R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("meta-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('meta') load meta: /CRANPkg/check/meta.Rcheck ... > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "Fleiss93" > > ### * Fleiss93 > > flush(stderr()); flush(stdout()) > > ### Name: Fleiss93 > ### Title: Aspirin after Myocardial Infarction > ### Aliases: Fleiss93 > ### Keywords: datasets > > ### ** Examples > > data(Fleiss93) > metabin(event.e, n.e, event.c, n.c, data=Fleiss93) RR 95%-CI %W(fixed) %W(random) 1 0.7420 [0.5223; 1.0543] 2.89 7.84 2 0.6993 [0.4828; 1.0129] 2.76 7.18 3 0.8270 [0.6487; 1.0545] 5.42 13.59 4 0.8209 [0.5269; 1.2789] 1.67 5.29 5 0.8193 [0.5927; 1.1326] 3.01 8.92 6 1.1183 [0.9411; 1.3289] 9.54 20.41 7 0.9142 [0.8596; 0.9722] 74.71 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9136 [0.8657; 0.9642] -3.2878 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Mantel-Haenszel method > > > > cleanEx(); ..nameEx <- "Fleiss93cont" > > ### * Fleiss93cont > > flush(stderr()); flush(stdout()) > > ### Name: Fleiss93cont > ### Title: Mental Health Treatment > ### Aliases: Fleiss93cont > ### Keywords: datasets > > ### ** Examples > > data(Fleiss93cont) > metacont(n.e, mean.e, sd.e, + n.c, mean.c, sd.c, + data=Fleiss93cont) WMD 95%-CI %W(fixed) %W(random) 1 -1.50 [-4.7855; 1.7855] 2.79 4.50 2 -1.20 [-2.0837; -0.3163] 38.61 34.40 3 -2.40 [-6.1078; 1.3078] 2.19 3.58 4 0.20 [-0.7718; 1.1718] 31.93 31.03 5 -0.88 [-1.9900; 0.2300] 24.47 26.48 Number of trials combined: 5 WMD 95%-CI z p.value Fixed effects model -0.7094 [-1.2585; -0.1603] -2.5321 0.0113 Random effects model -0.7373 [-1.4577; -0.0170] -2.0061 0.0448 Quantifying heterogeneity: tau^2 = 0.1894; H = 1.19 [1; 1.91]; I^2 = 29.3% [0%; 72.6%] Test of heterogeneity: Q d.f. p.value 5.66 4 0.226 Method: Inverse variance method > > > > cleanEx(); ..nameEx <- "Olkin95" > > ### * Olkin95 > > flush(stderr()); flush(stdout()) > > ### Name: Olkin95 > ### Title: Thrombolytic Therapy after Acute Myocardial Infarction > ### Aliases: Olkin95 > ### Keywords: datasets > > ### ** Examples > > data(Olkin95) > summary(metabin(event.e, n.e, event.c, n.c, data=Olkin95)) Warning in metabin(event.e, n.e, event.c, n.c, data = Olkin95) : 0.5 added to each cell in 2x2 tables with zero cell frequencies Number of trials combined: 70 RR 95%-CI z p.value Fixed effects model 0.7728 [0.7342; 0.8135] -9.8421 < 0.0001 Random effects model 0.7667 [0.7048; 0.8341] -6.1783 < 0.0001 Quantifying heterogeneity: tau^2 = 0.0125; H = 1.1 [1; 1.28]; I^2 = 17.2% [0%; 39.1%] Test of heterogeneity: Q d.f. p.value 83.33 69 0.115 Method: Mantel-Haenszel method > > > > cleanEx(); ..nameEx <- "ci" > > ### * ci > > flush(stderr()); flush(stdout()) > > ### Name: ci > ### Title: Calculation of confidence intervals (normal approximation) > ### Aliases: ci > ### Keywords: htest > > ### ** Examples > > as.data.frame(ci(170, 10)) TE seTE lower upper z p level 1 170 10 150.4004 189.5996 17 0 0.95 > as.data.frame(ci(170, 10, 0.99)) TE seTE lower upper z p level 1 170 10 144.2417 195.7583 17 0 0.99 > > > > cleanEx(); ..nameEx <- "funnel" > > ### * funnel > > flush(stderr()); flush(stdout()) > > ### Name: funnel > ### Title: Plot to assess funnel plot asymmetry > ### Aliases: funnel radial > ### Keywords: hplot > > ### ** Examples > > data(Olkin95) > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Olkin95, subset=c(41,47,51,59), + sm="RR", meth="I") > > ## > ## Same