 var1 3 419 267.36483 0.2264256 0 0 var1 4 457 372.73542 0.2847192 0 0 var1 5 547 478.47670 0.3162418 0 0 var1 6 533 585.34058 0.3571578 0 0 var1 7 574 693.14526 0.3701742 0 0 var1 8 564 796.18365 0.4201289 0 0 var1 9 589 903.14650 0.4216983 0 0 var1 10 543 1011.29177 0.4772549 0 0 var1 11 500 1117.86235 0.5075874 0 0 var1 12 477 1221.32810 0.4617632 0 0 var1 13 452 1329.16407 0.5512305 0 0 var1 14 457 1437.25620 0.4352155 0 0 var1 15 415 1543.20248 0.4556815 0 0 var1 > # directional variogram: > variogram(log(zinc)~x+y, loc=~x+y, meuse, alpha=c(0,45,90,135)) np dist gamma dir.hor dir.ver id 1 12 84.36080 0.04114593 0 0 var1 2 76 165.59800 0.19091543 0 0 var1 3 109 270.29441 0.21867508 0 0 var1 4 134 371.27824 0.23112878 0 0 var1 5 158 478.06480 0.38337565 0 0 var1 6 154 583.35601 0.35513567 0 0 var1 7 159 692.50911 0.35709265 0 0 var1 8 158 797.52941 0.46221222 0 0 var1 9 156 901.86529 0.47081724 0 0 var1 10 156 1011.55318 0.50937290 0 0 var1 11 137 1115.24492 0.57358764 0 0 var1 12 135 1220.31674 0.43193998 0 0 var1 13 109 1328.07859 0.68882673 0 0 var1 14 120 1436.93237 0.53015452 0 0 var1 15 96 1544.68559 0.66909962 0 0 var1 16 11 82.06663 0.07619858 45 0 var1 17 91 165.75829 0.11957011 45 0 var1 18 118 266.93093 0.20557549 45 0 var1 19 136 374.24886 0.27864922 45 0 var1 20 172 479.40618 0.23932562 45 0 var1 21 177 587.53554 0.28038440 45 0 var1 22 209 693.02620 0.34028114 45 0 var1 23 226 796.37554 0.37201935 45 0 var1 24 283 905.25038 0.36146985 45 0 var1 25 264 1012.26326 0.36891951 45 0 var1 26 274 1121.20926 0.36831067 45 0 var1 27 275 1221.63704 0.33875319 45 0 var1 28 282 1330.93431 0.33848846 45 0 var1 29 297 1438.21262 0.31476883 45 0 var1 30 299 1542.75515 0.31707228 45 0 var1 31 16 78.75466 0.07583160 90 0 var1 32 70 160.01667 0.20149652 90 0 var1 33 97 267.68973 0.20686187 90 0 var1 34 98 372.02688 0.28167260 90 0 var1 35 118 479.76226 0.30366429 90 0 var1 36 98 585.85589 0.46344817 90 0 var1 37 115 691.04342 0.36401272 90 0 var1 38 100 796.22142 0.36912878 90 0 var1 39 88 901.26201 0.50261434 90 0 var1 40 72 1004.66642 0.56369456 90 0 var1 41 68 1109.43463 0.77219638 90 0 var1 42 51 1223.73294 0.79679699 90 0 var1 43 44 1322.80887 0.82262644 90 0 var1 44 30 1430.99001 0.80073011 90 0 var1 45 16 1544.27842 1.17421050 90 0 var1 46 18 74.69621 0.19452856 135 0 var1 47 62 163.83075 0.24550456 135 0 var1 48 95 264.21071 0.28119200 135 0 var1 49 89 373.39690 0.37803627 135 0 var1 50 99 475.98691 0.35772223 135 0 var1 51 104 584.05805 0.39065627 135 0 var1 52 91 697.18636 0.46947283 135 0 var1 53 80 792.93648 0.53667425 135 0 var1 54 62 899.44175 0.45817366 135 0 var1 55 51 1014.81674 0.81777411 135 0 var1 56 21 1118.55839 1.03741404 135 0 var1 57 16 1216.88607 1.75971197 135 0 var1 58 17 1323.20745 2.49557308 135 0 var1 59 10 1431.53529 1.77666963 135 0 var1 60 4 1536.74264 2.82057119 135 0 var1 > > # GLS residual variogram: > v = variogram(log(zinc)~x+y,~x+y,meuse) > v.fit = fit.variogram(v, vgm(1, "Sph", 700, 1)) > v.fit model