R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("ismev-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('ismev') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "gev.diag" > > ### * gev.diag > > flush(stderr()); flush(stdout()) > > ### Name: gev.diag > ### Title: Diagnostic Plots for GEV Models > ### Aliases: gev.diag > ### Keywords: hplot > > ### ** Examples > > data(portpirie) > ppfit <- gev.fit(portpirie[,2]) $conv [1] 0 $nllh [1] -4.339058 $mle [1] 3.87474692 0.19804120 -0.05008773 $se [1] 0.02793211 0.02024610 0.09825633 > gev.diag(ppfit) > > > > cleanEx(); ..nameEx <- "gev.fit" > > ### * gev.fit > > flush(stderr()); flush(stdout()) > > ### Name: gev.fit > ### Title: Maximum-likelihood Fitting of the GEV Distribution > ### Aliases: gev.fit > ### Keywords: models > > ### ** Examples > > data(portpirie) > gev.fit(portpirie[,2]) $conv [1] 0 $nllh [1] -4.339058 $mle [1] 3.87474692 0.19804120 -0.05008773 $se [1] 0.02793211 0.02024610 0.09825633 > > > > cleanEx(); ..nameEx <- "gev.prof" > > ### * gev.prof > > flush(stderr()); flush(stdout()) > > ### Name: gev.prof > ### Title: Profile Log-likelihoods for Stationary GEV Models > ### Aliases: gev.prof gev.profxi > ### Keywords: hplot > > ### ** Examples > > data(portpirie) > ppfit <- gev.fit(portpirie[,2]) $conv [1] 0 $nllh [1] -4.339058 $mle [1] 3.87474692 0.19804120 -0.05008773 $se [1] 0.02793211 0.02024610 0.09825633 > ## Not run: gev.prof(ppfit, m = 10, 4.1, 5) > ## Not run: gev.profxi(ppfit, -0.3, 0.3) > > > > cleanEx(); ..nameEx <- "gpd.diag" > > ### * gpd.diag > > flush(stderr()); flush(stdout()) > > ### Name: gpd.diag > ### Title: Diagnostic Plots for GPD Models > ### Aliases: gpd.diag > ### Keywords: hplot > > ### ** Examples > > data(rain) > rnfit <- gpd.fit(rain, 10) $threshold [1] 10 $nexc [1] 2003 $conv [1] 0 $nllh [1] 6123.465 $mle [1] 7.43736339 0.05049163 $rate [1] 0.1142547 $se [1] 0.23606332 0.02256987 > gpd.diag(rnfit) > > > > cleanEx(); ..nameEx <- "gpd.fit" > > ### * gpd.fit > > flush(stderr()); flush(stdout()) > > ### Name: gpd.fit > ### Title: Maximum-likelihood Fitting for the GPD Model > ### Aliases: gpd.fit > ### Keywords: models > > ### ** Examples > > data(rain) > gpd.fit(rain, 10) $threshold [1] 10 $nexc [1] 2003 $conv [1] 0 $nllh [1] 6123.465 $mle [1] 7.43736339 0.05049163 $rate [1] 0.1142547 $se [1] 0.23606332 0.02256987 > > > > cleanEx(); ..nameEx <- "gpd.fitrange" > > ### * gpd.fitrange > > flush(stderr()); flush(stdout()) > > ### Name: gpd.fitrange > ### Title: Fitting the GPD Model Over a Range of Thresholds > ### Aliases: gpd.fitrange > ### Keywords: hplot > > ### ** Examples > > ## Not run: data(rain) > ## Not run: gpd.fitrange(rain, 10, 40) > > > > cleanEx(); ..nameEx <- "gpd.prof" > > ### * gpd.prof > > flush(stderr()); flush(stdout()) > > ### Name: gpd.prof > ### Title: Profile Log-likelihoods for Stationary GPD Models > ### Aliases: gpd.prof gpd.profxi > ### Keywords: hplot > > ### ** Examples > > data(rain) > rnfit <- gpd.fit(rain, 10) $threshold [1] 10 $nexc [1] 2003 $conv [1] 0 $nllh [1] 6123.465 $mle [1] 7.43736339 0.05049163 $rate [1] 0.1142547 $se [1] 0.23606332 0.02256987 > ## Not run: gpd.prof(rnfit, m = 10, 55, 75) > ## Not run: gpd.profxi(rnfit, -0.02, 0.15) > > > > cleanEx(); ..nameEx <- "gum.diag" > > ### * gum.diag > > flush(stderr()); flush(stdout()) > > ### Name: gum.diag > ### Title: Diagnostic Plots for Gumbel Models > ### Aliases: gum.diag > ### Keywords: hplot > > ### ** Examples > > data(portpirie) > ppfit <- gum.fit(portpirie[,2]) $conv [1] 0 $nllh [1] -4.217682 $mle [1] 3.8694426 0.1948867 $se [1] 0.02549356 0.01885190 > gum.diag(ppfit) > > > > cleanEx(); ..nameEx <- "gum.fit" > > ### * gum.fit > > flush(stderr()); flush(stdout()) > > ### Name: gum.fit > ### Title: Maximum-likelihood Fitting of the Gumbel Distribution > ### Aliases: gum.fit > ### Keywords: models > > ### ** Examples > > data(portpirie) > gum.fit(portpirie[,2]) $conv [1] 0 $nllh [1] -4.217682 $mle [1] 3.8694426 0.1948867 $se [1] 0.02549356 0.01885190 > > > > cleanEx(); ..nameEx <- "mrl.plot" > > ### * mrl.plot > > flush(stderr()); flush(stdout()) > > ### Name: mrl.plot > ### Title: Mean Residual Life Plot > ### Aliases: mrl.plot > ### Keywords: hplot > > ### ** Examples > > data(rain) > mrl.plot(rain) > > > > cleanEx(); ..nameEx <- "pp.diag" > > ### * pp.diag > > flush(stderr()); flush(stdout()) > > ### Name: pp.diag > ### Title: Diagnostic Plots for Point Process Models > ### Aliases: pp.diag > ### Keywords: hplot > > ### ** Examples > > data(rain) > rnfit <- pp.fit(rain, 10) $threshold [1] 10 $npy [1] 365 $nexc [1] 2003 $conv [1] 0 $nllh [1] 654.1278 $mle [1] 40.52563862 8.97657314 0.05044411 $se [1] 0.99990549 0.60010762 0.02251094 > pp.diag(rnfit) > > > > cleanEx(); ..nameEx <- "pp.fit" > > ### * pp.fit > > flush(stderr()); flush(stdout()) > > ### Name: pp.fit > ### Title: Maximum-likelihood Fitting for the Point Process Model > ### Aliases: pp.fit > ### Keywords: models > > ### ** Examples > > data(rain) > pp.fit(rain, 10) $threshold [1] 10 $npy [1] 365 $nexc [1] 2003 $conv [1] 0 $nllh [1] 654.1278 $mle [1] 40.52563862 8.97657314 0.05044411 $se [1] 0.99990549 0.60010762 0.02251094 > > > > cleanEx(); ..nameEx <- "pp.fitrange" > > ### * pp.fitrange > > flush(stderr()); flush(stdout()) > > ### Name: pp.fitrange > ### Title: Fitting the Point Process Model Over a Range of Thresholds > ### Aliases: pp.fitrange > ### Keywords: hplot > > ### ** Examples > > ## Not run: data(rain) > ## Not run: pp.fitrange(rain, 10, 40) > > > > cleanEx(); ..nameEx <- "rlarg.diag" > > ### * rlarg.diag > > flush(stderr()); flush(stdout()) > > ### Name: rlarg.diag > ### Title: Diagnostic Plots for Order Statistics Models > ### Aliases: rlarg.diag > ### Keywords: hplot > > ### ** Examples > > ## Not run: data(venice) > ## Not run: venfit <- rlarg.fit(venice[,-1]) > ## Not run: rlarg.diag(venfit) > > > > cleanEx(); ..nameEx <- "rlarg.fit" > > ### * rlarg.fit > > flush(stderr()); flush(stdout()) > > ### Name: rlarg.fit > ### Title: Maximum-likelihood Fitting of Order Statistics Model > ### Aliases: rlarg.fit > ### Keywords: models > > ### ** Examples > > ## Not run: data(venice) > ## Not run: rlarg.fit(venice[,-1]) > > > > ### *