results: > ## > oldpar <- par(mfrow=c(2,2)) > funnel(meta1) > funnel(meta1$TE, meta1$seTE, sm="RR") > par(oldpar) > > oldpar <- par(mfrow=c(2,2)) > funnel(meta1) > funnel(meta1, yaxis="inv") > funnel(meta1, yaxis="size") > par(oldpar) > > funnel(meta1, comb.f=TRUE, xlim=c(0.1, 10), axes=FALSE) > box() > axis(1, at=c(0.1, 0.5, 1, 2, 10)) > axis(2) > > radial(meta1, level=0.95) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "metabias" > > ### * metabias > > flush(stderr()); flush(stdout()) > > ### Name: metabias > ### Title: Test for funnel plot asymmetry > ### Aliases: metabias > ### Keywords: htest > > ### ** Examples > > data(Olkin95) > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Olkin95, subset=c(41,47,51,59), + sm="RR", meth="I") > > metabias(meta1) Rank correlation test of funnel plot asymmetry data: meta1 z = 0, p-value = 1 alternative hypothesis: true is 0 sample estimates: ks se.ks 0.00000 2.94392 > metabias(meta1, correct=TRUE) Rank correlation test of funnel plot asymmetry (with continuity correction) data: meta1 z = 0, p-value = 1 alternative hypothesis: true is 0 sample estimates: ks se.ks 0.00000 2.94392 > > metabias(meta1, method="linreg") Linear regression test of funnel plot asymmetry data: meta1 t = 0.0685, df = 2, p-value = 0.9516 alternative hypothesis: true is 0 sample estimates: bias se.bias slope 0.1234649 1.8023334 -0.8890871 > metabias(meta1, method="linreg", plotit=TRUE) Linear regression test of funnel plot asymmetry data: meta1 t = 0.0685, df = 2, p-value = 0.9516 alternative hypothesis: true is 0 sample estimates: bias se.bias slope 0.1234649 1.8023334 -0.8890871 > > metabias(meta1, method="count") New test of funnel plot asymmetry data: meta1 z = 0, p-value = 1 alternative hypothesis: true is 0 sample estimates: ks se.ks 0.00000 2.94392 > > ## > ## Same result: > ## > metabias(meta1, method="linreg")$p.value [1] 0.951618 > metabias(meta1$TE, meta1$seTE, method="linreg")$p.value [1] 0.951618 > > > > cleanEx(); ..nameEx <- "metabin" > > ### * metabin > > flush(stderr()); flush(stdout()) > > ### Name: metabin > ### Title: Meta-analysis of binary outcome data > ### Aliases: metabin > ### Keywords: htest > > ### ** Examples > > metabin(10, 20, 15, 20, sm="OR") Warning in metabin(10, 20, 15, 20, sm = "OR") : For single trials, inverse variance method used instead of Mantel Haenszel method. OR 95%-CI z p.value 0.3333 [0.0874; 1.2716] -1.6082 0.1078 Method: Inverse variance method > > ## > ## Different results: > ## > metabin(0, 10, 0, 10, sm="OR") Warning in metabin(0, 10, 0, 10, sm = "OR") : For single trials, inverse variance method used instead of Mantel Haenszel method. OR 95%-CI z p.value NA -- Method: Inverse variance method > metabin(0, 10, 0, 10, sm="OR", allstudies=TRUE) Warning in metabin(0, 10, 0, 10, sm = "OR", allstudies = TRUE) : For single trials, inverse variance method used instead of Mantel Haenszel method. Warning in metabin(0, 10, 0, 10, sm = "OR", allstudies = TRUE) : 0.5 added to each cell in 2x2 tables with zero cell frequencies Warning in metabin(x$event.e, x$n.e, x$event.c, x$n.c, studlab = x$studlab, : 0.5 added to each cell in 2x2 tables with zero cell frequencies OR 95%-CI z p.value 1 [0.0181; 55.2669] 0 1 Method: Inverse variance method > > data(Olkin95) > > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Olkin95, subset=c(41,47,51,59), + sm="RR", meth="I") > summary(meta1) Number