R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("sem-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('sem') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "Klein" > > ### * Klein > > flush(stderr()); flush(stdout()) > > ### Name: Klein > ### Title: Klein's Data on the U. S. Economy > ### Aliases: Klein > ### Keywords: datasets > > ### ** Examples > > data(Klein) > > Klein$P.lag <- c(NA, Klein$P[-22]) > Klein$X.lag <- c(NA, Klein$X[-22]) > > summary(tsls(C ~ P + P.lag + I(Wp + Wg), + instruments=~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag, + data=Klein)) 2SLS Estimates Model Formula: C ~ P + P.lag + I(Wp + Wg) Instruments: ~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -1.89e+00 -6.16e-01 -2.46e-01 3.10e-11 8.85e-01 2.00e+00 Estimate Std. Error t value Pr(>|t|) (Intercept) 16.55476 1.46798 11.2772 2.587e-09 P 0.01730 0.13120 0.1319 8.966e-01 P.lag 0.21623 0.11922 1.8137 8.741e-02 I(Wp + Wg) 0.81018 0.04474 18.1107 1.505e-12 Residual standard error: 1.1357 on 17 degrees of freedom > > summary(tsls(I ~ P + P.lag + K.lag, + instruments=~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag, + data=Klein)) 2SLS Estimates Model Formula: I ~ P + P.lag + K.lag Instruments: ~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -3.29e+00 -8.07e-01 1.42e-01 3.01e-12 8.60e-01 1.80e+00 Estimate Std. Error t value Pr(>|t|) (Intercept) 20.2782 8.38325 2.4189 0.027071 P 0.1502 0.19253 0.7802 0.445980 P.lag 0.6159 0.18093 3.4044 0.003375 K.lag -0.1578 0.04015 -3.9298 0.001080 Residual standard error: 1.3071 on 17 degrees of freedom > > summary(tsls(Wp ~ X + X.lag + I(Year - 1931), + instruments=~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag, + data=Klein)) 2SLS Estimates Model Formula: Wp ~ X + X.lag + I(Year - 1931) Instruments: ~1 + G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -1.29e+00 -4.73e-01 1.45e-02 -3.09e-12 4.49e-01 1.20e+00 Estimate Std. Error t value Pr(>|t|) (Intercept) 1.5003 1.27569 1.176 2.558e-01 X 0.4389 0.03960 11.082 3.368e-09 X.lag 0.1467 0.04316 3.398 3.422e-03 I(Year - 1931) 0.1304 0.03239 4.026 8.764e-04 Residual standard error: 0.7672 on 17 degrees of freedom > > > > > cleanEx(); ..nameEx <- "Kmenta" > > ### * Kmenta > > flush(stderr()); flush(stdout()) > > ### Name: Kmenta > ### Title: Partly Artificial Data on the U. S. Economy > ### Aliases: Kmenta > ### Keywords: datasets > > ### ** Examples > > data(Kmenta) > > > > cleanEx(); ..nameEx <- "boot.sem" > > ### * boot.sem > > flush(stderr()); flush(stdout()) > > ### Name: boot.sem > ### Title: Bootstrap a Structural Equation Model > ### Aliases: boot.sem print.bootsem summary.bootsem > ### Keywords: htest models > > ### ** Examples > > ## Not run: > ##D > ##D # A simple confirmatory factor-analysis model using polychoric correlations. > ##D # The polycor package is required for the hetcor function. > ##D > ##D library(polycor) > ##D > ##D # The following function returns correlations computed by hetcor, > ##D # and is used for the bootstrapping. > ##D > ##D hcor <- function(data) hetcor(data, std.err=FALSE)$correlations > ##D > ##D model.cnes <- specify.model() > ##D F -> MBSA2, lam1, NA > ##D F -> MBSA7, lam2, NA > ##D F -> MBSA8, lam3, NA > ##D F -> MBSA9, lam4, NA > ##D F <-> F, NA, 1 > ##D MBSA2 <-> MBSA2, the1, NA > ##D MBSA7 <-> MBSA7, the2, NA > ##D MBSA8 <-> MBSA8, the3, NA > ##D MBSA9 <-> MBSA9, the4, NA > ##D > ##D data(CNES) > ##D R.cnes <- hcor(CNES) > ##D > ##D sem.cnes <- sem(model.cnes, R.cnes, N=1529) > ##D summary(sem.cnes) > ##D > ##D # Note: this can take a couple of minutes: > ##D > ##D system.time(boot.cnes <- boot.sem(CNES, sem.cnes, R=100, cov=hcor), gcFirst=TRUE) > ##D summary(boot.cnes, type="norm") > ##D # cf., standard errors to those computed by summary(sem.cnes) > ##D > ##D > ## End(Not run) > > > > cleanEx(); ..nameEx <- "mod.indices" > > ### * mod.indices > > flush(stderr()); flush(stdout()) > > ### Name: mod.indices > ### Title: Modification Indices for Structural Equation Models > ### Aliases: mod.indices mod.indices.sem print.sem.modind > ### summary.sem.modind > ### Keywords: models > > ### ** Examples > > # This example is adapted from the SAS manual > > S.wh <- matrix(c( + 11.834, 0, 0, 0, 0, 0, + 6.947, 9.364, 0, 0, 0, 0, + 6.819, 5.091, 12.532, 0, 0, 0, + 4.783, 5.028, 7.495, 9.986, 0, 0, + -3.839, -3.889, -3.841, -3.625, 9.610, 0, + -21.899, -18.831, -21.748, -18.775, 35.522, 450.288), + 6, 6) > > model.wh <- matrix(c( + 'Alienation67 -> Anomia67', NA, 1, + 'Alienation67 -> Powerless67', NA, 0.833, + 'Alienation71 -> Anomia71', NA, 1, + 'Alienation71 -> Powerless71', NA, 0.833, + 'SES -> Education', NA, 1, + 'SES -> SEI', 'lamb', NA, + 'SES -> Alienation67', 'gam1', NA, + 'Alienation67 -> Alienation71', 'beta', NA, + 'SES -> Alienation71', 'gam2', NA, + 'Anomia67 <-> Anomia67', 'the1', NA, + 'Anomia71 <-> Anomia71', 'the1', NA, + 'Powerless67 <-> Powerless67', 'the2', NA, + 'Powerless71 <-> Powerless71', 'the2', NA, + 'Education <-> Education', 'the3', NA, + 'SEI <-> SEI', 'the4', NA, + 'Anomia67 <-> Anomia71', 'the5', NA, + 'Powerless67 <-> Powerless71', 'the5', NA, + 'Alienation67 <-> Alienation67', 'psi1', NA, + 'Alienation71 <-> Alienation71', 'psi2', NA, + 'SES <-> SES', 'phi', NA), + ncol=3, byrow=TRUE) > > obs.vars.wh <- c('Anomia67','Powerless67','Anomia71','Powerless71','Education','SEI') > rownames(S.wh) <- colnames(S.wh) <- obs.vars.wh > > sem.wh <- sem(model.wh, S.wh, 932) > > mod.indices(sem.wh) 5 largest modification indices, A matrix: Powerless67:Education Anomia67:Education Powerless67:SES 4.873638 3.802741 2.760836 Education:Powerless67 Anomia67:SES 2.461851 2.312198 5 largest modification indices, P matrix: Education:Powerless67 Education:Anomia67 SES:Powerless67 6.402830 4.539805 2.760836 SES:Anomia67 SEI:Powerless67 2.312198 1.318489 > > ## 5 largest modification indices, A matrix: > ## Powerless67:Education Anomia67:Education > ## 4.8736 3.8027 > ## Powerless67:SES Education:Powerless67 > ## 2.7608 2.4619 > ## Anomia67:SES > ## 2.3122 > ## > ## 5 largest modification indices, P matrix: > ## Education:Powerless67 Education:Anomia67 > ## 6.4028 4.5398 > ## SES:Powerless67 SES:Anomia67 > ## 2.7608 2.3122 > ## SEI:Powerless67 > ## 1.3185 > > > > cleanEx(); ..nameEx <- "path.diagram" > > ### * path.diagram > > flush(stderr()); flush(stdout()) > > ### Name: path.diagram > ### Title: Draw Path Diagram > ### Aliases: path.diagram path.diagram.sem > ### Keywords: dplot models > > ### ** Examples > > > # The Duncan, Haller, and Portes Peer-Influences Model > > R.DHP <- matrix(c( + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, + .6247, 1, 0, 0, 0, 0, 0, 0, 0, 0, + .3269, .3669, 1, 0, 0, 0, 0, 0, 0, 0, + .4216, .3275, .6404, 1, 0, 0, 0, 0, 0, 0, + .2137, .2742, .1124, .0839, 1, 0, 0, 0, 0, 0, + .4105, .4043, .2903, .2598, .1839, 1, 0, 0, 0, 0, + .3240, .4047, .3054, .2786, .0489, .2220, 1, 0, 0, 0, + .2930, .2407, .4105, .3607, .0186, .1861, .2707, 1, 0, 0, + .2995, .2863, .5191, .5007, .0782, .3355, .2302, .2950, 1, 0, + .0760, .0702, .2784, .1988, .1147, .1021, .0931, -.0438, .2087, 1 + ), ncol=10, byrow=TRUE) > > model.dhp <- matrix(c( + 'RParAsp -> RGenAsp', 'gam11', NA, + 'RIQ -> RGenAsp', 'gam12', NA, + 'RSES -> RGenAsp', 'gam13', NA, + 'FSES -> RGenAsp', 'gam14', NA, + 'RSES -> FGenAsp', 'gam23', NA, + 'FSES -> FGenAsp', 'gam24', NA, + 'FIQ -> FGenAsp', 'gam25', NA, + 'FParAsp -> FGenAsp', 'gam26', NA, + 'FGenAsp -> RGenAsp', 'beta12', NA, + 'RGenAsp -> FGenAsp', 'beta21', NA, + 'RGenAsp -> ROccAsp', NA, 1, + 'RGenAsp -> REdAsp', 'lam21', NA, + 'FGenAsp -> FOccAsp', NA, 1, + 'FGenAsp -> FEdAsp', 'lam42', NA, + 'RGenAsp <-> RGenAsp', 'ps11', NA, + 'FGenAsp <-> FGenAsp', 'ps22', NA, + 'RGenAsp <-> FGenAsp', 'ps12', NA, + 'ROccAsp <-> ROccAsp', 'theta1', NA, + 'REdAsp <-> REdAsp', 'theta2', NA, + 'FOccAsp <-> FOccAsp', 'theta3', NA, + 'FEdAsp <-> FEdAsp', 'theta4', NA), + ncol=3, byrow=TRUE) > > rownames(R.DHP) <- colnames(R.DHP) <- c('ROccAsp', 'REdAsp', 'FOccAsp', + 'FEdAsp', 'RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp') > > sem.dhp <- sem(model.dhp, R.DHP, 329, + fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')) > > path.diagram(sem.dhp, min.rank='RIQ, RSES, RParAsp, FParAsp, FSES, FIQ', + max.rank='ROccAsp, REdAsp, FEdAsp, FOccAsp') digraph "sem.dhp" { rankdir=LR; size="8,8"; node [fontname="Helvetica" fontsize=14 