psill range 1 Nug 0.0823414 0.000 2 Sph 0.3886635 1098.557 > set = list(gls=1) > v np dist gamma dir.hor dir.ver id 1 57 79.29244 0.1060834 0 0 var1 2 299 163.97367 0.1829983 0 0 var1 3 419 267.36483 0.2264256 0 0 var1 4 457 372.73542 0.2847192 0 0 var1 5 547 478.47670 0.3162418 0 0 var1 6 533 585.34058 0.3571578 0 0 var1 7 574 693.14526 0.3701742 0 0 var1 8 564 796.18365 0.4201289 0 0 var1 9 589 903.14650 0.4216983 0 0 var1 10 543 1011.29177 0.4772549 0 0 var1 11 500 1117.86235 0.5075874 0 0 var1 12 477 1221.32810 0.4617632 0 0 var1 13 452 1329.16407 0.5512305 0 0 var1 14 457 1437.25620 0.4352155 0 0 var1 15 415 1543.20248 0.4556815 0 0 var1 > g = gstat(NULL, "log-zinc", log(zinc)~x+y,~x+y, meuse, model=v.fit, set = set) > variogram(g) np dist gamma dir.hor dir.ver id 1 57 79.29244 0.1059824 0 0 log-zinc 2 299 163.97367 0.1826061 0 0 log-zinc 3 419 267.36483 0.2256106 0 0 log-zinc 4 457 372.73542 0.2839249 0 0 log-zinc 5 547 478.47670 0.3156089 0 0 log-zinc 6 533 585.34058 0.3566521 0 0 log-zinc 7 574 693.14526 0.3686389 0 0 log-zinc 8 564 796.18365 0.4203338 0 0 log-zinc 9 589 903.14650 0.4212183 0 0 log-zinc 10 543 1011.29177 0.4766290 0 0 log-zinc 11 500 1117.86235 0.5089493 0 0 log-zinc 12 477 1221.32810 0.4637837 0 0 log-zinc 13 452 1329.16407 0.5501710 0 0 log-zinc 14 457 1437.25620 0.4388562 0 0 log-zinc 15 415 1543.20248 0.4580369 0 0 log-zinc > > > > cleanEx(); ..nameEx <- "variogram.line" > > ### * variogram.line > > flush(stderr()); flush(stdout()) > > ### Name: variogram.line > ### Title: Semivariance Values For a Given Variogram Model > ### Aliases: variogram.line > ### Keywords: models > > ### ** Examples > > variogram.line(vgm(5, "Exp", 10, 5), 10, 10) dist gamma 1 0.00001 5.000005 2 1.11112 5.525807 3 2.22223 5.996316 4 3.33334 6.417346 5 4.44445 6.794100 6 5.55556 7.131234 7 6.66667 7.432915 8 7.77778 7.702871 9 8.88889 7.944439 10 10.00000 8.160603 > # anisotropic variogram, plotted in E-W direction: > variogram.line(vgm(1, "Sph", 10, anis=c(0,0.5)), 10, 10) dist gamma 1 0.00001 0.0000030 2 1.11112 0.3278489 3 2.22223 0.6227728 4 3.33334 0.8518530 5 4.44445 0.9821677 6 5.55556 1.0000000 7 6.66667 1.0000000 8 7.77778 1.0000000 9 8.88889 1.0000000 10 10.00000 1.0000000 > # anisotropic variogram, plotted in N-S direction: > variogram.line(vgm(1, "Sph", 10, anis=c(0,0.5)), 10, 10, dir=c(0,1,0)) dist gamma 1 0.00001 0.0000015 2 1.11112 0.1659821 3 2.22223 0.3278475 4 3.33334 0.4814824 5 4.44445 0.6227716 6 5.55556 0.7475999 7 6.66667 0.8518521 8 7.77778 0.9314130 9 8.88889 0.9821674 10 10.00000 1.0000000 > > > > cleanEx(); ..nameEx <- "vgm" > > ### * vgm > > flush(stderr()); flush(stdout()) > > ### Name: vgm > ### Title: Generate, or Add to Variogram Model > ### Aliases: vgm print.variogramModel > ### Keywords: models > > ### ** Examples > > vgm() short long 1 Nug Nug (nugget) 2 Exp Exp (exponential) 3 Sph Sph (spherical) 4 Gau Gau (gaussian) 5 Exc Exclass (Exponential class) 6 Mat Mat (Matern) 7 Cir Cir (circular) 8 Lin Lin (linear) 