R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("hapassoc-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('hapassoc') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "PreHap" > > ### * PreHap > > flush(stderr()); flush(stdout()) > > ### Name: pre.hapassoc > ### Title: Pre-process the data before fitting it with hapassoc > ### Aliases: pre.hapassoc > ### Keywords: methods > > ### ** Examples > > #First example data set has single-locus genotypes in "allelic format" > data(hypoDat) > example.pre.hapassoc<-pre.hapassoc(hypoDat, numSNPs=3) > > # To get the initial haplotype frequencies: > example.pre.hapassoc$initFreq h000 h001 h010 h011 h100 h101 h110 0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 h111 0.02148268 > # h000 h001 h010 h011 h100 h101 h110 > #0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 > # h111 > #0.02148268 > # The '001' haplotype is estimated to be the most frequent > > example.pre.hapassoc$pooledHaplos [1] "h101" "h110" "h111" > # "h101" "h110" "h111" > # These haplotypes are to be pooled in the design matrix for the risk model > > names(example.pre.hapassoc$haploDM) [1] "h000" "h001" "h010" "h011" "h100" "pooled" > # "h000" "h001" "h010" "h011" "h100" "pooled" > > #### > #Second example data set has single-locus genotypes in "genotypic format" > data(hypoDatGeno) > example2.pre.hapassoc<-pre.hapassoc(hypoDatGeno, numSNPs=3, allelic=FALSE) > > # To get the initial haplotype frequencies: > example2.pre.hapassoc$initFreq hAAA hAAC hACA hACC hCAA hCAC hCCA 0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 hCCC 0.02148268 > # hAAA hAAC hACA hACC hCAA hCAC > #0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 > # hCCA hCCC > #0.01081260 0.02148268 > # The 'hAAC' haplotype is estimated to be the most frequent > > example2.pre.hapassoc$pooledHaplos [1] "hCAC" "hCCA" "hCCC" > # "hCAC" "hCCA" "hCCC" > # These haplotypes are to be pooled in the design matrix for the risk model > > names(example2.pre.hapassoc$haploDM) [1] "hAAA" "hAAC" "hACA" "hACC" "hCAA" "pooled" > # "hAAA" "hAAC" "hACA" "hACC" "hCAA" "pooled" > > > > cleanEx(); ..nameEx <- "hapassoc" > > ### * hapassoc > > flush(stderr()); flush(stdout()) > > ### Name: hapassoc > ### Title: EM algorithm to fit maximum likelihood estimates of trait > ### associations with SNP haplotypes > ### Aliases: hapassoc > ### Keywords: methods > > ### ** Examples > > data(hypoDat) > example.pre.hapassoc<-pre.hapassoc(hypoDat, 3) > > example.pre.hapassoc$initFreq # look at initial haplotype frequencies h000 h001 h010 h011 h100 h101 h110 0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 h111 0.02148268 > # h000 h001 h010 h011 h100 h101 h110 > #0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 > # h111 > #0.02148268 > > names(example.pre.hapassoc$haploDM) [1] "h000" "h001" "h010" "h011" "h100" "pooled" > # "h000" "h001" "h010" "h011" "h100" "pooled" > > # Columns of the matrix haploDM score the number of copies of each haplotype > # for each pseudo-individual. > > # Logistic regression for a multiplicative odds model having as the baseline > # group homozygotes '001/001' for the most common haplotype > > example.regr <- hapassoc(affected ~ attr + h000+ h010 + h011 + h100 + pooled, + example.pre.hapassoc, family=binomial()) Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! > > # Logistic regression with separate effects for 000 homozygotes, 001 homozygotes > # and 000/001 heterozygotes > > example2.regr <- hapassoc(affected ~ attr + I(h000==2) + I(h001==2) + + I(h000==1 & h001==1), example.pre.hapassoc, family=binomial()) Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! > > > > > cleanEx(); ..nameEx <- "summaryHap" > > ### * summaryHap > > flush(stderr()); flush(stdout()) > > ### Name: summary.hapassoc > ### Title: Summarize results of the hapassoc function > ### Aliases: summary.hapassoc > ### Keywords: methods > > ### ** Examples > > data(hypoDat) > example.pre.hapassoc<-pre.hapassoc(hypoDat, 3) > example.regr <- hapassoc(affected ~ attr + h000+ h010 + h011 + h100 + pooled, + example.pre.hapassoc, family=binomial()) Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! Warning in eval(expr, envir, enclos) : non-integer #successes in a binomial glm! > > # Summarize the results: > summary.hapassoc(example.regr) # or just summary(example.regr) $coefficients Estimate Std. Error zscore Pr(>|z|) (Intercept) -1.24304712 0.7826121 -1.58833114 0.11221148 attr 0.74117082 0.2919206 2.53894658 0.01111868 h000 1.15178187 0.5942128 1.93833229 0.05258270 h010 -0.59528765 0.6570407 -0.90601329 0.36492882 h011 -0.03426242 0.9155250 -0.03742379 0.97014710 h100 -0.85628090 1.0199383 -0.83954187 0.40116530 pooled 0.38745841 0.8775181 0.44153893 0.65882289 $frequencies Estimate Std. Error f.h000 0.26732097 0.03930403 f.h001 0.25180046 0.03865720 f.h010 0.21981267 0.03877367 f.h011 0.10106590 0.02949351 f.h100 0.09501225 0.02369630 f.h101 0.02586632 0.01412337 f.h110 0.01785410 0.01384235 f.h111 0.02126733 0.01247509 $dispersion [1] 1 > > # Results: > #$coefficients > # Estimate Std. Error zscore Pr(>|z|) > #(Intercept) -1.24114270 0.7820977 -1.58694079 0.11252606 > #attr 0.74036920 0.2918205 2.53707057 0.01117844 > #h000 1.14968352 0.5942542 1.93466627 0.05303126 > #h010 -0.59318434 0.6569672 -0.90291311 0.36657201 > #h011 -0.03615243 0.9161959 -0.03945928 0.96852422 > #h100 -0.85329292 1.0203105 -0.83630709 0.40298217 > #pooled 0.38516864 0.8784283 0.43847478 0.66104215 > # > #$frequencies > # Estimate Std. Error > #f.h000 0.26716394 0.03933158 > #f.h001 0.25191674 0.03866739 > #f.h010 0.21997138 0.03881578 > #f.h011 0.10094795 0.02949617 > #f.h100 0.09507014 0.02371878 > #f.h101 0.02584918 0.01411881 > #f.h110 0.01779455 0.01386080 > #f.h111 0.02128613 0.01247265 > # > #$dispersion > #[1] 1 > > > > ### *