shape=box]; edge [fontname="Helvetica" fontsize=10]; center=1; {rank=min "RIQ" "RSES" "RParAsp" "FParAsp" "FSES" "FIQ"} {rank=max "ROccAsp" "REdAsp" "FEdAsp" "FOccAsp"} "RGenAsp" [shape=ellipse] "FGenAsp" [shape=ellipse] "RParAsp" -> "RGenAsp" [label="gam11"]; "RIQ" -> "RGenAsp" [label="gam12"]; "RSES" -> "RGenAsp" [label="gam13"]; "FSES" -> "RGenAsp" [label="gam14"]; "RSES" -> "FGenAsp" [label="gam23"]; "FSES" -> "FGenAsp" [label="gam24"]; "FIQ" -> "FGenAsp" [label="gam25"]; "FParAsp" -> "FGenAsp" [label="gam26"]; "FGenAsp" -> "RGenAsp" [label="beta12"]; "RGenAsp" -> "FGenAsp" [label="beta21"]; "RGenAsp" -> "ROccAsp" [label=""]; "RGenAsp" -> "REdAsp" [label="lam21"]; "FGenAsp" -> "FOccAsp" [label=""]; "FGenAsp" -> "FEdAsp" [label="lam42"]; } > > ## digraph "sem.dhp" { > ## rankdir=LR; > ## size="8,8"; > ## node [fontname="Helvetica" fontsize=14 shape=box]; > ## edge [fontname="Helvetica" fontsize=10]; > ## center=1; > ## {rank=min "RIQ" "RSES" "RParAsp" "FParAsp" "FSES" "FIQ"} > ## {rank=max "ROccAsp" "REdAsp" "FEdAsp" "FOccAsp"} > ## "RGenAsp" [shape=ellipse] > ## "FGenAsp" [shape=ellipse] > ## "RParAsp" -> "RGenAsp" [label="gam11"]; > ## "RIQ" -> "RGenAsp" [label="gam12"]; > ## "RSES" -> "RGenAsp" [label="gam13"]; > ## "FSES" -> "RGenAsp" [label="gam14"]; > ## "RSES" -> "FGenAsp" [label="gam23"]; > ## "FSES" -> "FGenAsp" [label="gam24"]; > ## "FIQ" -> "FGenAsp" [label="gam25"]; > ## "FParAsp" -> "FGenAsp" [label="gam26"]; > ## "FGenAsp" -> "RGenAsp" [label="beta12"]; > ## "RGenAsp" -> "FGenAsp" [label="beta21"]; > ## "RGenAsp" -> "ROccAsp" [label=""]; > ## "RGenAsp" -> "REdAsp" [label="lam21"]; > ## "FGenAsp" -> "FOccAsp" [label=""]; > ## "FGenAsp" -> "FEdAsp" [label="lam42"]; > ## } > > > > > cleanEx(); ..nameEx <- "ram" > > ### * ram > > flush(stderr()); flush(stdout()) > > ### Name: ram > ### Title: RAM Matrix for a Structural-Equation Model > ### Aliases: ram > ### Keywords: models > > ### ** Examples > > > # ------------- assumes that Duncan, Haller and Portes peer-influences model > # ------------- has been fit and is in sem.dhp > > ## Not run: > ##D ram(sem.dhp) > ##D > ##D ## heads to from parameter estimate arrow > ##D ## 1 1 11 0 1.000000 ROccAsp <--- RGenAsp > ##D ## lam21 1 2 11 1 1.062673 REdAsp <--- RGenAsp > ##D ## 1 3 12 0 1.000000 FOccAsp <--- FGenAsp > ##D ## lam42 1 4 12 2 0.929732 FEdAsp <--- FGenAsp > ##D ## gam11 1 11 5 3 0.161220 RGenAsp <--- RParAsp > ##D ## gam12 1 11 6 4 0.249647 RGenAsp <--- RIQ > ##D ## gam13 1 11 7 5 0.218402 RGenAsp <--- RSES > ##D ## gam14 1 11 8 6 0.071836 RGenAsp <--- FSES > ##D ## gam23 1 12 7 7 0.061879 FGenAsp <--- RSES > ##D ## gam24 1 12 8 8 0.228863 FGenAsp <--- FSES > ##D ## gam25 1 12 9 9 0.349030 FGenAsp <--- FIQ > ##D ## gam26 1 12 10 10 0.159529 FGenAsp <--- FParAsp > ##D ## beta12 1 11 12 11 0.184245 RGenAsp <--- FGenAsp > ##D ## beta21 1 12 11 12 0.235502 FGenAsp <--- RGenAsp > ##D ## theta1 2 1 1 13 0.412143 ROccAsp <--> ROccAsp > ##D ## theta2 2 2 2 14 0.336146 REdAsp <--> REdAsp > ##D ## theta3 2 3 3 15 0.311197 FOccAsp <--> FOccAsp > ##D ## theta4 2 4 4 16 0.404601 FEdAsp <--> FEdAsp > ##D ## psi11 2 11 11 17 0.280987 RGenAsp <--> RGenAsp > ##D ## psi22 2 12 12 18 0.263832 FGenAsp <--> FGenAsp > ##D ## psi12 2 11 12 19 -0.022620 RGenAsp <--> FGenAsp > ##D ## 2 5 5 0 1.000000 RParAsp <--> RParAsp > ##D ## 2 6 5 0 0.183900 RIQ <--> RParAsp > ##D ## 2 6 6 0 1.000000 RIQ <--> RIQ > ##D ## 2 7 5 0 0.048900 RSES <--> RParAsp > ##D ## 2 7 6 0 0.222000 RSES <--> RIQ > ##D ## 2 7 7 0 1.000000 RSES <--> RSES > ##D ## 2 8 5 0 0.018600 FSES <--> RParAsp > ##D ## 2 8 6 0 0.186100 FSES <--> RIQ > ##D ## 2 8 7 0 0.270700 FSES <--> RSES > ##D ## 2 8 8 0 1.000000 FSES <--> FSES > ##D ## 2 9 5 0 0.078200 FIQ <--> RParAsp > ##D ## 2 9 6 0 0.335500 FIQ <--> RIQ > ##D ## 2 9 7 0 0.230200 FIQ <--> RSES > ##D ## 2 9 8 0 0.295000 FIQ <--> FSES > ##D ## 2 9 9 0 1.000000 FIQ <--> FIQ > ##D ## 2 10 5 0 0.114700 FParAsp <--> RParAsp > ##D ## 2 10 6 0 0.102100 FParAsp <--> RIQ > ##D ## 2 10 7 0 0.093100 FParAsp <--> RSES > ##D ## 2 10 8 0 -0.043800 FParAsp <--> FSES > ##D ## 2 10 9 0 0.208700 FParAsp <--> FIQ > ##D ## 2 10 10 0 1.000000 FParAsp <--> FParAsp > ##D > ## End(Not