of trials combined: 4 RR 95%-CI z p.value Fixed effects model 0.4407 [0.2416; 0.8039] -2.6716 0.0075 Random effects model 0.4434 [0.2038; 0.9648] -2.0503 0.0403 Quantifying heterogeneity: tau^2 = 0.1685; H = 1.16 [1; 1.86]; I^2 = 25.1% [0%; 71.1%] Test of heterogeneity: Q d.f. p.value 4 3 0.2611 Method: Inverse variance method > funnel(meta1) > > meta2 <- metabin(event.e, n.e, event.c, n.c, + data=Olkin95, subset=Olkin95$year<1970, + sm="RR", meth="I") > summary(meta2) Number of trials combined: 4 RR 95%-CI z p.value Fixed effects model 0.9591 [0.611; 1.5056] -0.1814 0.8561 Random effects model 0.8618 [0.480; 1.5474] -0.4981 0.6184 Quantifying heterogeneity: tau^2 = 0.1026; H = 1.18 [1; 1.93]; I^2 = 27.9% [0%; 73.2%] Test of heterogeneity: Q d.f. p.value 4.16 3 0.2446 Method: Inverse variance method > > > > cleanEx(); ..nameEx <- "metacont" > > ### * metacont > > flush(stderr()); flush(stdout()) > > ### Name: metacont > ### Title: Meta-analysis of continuous outcome data > ### Aliases: metacont > ### Keywords: htest > > ### ** Examples > > data(Fleiss93cont) > meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD") > meta1 SMD 95%-CI %W(fixed) %W(random) 1 -0.3399 [-1.1152; 0.4354] 11.54 11.54 2 -0.5659 [-1.0274; -0.1044] 32.58 32.58 3 -0.2999 [-0.7712; 0.1714] 31.23 31.23 4 0.1250 [-0.4954; 0.7455] 18.02 18.02 5 -0.7346 [-1.7575; 0.2883] 6.63 6.63 Number of trials combined: 5 SMD 95%-CI z p.value Fixed effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Random effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Quantifying heterogeneity: tau^2 = 0; H = 1 [1; 2.1]; I^2 = 0% [0%; 77.4%] Test of heterogeneity: Q d.f. p.value 3.68 4 0.4515 Method: Inverse variance method > > meta2 <- metacont(Fleiss93cont$n.e, Fleiss93cont$mean.e, + Fleiss93cont$sd.e, + Fleiss93cont$n.c, Fleiss93cont$mean.c, + Fleiss93cont$sd.c, + sm="SMD") > meta2 SMD 95%-CI %W(fixed) %W(random) 1 -0.3399 [-1.1152; 0.4354] 11.54 11.54 2 -0.5659 [-1.0274; -0.1044] 32.58 32.58 3 -0.2999 [-0.7712; 0.1714] 31.23 31.23 4 0.1250 [-0.4954; 0.7455] 18.02 18.02 5 -0.7346 [-1.7575; 0.2883] 6.63 6.63 Number of trials combined: 5 SMD 95%-CI z p.value Fixed effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Random effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Quantifying heterogeneity: tau^2 = 0; H = 1 [1; 2.1]; I^2 = 0% [0%; 77.4%] Test of heterogeneity: Q d.f. p.value 3.68 4 0.4515 Method: Inverse variance method > > > > cleanEx(); ..nameEx <- "metacum" > > ### * metacum > > flush(stderr()); flush(stdout()) > > ### Name: metacum > ### Title: Cumulative meta-analysis > ### Aliases: metacum > ### Keywords: htest > > ### ** Examples > > data(Fleiss93) > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Fleiss93, studlab=study, + sm="RR", meth="I") > meta1 RR 95%-CI %W(fixed) %W(random) MRC-1 0.7420 [0.5223; 1.0543] 2.35 7.84 CDP 0.6993 [0.4828; 1.0129] 2.11 7.18 MRC-2 0.8270 [0.6487; 1.0545] 4.92 13.59 GASP 0.8209 [0.5269; 1.2789] 1.48 5.29 PARIS 0.8193 [0.5927; 1.1326] 2.77 8.92 AMIS 1.1183 [0.9411; 1.3289] 9.75 20.41 ISIS-2 0.9142 [0.8596; 0.9722] 76.63 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9137 [0.8658; 0.9643] -3.2822 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Inverse variance method > > metacum(meta1) Cumulative meta-analysis (Fixed effect model) RR 95%-CI