R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("samr-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('samr') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "samr" > > ### * samr > > flush(stderr()); flush(stdout()) > > ### Name: samr > ### Title: Significance analysis of microarrays > ### Aliases: samr > ### Keywords: univar survival ts nonparametric > > ### ** Examples > > > ######### two class unpaired comparison > # y must take values 1,2 > > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > y<-c(rep(1,10),rep(2,10)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="Two class unpaired", nperms=100) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > delta=.4 > samr.plot(samr.obj,delta) > > delta.table <- samr.compute.delta.table(samr.obj) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > > siggenes.table<-samr.compute.siggenes.table(samr.obj,delta, data, delta.table) > > > ########### two class paired > > # y must take values -1, 1, -2,2 etc, with (-k,k) being a pair > > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > y=c(-(1:10),1:10) > > d=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(d, resp.type="Two class paired", nperms=100) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > > > #############quantitative response > > # y must take numeric values > > set.seed(84048) > x=matrix(rnorm(1000*9),ncol=9) > > mu=c(3,2,1,0,0,0,1,2,3) > b=runif(100)+.5 > x[1:100,]=x[1:100,]+ b > > y=mu > > d=list(x=x,y=y, + geneid=as.character(1:nrow(x)),genenames=paste("gene", as.character(1:nrow(x)))) > > samr.obj =samr(d, resp.type="Quantitative", nperms=50) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 > > > ########### oneclass > # y is a vector of ones > > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > > y<-c(rep(1,20)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="One class", nperms=100) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > > ###########survival data > # y is numeric; censoring.status=1 for failures, and 0 for censored > > set.seed(84048) > x=matrix(rnorm(1000*50),ncol=50) > x[1:50,26:50]= x[1:50,26:50]+2 > x[51:100,26:50]= x[51:100,26:50]-2 > > y=abs(rnorm(50)) > y[26:50]=y[26:50]+2 > censoring.status=sample(c(0,1),size=50,replace=TRUE) > d=list(x=x,y=y,censoring.status=censoring.status, + geneid=as.character(1:1000),genenames=paste("gene", as.character(1:1000))) > > samr.obj=samr(d, resp.type="Survival", nperms=20) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 > > ################multi-class example > # y takes values 1,2,3,...k where k= number of classes > > set.seed(84048) > x=matrix(rnorm(1000*10),ncol=10) > x[1:50,6:10]= x[1:50,6:10]+2 > x[51:100,6:10]= x[51:100,6:10]-2 > > y=c(rep(1,3),rep(2,3),rep(3,4)) > d=list(x=x,y=y,geneid=as.character(1:1000),genenames=paste("gene", as.character(1:1000))) > > samr.obj <- samr(d, resp.type="Multiclass") perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > > #################### timecourse data > > # elements of y are of the form kTimet where k is the class label and t > # is the time; in addition, the suffixes Start or End indicate the first > # and last observation in a given time course > # the class label can be that for a two class unpaired, one class or > # two class paired problem > > set.seed(8332) > y=paste(c(rep(1,15),rep(2,15)),"Time",rep(c(1,2,3,4,5,1.1,2.5, 3.7, 4.1,5.5),3),sep="") > start=c(1,6,11,16,21,26) > for(i in start){ + y[i]=paste(y[i],"Start",sep="") + } > for(i in start+4){ + y[i]=paste(y[i],"End",sep="") + } > x=matrix(rnorm(1000*30),ncol=30) > x[1:50,16:20]=x[1:50,16:20]+matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > x[1:50,21:25]=x[1:50,21:25]+matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > x[1:50,26:30]=x[1:50,26:30]+matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > > x[51:100,16:20]=x[51:100,16:20]-matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > x[51:100,21:25]=x[51:100,21:25]-matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > x[51:100,26:30]=x[51:100,26:30]-matrix(3*c(0,1,2,3,4),ncol=5,nrow=50,byrow=TRUE) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<- samr(data, resp.type="Two class unpaired timecourse", + nperms=100, time.summary.type="slope") 123456789101112131415161718192021222324252627282930perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > ##################### pattern discovery > # here there is no outcome y; the desired eigengene is indicated by > # the argument eigengene.numbe in the data object > > set.seed(32) > x=matrix(rnorm(1000*9),ncol=9) > mu=c(3,2,1,0,0,0,1,2,3) > b=3*runif(100)+.5 > x[1:100,]=x[1:100,]+ b > > > d=list(x=x,eigengene.number=1, + geneid=as.character(1:nrow(x)),genenames=paste("gene", as.character(1:nrow(x)))) > > samr.obj=samr(d, resp.type="Pattern discovery", nperms=50) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 > > > > > cleanEx(); ..nameEx <- "samr.compute.delta.table" > > ### * samr.compute.delta.table > > flush(stderr()); flush(stdout()) > > ### Name: samr.compute.delta.table > ### Title: Compute delta table for SAM analysis > ### Aliases: samr.compute.delta.table > ### Keywords: univar survival ts nonparametric > > ### ** Examples > > #generate some example data > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > > y<-c(rep(1,10),rep(2,10)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="Two class unpaired", nperms=50) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 > > delta.table<- samr.compute.delta.table(samr.obj) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > > > > > cleanEx(); ..nameEx <- "samr.compute.siggenes.table" > > ### * samr.compute.siggenes.table > > flush(stderr()); flush(stdout()) > > ### Name: samr.compute.siggenes.table > ### Title: Compute significant genes table > ### Aliases: samr.compute.siggenes.table > ### Keywords: univar survival ts nonparametric > > ### ** Examples > > #generate some example data > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > > y<-c(rep(1,10),rep(2,10)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="Two class unpaired", nperms=100) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > delta.table<-samr.compute.delta.table(samr.obj) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > del<- 0.3 > siggenes.table<- samr.compute.siggenes.table(samr.obj, del, data, delta.table) > > > > > cleanEx(); ..nameEx <- "samr.missrate" > > ### * samr.missrate > > flush(stderr()); flush(stdout()) > > ### Name: samr.missrate > ### Title: Estimate the miss rate table for a SAM analysis > ### Aliases: samr.missrate > ### Keywords: univar survival ts nonparametric > > ### ** Examples > > #generate some example data > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > > y<-c(rep(1,10),rep(2,10)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="Two class unpaired", nperms=100) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 perm= 51 perm= 52 perm= 53 perm= 54 perm= 55 perm= 56 perm= 57 perm= 58 perm= 59 perm= 60 perm= 61 perm= 62 perm= 63 perm= 64 perm= 65 perm= 66 perm= 67 perm= 68 perm= 69 perm= 70 perm= 71 perm= 72 perm= 73 perm= 74 perm= 75 perm= 76 perm= 77 perm= 78 perm= 79 perm= 80 perm= 81 perm= 82 perm= 83 perm= 84 perm= 85 perm= 86 perm= 87 perm= 88 perm= 89 perm= 90 perm= 91 perm= 92 perm= 93 perm= 94 perm= 95 perm= 96 perm= 97 perm= 98 perm= 99 perm= 100 > > delta.table<-samr.compute.delta.table(samr.obj) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > del<- 0.3 > siggenes.table<- samr.compute.siggenes.table(samr.obj, del, data, delta.table) > > samr.missrate(samr.obj, del, delta.table) Quantiles Cutpoints Miss Rate(%) [1,] "0 -> 0.05" "-1.025 -> -0.652" "9.64" [2,] "0.05 -> 0.1" "-0.652 -> -0.515" "6.06" [3,] "0.1 -> 0.15" "-0.515 -> -0.444" "28.08" [4,] "0.15 -> 0.2" "-0.444 -> -0.357" "0" [5,] "0.2 -> 0.25" "-0.357 -> -0.288" "0.52" [6,] "0.25 -> 0.75" "-0.288 -> 0.253" "0" [7,] "0.75 -> 0.8" "0.253 -> 0.324" "0" [8,] "0.8 -> 0.85" "0.324 -> 0.388" "15.8" [9,] "0.85 -> 0.9" "0.388 -> 0.493" "0" [10,] "0.9 -> 0.95" "0.493 -> 0.667" "0" [11,] "0.95 -> 1" "0.667 -> 1.112" "8.23" > > > > cleanEx(); ..nameEx <- "samr.plot" > > ### * samr.plot > > flush(stderr()); flush(stdout()) > > ### Name: samr.plot > ### Title: Make Q-Q plot for SAM analysis > ### Aliases: samr.plot > ### Keywords: univar survival ts nonparametric > > ### ** Examples > > #generate some example data > set.seed(100) > x<-matrix(rnorm(1000*20),ncol=20) > dd<-sample(1:1000,size=100) > > u<-matrix(2*rnorm(100),ncol=10,nrow=100) > x[dd,11:20]<-x[dd,11:20]+u > > y<-c(rep(1,10),rep(2,10)) > > data=list(x=x,y=y, geneid=as.character(1:nrow(x)),genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE) > > samr.obj<-samr(data, resp.type="Two class unpaired", nperms=50) perm= 1 perm= 2 perm= 3 perm= 4 perm= 5 perm= 6 perm= 7 perm= 8 perm= 9 perm= 10 perm= 11 perm= 12 perm= 13 perm= 14 perm= 15 perm= 16 perm= 17 perm= 18 perm= 19 perm= 20 perm= 21 perm= 22 perm= 23 perm= 24 perm= 25 perm= 26 perm= 27 perm= 28 perm= 29 perm= 30 perm= 31 perm= 32 perm= 33 perm= 34 perm= 35 perm= 36 perm= 37 perm= 38 perm= 39 perm= 40 perm= 41 perm= 42 perm= 43 perm= 44 perm= 45 perm= 46 perm= 47 perm= 48 perm= 49 perm= 50 > > samr.plot(samr.obj, del=.3) > > > > ### *