run) > > > > cleanEx(); ..nameEx <- "raw.moments" > > ### * raw.moments > > flush(stderr()); flush(stdout()) > > ### Name: raw.moments > ### Title: Compute Raw Moments Matrix > ### Aliases: raw.moments raw.moments.formula raw.moments.default > ### print.rawmoments > ### Keywords: manip > > ### ** Examples > > data(Kmenta) > raw.moments(cbind(1, Kmenta)) Raw Moments 1 Q P D F A 1 1.0000 100.8982 100.0191 97.535 96.625 10.500 Q 100.8982 10193.8525 10093.8167 9873.665 9780.155 1062.599 P 100.0191 10093.8167 10037.1729 9793.092 9651.145 1050.194 D 97.5350 9873.6647 9793.0919 9646.039 9494.644 1045.960 F 96.6250 9780.1547 9651.1453 9494.644 9489.828 994.060 A 10.5000 1062.5988 1050.1941 1045.960 994.060 143.500 N = 20 > raw.moments(~ Q + P + D + F + A, data=Kmenta) Raw Moments (Intercept) Q P D F A (Intercept) 1.0000 100.8982 100.0191 97.535 96.625 10.500 Q 100.8982 10193.8525 10093.8167 9873.665 9780.155 1062.599 P 100.0191 10093.8167 10037.1729 9793.092 9651.145 1050.194 D 97.5350 9873.6647 9793.0919 9646.039 9494.644 1045.960 F 96.6250 9780.1547 9651.1453 9494.644 9489.828 994.060 A 10.5000 1062.5988 1050.1941 1045.960 994.060 143.500 N = 20 > > > > cleanEx(); ..nameEx <- "residuals" > > ### * residuals > > flush(stderr()); flush(stdout()) > > ### Name: residuals.sem > ### Title: Residual Covariances for a Structural Equation Model > ### Aliases: residuals.sem standardized.residuals > ### standardized.residuals.sem normalized.residuals > ### normalized.residuals.sem > ### Keywords: models > > ### ** Examples > > ## Not run: > ##D # ------------- assumes that Duncan, Haller and Portes peer-influences model > ##D # ------------- has been fit and is in sem.dhp.1 > ##D > ##D residuals(sem.dhp.1) > ##D > ##D ## ROccAsp REdAsp FOccAsp FEdAsp > ##D ## ROccAsp 4.156103e-07 -2.896368e-07 -2.866110e-02 9.102874e-02 > ##D ## REdAsp -2.896368e-07 -1.541581e-06 -1.094841e-02 -2.379215e-02 > ##D ## FOccAsp -2.866110e-02 -1.094841e-02 -3.740356e-06 -9.564103e-07 > ##D ## > ##D ## . . . > ##D ## > ##D ## FIQ FParAsp > ##D ## ROccAsp 3.467853e-02 -3.187309e-02 > ##D ## REdAsp 4.878970e-03 -4.443480e-02 > ##D ## FOccAsp -7.354686e-03 2.488120e-02 > ##D ## FEdAsp 1.124604e-02 -3.690078e-02 > ##D ## RParAsp 2.775558e-17 5.551115e-17 > ##D ## RIQ 2.220446e-16 6.938894e-17 > ##D ## RSES 0.000000e+00 -1.387779e-17 > ##D ## FSES 1.110223e-16 -2.775558e-17 > ##D ## FIQ 4.440892e-16 1.110223e-16 > ##D ## FParAsp 1.110223e-16 4.440892e-16 > ##D > ##D normalized.residuals(sem.dhp.1) > ##D > ##D ## ROccAsp REdAsp FOccAsp FEdAsp > ##D ## ROccAsp 5.330519e-06 -4.455587e-06 -4.898232e-01 1.567678e+00 > ##D ## REdAsp -4.455587e-06 -1.977191e-05 -1.857670e-01 -4.071582e-01 > ##D ## FOccAsp -4.898232e-01 -1.857670e-01 -4.797271e-05 -1.460881e-05 > ##D ## > ##D ## . . . > ##D ## > ##D ## FIQ FParAsp > ##D ## ROccAsp 6.080514e-01 -5.747909e-01 > ##D ## REdAsp 8.518738e-02 -8.007295e-01 > ##D ## FOccAsp -1.180429e-01 4.374639e-01 > ##D ## FEdAsp 1.832159e-01 -6.514685e-01 > ##D ## RParAsp 5.019082e-16 1.000322e-15 > ##D ## RIQ 3.818356e-15 1.252092e-15 > ##D ## RSES 0.000000e+00 -2.506364e-16 > ##D ## FSES 1.931472e-15 -5.029583e-16 > ##D ## FIQ 5.695780e-15 1.971289e-15 > ##D ## FParAsp 1.971289e-15 5.695780e-15 > ##D > ##D standardized.residuals(sem.dhp.1) > ##D > ##D ## ROccAsp REdAsp FOccAsp FEdAsp > ##D ## ROccAsp 4.156103e-07 -2.896368e-07 -2.866110e-02 9.102874e-02 > ##D ## REdAsp -2.896368e-07 -1.541581e-06 -1.094841e-02 -2.379215e-02 > ##D ## FOccAsp -2.866110e-02 -1.094841e-02 -3.740356e-06 -9.564103e-07 > ##D ## > ##D ## . . . > ##D ## > ##D ## FIQ FParAsp > ##D ## ROccAsp 3.467853e-02 -3.187309e-02 > ##D ## REdAsp 4.878970e-03 -4.443480e-02 > ##D ## FOccAsp -7.354686e-03 2.488120e-02 > ##D ## FEdAsp 1.124604e-02 -3.690078e-02 > ##D ## RParAsp 2.775558e-17 5.551115e-17 > ##D ## RIQ 2.220446e-16 6.938894e-17 > ##D ## RSES 0.000000e+00 -1.387779e-17 > ##D ## FSES 1.110223e-16 -2.775558e-17 > ##D ## FIQ 4.440892e-16 1.110223e-16 > ##D ## FParAsp 1.110223e-16 4.440892e-16 > ##D > ## End(Not run) > > > > cleanEx(); ..nameEx <- "sem" > > ### * sem > > flush(stderr()); flush(stdout()) > > ### Name: sem > ### Title: General Structural Equation