9 Bes Bes (bessel) 10 Pen Pen (pentaspherical) 11 Per Per (periodic) 12 Hol Hol (hole) 13 Log Log (logarithmic) 14 Pow Pow (power) 15 Spl Spl (spline) 16 Err Err (Measurement error) 17 Int Int (Intercept) > vgm(10, "Exp", 300) model psill range 1 Exp 10 300 > x <- vgm(10, "Exp", 300) > vgm(10, "Nug", 0) model psill range 1 Nug 10 0 > vgm(10, "Exp", 300, 4.5) model psill range 1 Nug 4.5 0 2 Exp 10.0 300 > vgm(10, "Mat", 300, 4.5, kappa = 0.7) model psill range kappa 1 Nug 4.5 0 0.0 2 Mat 10.0 300 0.7 > vgm( 5, "Exp", 300, add.to = vgm(5, "Exp", 60, nugget = 2.5)) model psill range 1 Nug 2.5 0 2 Exp 5.0 60 3 Exp 5.0 300 > vgm(10, "Exp", 300, anis = c(30, 0.5)) model psill range ang1 anis1 1 Exp 10 300 30 0.5 > vgm(10, "Exp", 300, anis = c(30, 10, 0, 0.5, 0.3)) model psill range ang1 ang2 ang3 anis1 anis2 1 Exp 10 300 30 10 0 0.5 0.3 > # Matern variogram model: > vgm(1, "Mat", 1, kappa=.3) model psill range kappa 1 Mat 1 1 0.3 > x <- vgm(0.39527463, "Sph", 953.8942, nugget = 0.06105141) > x model psill range 1 Nug 0.06105141 0.0000 2 Sph 0.39527463 953.8942 > print(x, digits = 3); model psill range 1 Nug 0.061 0 2 Sph 0.395 954 > # to see all components, do > print.data.frame(x) model psill range kappa ang1 ang2 ang3 anis1 anis2 1 Nug 0.06105141 0.0000 0.0 0 0 0 1 1 2 Sph 0.39527463 953.8942 0.5 0 0 0 1 1 > > > > cleanEx(); ..nameEx <- "walker" > > ### * walker > > flush(stderr()); flush(stdout()) > > ### Name: walker > ### Title: Walker Lake sample data set > ### Aliases: walker > ### Keywords: datasets > > ### ** Examples > > data(walker) > summary(walker) Id X Y V Min. : 1.0 Min. : 8.0 Min. : 8.0 Min. : 0.0 1st Qu.:118.2 1st Qu.: 51.0 1st Qu.: 80.0 1st Qu.: 184.6 Median :235.5 Median : 89.0 Median :139.5 Median : 424.0 Mean :235.5 Mean :111.1 Mean :141.2 Mean : 435.3 3rd Qu.:352.8 3rd Qu.:170.0 3rd Qu.:208.0 3rd Qu.: 640.9 Max. :470.0 Max. :251.0 Max. :291.0 Max. :1528.1 U T Min. : 0.00 Min. :1.000 1st Qu.: 82.15 1st Qu.:2.000 Median : 319.30 Median :2.000 Mean : 604.08 Mean :1.904 3rd Qu.: 844.55 3rd Qu.:2.000 Max. :5190.10 Max. :2.000 NA's : 195.00 > > > > cleanEx(); ..nameEx <- "zerodist" > > ### * zerodist > > flush(stderr()); flush(stdout()) > > ### Name: zerodist > ### Title: find point pairs with equal spatial coordinates > ### Aliases: zerodist > ### Keywords: dplot > > ### ** Examples > > if (require(sp) == FALSE) { + data(meuse) + # pick 10 rows + n <- 10 + ran10 <- sample(nrow(meuse), size = n, replace = TRUE) + meusedup <- rbind(meuse, meuse[ran10, ]) + zerodist(meusedup$x, meusedup$y) + zd <- zerodist(meusedup$x, meusedup$y) + sum(abs(zd[1:n,1] - sort(ran10))) # 0! + # remove the duplicate rows: + meusedup2 <- meusedup[-zd[,2], ] + # find point pairs within 500 m distance of each other: + zerodist(meuse$x, meuse$y, 500) + } Loading required package: sp Attaching package: 'sp' The following object(s) are masked from package:gstat : bpy.colors bubble makegrid map.to.lev mapasp point.in.polygon select.spatial zerodist > > > > ### *