Adding MRC-1 (k=1) 0.7420 [0.5223; 1.0543] Adding CDP (k=2) 0.7215 [0.5592; 0.9310] Adding MRC-2 (k=3) 0.7750 [0.6500; 0.9240] Adding GASP (k=4) 0.7811 [0.6633; 0.9198] Adding PARIS (k=5) 0.7887 [0.6816; 0.9126] Adding AMIS (k=6) 0.9124 [0.8162; 1.0199] Adding ISIS-2 (k=7) 0.9137 [0.8658; 0.9643] Pooled estimate 0.9137 [0.8658; 0.9643] Method: Inverse variance method > metacum(meta1, pooled="random") Cumulative meta-analysis (Random effects model) RR 95%-CI Adding MRC-1 (k=1) 0.7420 [0.5223; 1.0543] Adding CDP (k=2) 0.7215 [0.5592; 0.9310] Adding MRC-2 (k=3) 0.7750 [0.6500; 0.9240] Adding GASP (k=4) 0.7811 [0.6633; 0.9198] Adding PARIS (k=5) 0.7887 [0.6816; 0.9126] Adding AMIS (k=6) 0.8596 [0.7249; 1.0194] Adding ISIS-2 (k=7) 0.8929 [0.8006; 0.9959] Pooled estimate 0.8929 [0.8006; 0.9959] Method: Inverse variance method > plot(metacum(meta1, pooled="random")) > > > > cleanEx(); ..nameEx <- "metagen" > > ### * metagen > > flush(stderr()); flush(stdout()) > > ### Name: metagen > ### Title: Generic inverse variance meta-analysis > ### Aliases: metagen > ### Keywords: htest > > ### ** Examples > > data(Fleiss93) > meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", meth="I") > meta1 RR 95%-CI %W(fixed) %W(random) 1 0.7420 [0.5223; 1.0543] 2.35 7.84 2 0.6993 [0.4828; 1.0129] 2.11 7.18 3 0.8270 [0.6487; 1.0545] 4.92 13.59 4 0.8209 [0.5269; 1.2789] 1.48 5.29 5 0.8193 [0.5927; 1.1326] 2.77 8.92 6 1.1183 [0.9411; 1.3289] 9.75 20.41 7 0.9142 [0.8596; 0.9722] 76.63 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9137 [0.8658; 0.9643] -3.2822 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Inverse variance method > > ## > ## Identical results by using the following commands: > ## > meta1 RR 95%-CI %W(fixed) %W(random) 1 0.7420 [0.5223; 1.0543] 2.35 7.84 2 0.6993 [0.4828; 1.0129] 2.11 7.18 3 0.8270 [0.6487; 1.0545] 4.92 13.59 4 0.8209 [0.5269; 1.2789] 1.48 5.29 5 0.8193 [0.5927; 1.1326] 2.77 8.92 6 1.1183 [0.9411; 1.3289] 9.75 20.41 7 0.9142 [0.8596; 0.9722] 76.63 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9137 [0.8658; 0.9643] -3.2822 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Inverse variance method > metagen(meta1$TE, meta1$seTE, sm="RR") RR 95%-CI %W(fixed) %W(random) 1 0.7420 [0.5223; 1.0543] 2.35 7.84 2 0.6993 [0.4828; 1.0129] 2.11 7.18 3 0.8270 [0.6487; 1.0545] 4.92 13.59 4 0.8209 [0.5269; 1.2789] 1.48 5.29 5 0.8193 [0.5927; 1.1326] 2.77 8.92 6 1.1183 [0.9411; 1.3289] 9.75 20.41 7 0.9142 [0.8596; 0.9722] 76.63 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9137 [0.8658; 0.9643] -3.2822 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Inverse variance method > > > > cleanEx(); ..nameEx <- "metainf" > > ### * metainf > > flush(stderr()); flush(stdout()) > > ### Name: metainf > ### Title: Influence analysis in meta-analysis > ### Aliases: metainf > ### Keywords: htest > > ### ** Examples > > data(Fleiss93) > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Fleiss93, studlab=study, + sm="RR", meth="I") > meta1 RR 95%-CI %W(fixed) %W(random) MRC-1 0.7420 [0.5223; 1.0543] 2.35 7.84 CDP 0.6993 [0.4828; 1.0129] 2.11 7.18 MRC-2 0.8270 [0.6487; 1.0545] 4.92 13.59 GASP 0.8209 [0.5269; 1.2789] 1.48 5.29 PARIS 0.8193 [0.5927; 1.1326] 2.77 8.92 AMIS 1.1183 [0.9411; 1.3289] 9.75 20.41 ISIS-2 0.9142 [0.8596; 0.9722] 76.63 36.79 Number of trials combined: 7 RR 95%-CI z p.value Fixed effects model 0.9137 [0.8658; 0.9643] -3.2822 0.001 Random effects model 0.8929 [0.8006; 0.9959] -2.0347 0.0419 Quantifying heterogeneity: tau^2 = 0.0074; H = 1.29 [1; 1.98]; I^2 = 39.6% [0%; 74.6%] Test of heterogeneity: Q d.f. p.value 9.93 6 0.1277 Method: Inverse variance method > > metainf(meta1) Influential analysis (Fixed effect model) RR 95%-CI Omitting MRC-1 0.9183 [0.8696; 0.9698] Omitting CDP 0.9190 [0.8703; 0.9705] Omitting MRC-2 0.9185 [0.8691; 0.9706] Omitting GASP 0.9152 [0.8669; 0.9663] Omitting PARIS 0.9166 [0.8679; 0.9680] Omitting AMIS 0.8940 [0.8447; 0.9462] Omitting ISIS-2 0.9124 [0.8162; 1.0199] Pooled estimate 0.9137 [0.8658; 0.9643] Method: Inverse variance method > metainf(meta1, pooled="random") Influential analysis (Random effects model) RR 95%-CI Omitting MRC-1 0.9071 [0.8098; 1.0162] Omitting CDP 0.9124 [0.8201; 1.0151] Omitting MRC-2 0.8983 [0.7907; 1.0204] Omitting GASP 0.8931 [0.7922; 1.0068] Omitting PARIS 0.8963 [0.7929; 1.0131] Omitting AMIS 0.8940 [0.8447; 0.9462] Omitting ISIS-2 0.8596 [0.7249; 1.0194] Pooled estimate 0.8929 [0.8006; 0.9959] Method: Inverse variance method > plot(metainf(meta1, pooled="random")) > > > > cleanEx(); ..nameEx <- "plot.meta" > > ### * plot.meta > > flush(stderr()); flush(stdout()) > > ### Name: plot.meta > ### Title: Plot function for objects of class meta > ### Aliases: plot.meta > ### Keywords: hplot > > ### ** Examples > > data(Olkin95) > meta1 <- metabin(event.e, n.e, event.c, n.c, + data=Olkin95, subset=c(41,47,51,59), + sm="RR", meth="I") > > plot(meta1) > plot(meta1, byvar=c(1,2,1,2), bylab="label") > plot(meta1, byvar=1:4, xlim=c(0.02, 10)) > > > > cleanEx(); ..nameEx <- "print.meta" > > ### * print.meta > > flush(stderr()); flush(stdout()) > > ### Name: print.meta > ### Title: Print and summary method for objects of class meta > ### Aliases: print.meta summary.meta print.summary.meta > ### Keywords: print > > ### ** Examples > > data(Fleiss93cont) > meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD") > summary(meta1) Number of trials combined: 5 SMD 95%-CI z p.value Fixed effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Random effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Quantifying heterogeneity: tau^2 = 0; H = 1 [1; 2.1]; I^2 = 0% [0%; 77.4%] Test of heterogeneity: Q d.f. p.value 3.68 4 0.4515 Method: Inverse variance method > summary(meta1, byvar=c(1,2,1,1,2), bylab="label") Number of trials combined: 5 SMD 95%-CI z p.value Fixed effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Random effects model -0.3434 [-0.6068; -0.08] -2.5555 0.0106 Quantifying heterogeneity: tau^2 = 0; H = 1 [1; 2.1]; I^2 = 0% [0%; 77.4%] Test of heterogeneity: Q d.f. SMD 95%-CI p.value Total 3.68 4 -- -- 0.4515 Between groups 2.25 1 -- -- 0.1336 Within groups 1.43 3 -- -- 0.6992 label = 1 1.34 2 -0.1815 [-0.5194; 0.1563] -- label = 2 0.09 1 -0.5944 [-1.0151; -0.1738] -- Method: Inverse variance method > > > > cleanEx(); ..nameEx <- "read.mtv" > > ### * read.mtv > > flush(stderr()); flush(stdout()) > > ### Name: read.mtv > ### Title: Import RevMan data files (.mtv) > ### Aliases: read.mtv > ### Keywords: datagen > > ### ** Examples > > ## Locate MTV-data file "FLEISS93.MTV" in sub-directory of package "meta" > ## > filename <- paste(searchpaths()[seq(along=search())[search()== + "package:meta"]], "/data/FLEISS93.MTV", sep="") > ## > fleiss93.cc <- read.mtv(filename) > > > > ### *