Models > ### Aliases: sem sem.mod sem.default startvalues print.sem summary.sem > ### print.summary.sem > ### Keywords: models > > ### ** Examples > > > # ------------- Duncan, Haller and Portes peer-influences model ---------------------- > # A nonrecursive SEM with unobserved endogenous variables and fixed exogenous variables > > R.DHP <- matrix(c( # lower triangle of correlation matrix + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, + .6247, 1, 0, 0, 0, 0, 0, 0, 0, 0, + .3269, .3669, 1, 0, 0, 0, 0, 0, 0, 0, + .4216, .3275, .6404, 1, 0, 0, 0, 0, 0, 0, + .2137, .2742, .1124, .0839, 1, 0, 0, 0, 0, 0, + .4105, .4043, .2903, .2598, .1839, 1, 0, 0, 0, 0, + .3240, .4047, .3054, .2786, .0489, .2220, 1, 0, 0, 0, + .2930, .2407, .4105, .3607, .0186, .1861, .2707, 1, 0, 0, + .2995, .2863, .5191, .5007, .0782, .3355, .2302, .2950, 1, 0, + .0760, .0702, .2784, .1988, .1147, .1021, .0931, -.0438, .2087, 1 + ), ncol=10, byrow=TRUE) > > # Fit the model using a symbolic ram specification > > model.dhp <- specify.model() 1: RParAsp -> RGenAsp, gam11, NA 2: RIQ -> RGenAsp, gam12, NA 3: RSES -> RGenAsp, gam13, NA 4: FSES -> RGenAsp, gam14, NA 5: RSES -> FGenAsp, gam23, NA 6: FSES -> FGenAsp, gam24, NA 7: FIQ -> FGenAsp, gam25, NA 8: FParAsp -> FGenAsp, gam26, NA 9: FGenAsp -> RGenAsp, beta12, NA 10: RGenAsp -> FGenAsp, beta21, NA 11: RGenAsp -> ROccAsp, NA, 1 12: RGenAsp -> REdAsp, lam21, NA 13: FGenAsp -> FOccAsp, NA, 1 14: FGenAsp -> FEdAsp, lam42, NA 15: RGenAsp <-> RGenAsp, ps11, NA 16: FGenAsp <-> FGenAsp, ps22, NA 17: RGenAsp <-> FGenAsp, ps12, NA 18: ROccAsp <-> ROccAsp, theta1, NA 19: REdAsp <-> REdAsp, theta2, NA 20: FOccAsp <-> FOccAsp, theta3, NA 21: FEdAsp <-> FEdAsp, theta4, NA 22: Read 21 records > obs.vars.dhp <- c('ROccAsp', 'REdAsp', 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ', + 'RSES', 'FSES', 'FIQ', 'FParAsp') > > sem.dhp.1 <- sem(model.dhp, R.DHP, 329, obs.vars.dhp, + fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')) > > summary(sem.dhp.1) Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302 Goodness-of-fit index = 0.98439 Adjusted goodness-of-fit index = 0.94275 RMSEA index = 0.048759 90 % CI: (0.014517, 0.07831) BIC = -94.782 Normalized Residuals Min. 1st Qu. Median Mean 3rd Qu. Max. -0.7990 -0.1180 0.0000 -0.0120 0.0397 1.5700 Parameter Estimates Estimate Std Error z value Pr(>|z|) gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp beta12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp beta21 0.235458 0.119742 1.9664 4.9255e-02 FGenAsp <--- RGenAsp lam21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp lam42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp ps11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp ps22 0.263836 0.044902 5.8759 4.2067e-09 FGenAsp <--> FGenAsp ps12 -0.022601 0.051649 -0.4376 6.6168e-01 FGenAsp <--> RGenAsp theta1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp theta2 0.336148 0.053323 6.3040 2.9003e-10 REdAsp <--> REdAsp theta3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp theta4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp Iterations = 28 > > ## Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302 > ## Goodness-of-fit index = 0.98439 > ## Adjusted goodness-of-fit index = 0.94275 > ## RMSEA index = 0.048759 90 > ## BIC = -94.782 > ## > ## Normalized Residuals > ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ## -0.8010 -0.1180 0.0000 -0.0120 0.0398 1.5700 > ## > ## Parameter Estimates > ## Estimate Std Error z value Pr(>|z|) > ## gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp > ## gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ > ## gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES > ## gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES > ## gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES > ## gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES > ## gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ > ## gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp > ## beta12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp > ## beta21 0.235458 0.119742 1.9664 4.9255e-02 FGenAsp <--- RGenAsp > ## lam21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp > ## lam42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp > ## ps11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp > ## ps22 0.263836 0.044902 5.8759 4.2068e-09 FGenAsp <--> FGenAsp > ## ps12 -0.022601 0.051649 -0.4376 6.6168e-01 FGenAsp <--> RGenAsp > ## theta1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp > ## theta2 0.336148 0.053323 6.3040 2.9003e-10 REdAsp <--> REdAsp > ## theta3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp > ## theta4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp > ## > ## Iterations = 28 > > ## Not run: > ##D > ##D # Fit the model using a numerical ram specification > ##D > ##D ram.dhp <- matrix(c( > ##D # heads to from param start > ##D 1, 1, 11, 0, 1, > ##D 1, 2, 11, 1, NA, # lam21 > ##D 1, 3, 12, 0, 1, > ##D 1, 4, 12, 2, NA, # lam42 > ##D 1, 11, 5, 3, NA, # gam11 > ##D 1, 11, 6, 4, NA, # gam12 > ##D 1, 11, 7, 5, NA, # gam13 > ##D 1, 11, 8, 6, NA, # gam14 > ##D 1, 12, 7, 7, NA, # gam23 > ##D 1, 12, 8, 8, NA, # gam24 > ##D 1, 12, 9, 9, NA, # gam25 > ##D 1, 12, 10, 10, NA, # gam26 > ##D 1, 11, 12, 11, NA, # beta12 > ##D 1, 12, 11, 12, NA, # beta21 > ##D 2, 1, 1, 13, NA, # theta1 > ##D 2, 2, 2, 14, NA, # theta2 > ##D 2, 3, 3, 15, NA, # theta3 > ##D 2, 4, 4, 16, NA, # theta4 > ##D 2, 11, 11, 17, NA, # psi11 > ##D 2, 12, 12, 18, NA, # psi22 > ##D 2, 11, 12, 19, NA # psi12 > ##D ), ncol=5, byrow=TRUE) > ##D > ##D params.dhp <- c('lam21', 'lam42', 'gam11', 'gam12', 'gam13', 'gam14', > ##D 'gam23', 'gam24', 'gam25', 'gam26', > ##D 'beta12', 'beta21', 'theta1', 'theta2', 'theta3', 'theta4', > ##D 'psi11', 'psi22', 'psi12') > ##D > ##D vars.dhp <- c('ROccAsp', 'REdAsp', 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ', > ##D 'RSES', 'FSES', 'FIQ', 'FParAsp', 'RGenAsp', 'FGenAsp') > ##D > ##D sem.dhp.2 <- sem(ram.dhp, R.DHP, 329, params.dhp, vars.dhp, fixed.x=5:10) > ##D > ##D summary(sem.dhp.2) > ##D > ##D ## Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302 > ##D ## Goodness-of-fit index = 0.98439 > ##D ## Adjusted goodness-of-fit index = 0.94275 > ##D ## RMSEA index = 0.048759 90 > ##D ## BIC = -94.782 > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -0.8010 -0.1180 0.0000 -0.0120 0.0398 1.5700 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## lam21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp > ##D ## lam42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp > ##D ## gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp > ##D ## gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ > ##D ## gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES > ##D ## gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES > ##D ## gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES > ##D ## gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES > ##D ## gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ > ##D ## gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp > ##D ## beta12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp > ##D ## beta21 0.235458 0.119742 1.9664 4.9255e-02 FGenAsp <--- RGenAsp > ##D ## theta1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp > ##D ## theta2 0.336148 0.053323 6.3040 2.9003e-10 REdAsp <--> REdAsp > ##D ## theta3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp > ##D ## theta4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp > ##D ## psi11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp > ##D ## psi22 0.263836 0.044902 5.8759 4.2067e-09 FGenAsp <--> FGenAsp > ##D ## psi12 -0.022601 0.051649 -0.4376 6.6168e-01 RGenAsp <--> FGenAsp > ##D ## > ##D ## Iterations = 28 > ##D > ##D # -------------------- Wheaton et al. alienation data ---------------------- > ##D > ##D > ##D S.wh <- matrix(c( > ##D 11.834, 0, 0, 0, 0, 0, > ##D 6.947, 9.364, 0, 0, 0, 0, > ##D 6.819, 5.091, 12.532, 0, 0, 0, > ##D 4.783, 5.028, 7.495, 9.986, 0, 0, > ##D -3.839, -3.889, -3.841, -3.625, 9.610, 0, > ##D -21.899, -18.831, -21.748, -18.775, 35.522, 450.288), > ##D 6, 6) > ##D > ##D # This is the model in the SAS manual for PROC CALIS: A Recursive SEM with > ##D # latent endogenous and exogenous variables. > ##D # Curiously, both factor loadings for two of the latent variables are fixed. > ##D > ##D model.wh.1 <- specify.model() > ##D Alienation67 -> Anomia67, NA, 1 > ##D Alienation67 -> Powerless67, NA, 0.833 > ##D Alienation71 -> Anomia71, NA, 1 > ##D Alienation71 -> Powerless71, NA, 0.833 > ##D SES -> Education, NA, 1 > ##D SES -> SEI, lamb, NA > ##D SES -> Alienation67, gam1, NA > ##D Alienation67 -> Alienation71, beta, NA > ##D SES -> Alienation71, gam2, NA > ##D Anomia67 <-> Anomia67, the1, NA > ##D Anomia71 <-> Anomia71, the1, NA > ##D Powerless67 <-> Powerless67, the2, NA > ##D Powerless71 <-> Powerless71, the2, NA > ##D Education <-> Education, the3, NA > ##D SEI <-> SEI, the4, NA > ##D Anomia67 <-> Anomia71, the5, NA > ##D Powerless67 <-> Powerless71, the5, NA > ##D Alienation67 <-> Alienation67, psi1, NA > ##D Alienation71 <-> Alienation71, psi2, NA > ##D SES <-> SES, phi, NA > ##D > ##D > ##D obs.vars.wh <- c('Anomia67','Powerless67','Anomia71','Powerless71','Education','SEI') > ##D > ##D sem.wh.1 <- sem(model.wh.1, S.wh, 932, obs.vars.wh) > ##D > ##D summary(sem.wh.1) > ##D > ##D ## Model Chisquare = 13.485 Df = 9 Pr(>Chisq) = 0.14186 > ##D ## Goodness-of-fit index = 0.99527 > ##D ## Adjusted goodness-of-fit index = 0.98896 > ##D ## RMSEA index = 0.023136 90 > ##D ## BIC = -64.177 > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -1.26000 -0.13100 0.00014 -0.02870 0.11400 0.87500 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## lamb 5.36880 0.433981 12.3710 0.0000e+00 SEI <--- SES > ##D ## gam1 -0.62994 0.056128 -11.2234 0.0000e+00 Alienation67 <--- SES > ##D ## beta 0.59312 0.046820 12.6680 0.0000e+00 Alienation71 <--- Alienation67 > ##D ## gam2 -0.24086 0.055202 -4.3632 1.2817e-05 Alienation71 <--- SES > ##D ## the1 3.60787 0.200589 17.9864 0.0000e+00 Anomia67 <--> Anomia67 > ##D ## the2 3.59494 0.165234 21.7567 0.0000e+00 Powerless67 <--> Powerless67 > ##D ## the3 2.99366 0.498971 5.9997 1.9772e-09 Education <--> Education > ##D ## the4 259.57583 18.321099 14.1681 0.0000e+00 SEI <--> SEI > ##D ## the5 0.90579 0.121711 7.4422 9.9032e-14 Anomia71 <--> Anomia67 > ##D ## psi1 5.67050 0.422906 13.4084 0.0000e+00 Alienation67 <--> Alienation67 > ##D ## psi2 4.51481 0.334993 13.4773 0.0000e+00 Alienation71 <--> Alienation71 > ##D ## phi 6.61632 0.639506 10.3460 0.0000e+00 SES <--> SES > ##D ## > ##D ## Iterations = 78 > ##D > ##D # The same model, but treating one loading for each latent variable as free. > ##D > ##D model.wh.2 <- specify.model() > ##D Alienation67 -> Anomia67, NA, 1 > ##D Alienation67 -> Powerless67, lamby, NA > ##D Alienation71 -> Anomia71, NA, 1 > ##D Alienation71 -> Powerless71, lamby, NA > ##D SES -> Education, NA, 1 > ##D SES -> SEI, lambx, NA > ##D SES -> Alienation67, gam1, NA > ##D Alienation67 -> Alienation71, beta, NA > ##D SES -> Alienation71, gam2, NA > ##D Anomia67 <-> Anomia67, the1, NA > ##D Anomia71 <-> Anomia71, the1, NA > ##D Powerless67 <-> Powerless67, the2, NA > ##D Powerless71 <-> Powerless71, the2, NA > ##D Education <-> Education, the3, NA > ##D SEI <-> SEI, the4, NA > ##D Anomia67 <-> Anomia71, the5, NA > ##D Powerless67 <-> Powerless71, the5, NA > ##D Alienation67 <-> Alienation67, psi1, NA > ##D Alienation71 <-> Alienation71, psi2, NA > ##D SES <-> SES, phi, NA > ##D > ##D sem.wh.2 <- sem(model.wh.2, S.wh, 932, obs.vars.wh) > ##D > ##D summary(sem.wh.2) > ##D > ##D ## Model Chisquare = 12.673 Df = 8 Pr(>Chisq) = 0.12360 > ##D ## Goodness-of-fit index = 0.99553 > ##D ## Adjusted goodness-of-fit index = 0.98828 > ##D ## RMSEA index = 0.025049 90 > ##D ## BIC = -56.36 > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -0.998000 -0.140000 0.000296 -0.028800 0.100000 0.759000 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## lamby 0.86261 0.033383 25.8402 0.0000e+00 Powerless67 <--- Alienation67 > ##D ## lambx 5.35302 0.432591 12.3743 0.0000e+00 SEI <--- SES > ##D ## gam1 -0.62129 0.056142 -11.0663 0.0000e+00 Alienation67 <--- SES > ##D ## beta 0.59428 0.047040 12.6335 0.0000e+00 Alienation71 <--- Alienation67 > ##D ## gam2 -0.23580 0.054684 -4.3121 1.6173e-05 Alienation71 <--- SES > ##D ## the1 3.74499 0.249823 14.9906 0.0000e+00 Anomia67 <--> Anomia67 > ##D ## the2 3.49378 0.200754 17.4033 0.0000e+00 Powerless67 <--> Powerless67 > ##D ## the3 2.97409 0.499662 5.9522 2.6457e-09 Education <--> Education > ##D ## the4 260.13252 18.298143 14.2163 0.0000e+00 SEI <--> SEI > ##D ## the5 0.90377 0.121818 7.4190 1.1791e-13 Anomia71 <--> Anomia67 > ##D ## psi1 5.47380 0.464074 11.7951 0.0000e+00 Alienation67 <--> Alienation67 > ##D ## psi2 4.36410 0.362722 12.0315 0.0000e+00 Alienation71 <--> Alienation71 > ##D ## phi 6.63576 0.640425 10.3615 0.0000e+00 SES <--> SES > ##D ## > ##D ## Iterations = 79 > ##D > ##D # ----------------------- Thurstone data --------------------------------------- > ##D # Second-order confirmatory factor analysis, from the SAS manual for PROC CALIS > ##D > ##D R.thur <- matrix(c( > ##D 1., 0, 0, 0, 0, 0, 0, 0, 0, > ##D .828, 1., 0, 0, 0, 0, 0, 0, 0, > ##D .776, .779, 1., 0, 0, 0, 0, 0, 0, > ##D .439, .493, .460, 1., 0, 0, 0, 0, 0, > ##D .432, .464, .425, .674, 1., 0, 0, 0, 0, > ##D .447, .489, .443, .590, .541, 1., 0, 0, 0, > ##D .447, .432, .401, .381, .402, .288, 1., 0, 0, > ##D .541, .537, .534, .350, .367, .320, .555, 1., 0, > ##D .380, .358, .359, .424, .446, .325, .598, .452, 1. > ##D ), ncol=9, byrow=TRUE) > ##D > ##D model.thur <- specify.model() > ##D F1 -> Sentences, lam11, NA > ##D F1 -> Vocabulary, lam21, NA > ##D F1 -> Sent.Completion, lam31, NA > ##D F2 -> First.Letters, lam41, NA > ##D F2 -> 4.Letter.Words, lam52, NA > ##D F2 -> Suffixes, lam62, NA > ##D F3 -> Letter.Series, lam73, NA > ##D F3 -> Pedigrees, lam83, NA > ##D F3 -> Letter.Group, lam93, NA > ##D F4 -> F1, gam1, NA > ##D F4 -> F2, gam2, NA > ##D F4 -> F3, gam3, NA > ##D Sentences <-> Sentences, th1, NA > ##D Vocabulary <-> Vocabulary, th2, NA > ##D Sent.Completion <-> Sent.Completion, th3, NA > ##D First.Letters <-> First.Letters, th4, NA > ##D 4.Letter.Words <-> 4.Letter.Words, th5, NA > ##D Suffixes <-> Suffixes, th6, NA > ##D Letter.Series <-> Letter.Series, th7, NA > ##D Pedigrees <-> Pedigrees, th8, NA > ##D Letter.Group <-> Letter.Group, th9, NA > ##D F1 <-> F1, NA, 1 > ##D F2 <-> F2, NA, 1 > ##D F3 <-> F3, NA, 1 > ##D F4 <-> F4, NA, 1 > ##D > ##D > ##D obs.vars.thur <- c('Sentences','Vocabulary','Sent.Completion','First.Letters', > ##D '4.Letter.Words','Suffixes','Letter.Series','Pedigrees', > ##D 'Letter.Group') > ##D > ##D sem.thur <- sem(model.thur, R.thur, 213, obs.vars.thur) > ##D > ##D summary(sem.thur) > ##D > ##D ## Model Chisquare = 38.196 Df = 24 Pr(>Chisq) = 0.033101 > ##D ## Goodness-of-fit index = 0.95957 > ##D ## Adjusted goodness-of-fit index = 0.9242 > ##D ## RMSEA index = 0.052822 90 > ##D ## BIC = -143.21 > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -9.75e-01 -4.17e-01 -2.90e-06 4.02e-02 9.41e-02 1.63e+00 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## lam11 0.51512 0.064964 7.9293 2.2204e-15 Sentences <--- F1 > ##D ## lam21 0.52031 0.065162 7.9849 1.3323e-15 Vocabulary <--- F1 > ##D ## lam31 0.48743 0.062422 7.8087 5.7732e-15 Sent.Completion <--- F1 > ##D ## lam41 0.52112 0.063137 8.2538 2.2204e-16 First.Letters <--- F2 > ##D ## lam52 0.49707 0.059673 8.3298 0.0000e+00 4.Letter.Words <--- F2 > ##D ## lam62 0.43806 0.056479 7.7562 8.6597e-15 Suffixes <--- F2 > ##D ## lam73 0.45244 0.071372 6.3392 2.3103e-10 Letter.Series <--- F3 > ##D ## lam83 0.41729 0.061037 6.8367 8.1031e-12 Pedigrees <--- F3 > ##D ## lam93 0.40763 0.064524 6.3175 2.6587e-10 Letter.Group <--- F3 > ##D ## gam1 1.44381 0.264173 5.4654 4.6186e-08 F1 <--- F4 > ##D ## gam2 1.25383 0.216597 5.7888 7.0904e-09 F2 <--- F4 > ##D ## gam3 1.40655 0.279332 5.0354 4.7684e-07 F3 <--- F4 > ##D ## th1 0.18150 0.028401 6.3907 1.6517e-10 Sentences <--> Sentences > ##D ## th2 0.16493 0.027797 5.9334 2.9679e-09 Vocabulary <--> Vocabulary > ##D ## th3 0.26713 0.033469 7.9816 1.5543e-15 Sent.Completion <--> Sent.Completion > ##D ## th4 0.30150 0.050686 5.9484 2.7074e-09 First.Letters <--> First.Letters > ##D ## th5 0.36450 0.052358 6.9617 3.3618e-12 4.Letter.Words <--> 4.Letter.Words > ##D ## th6 0.50641 0.059963 8.4455 0.0000e+00 Suffixes <--> Suffixes > ##D ## th7 0.39033 0.061599 6.3367 2.3474e-10 Letter.Series <--> Letter.Series > ##D ## th8 0.48137 0.065388 7.3618 1.8141e-13 Pedigrees <--> Pedigrees > ##D ## th9 0.50510 0.065227 7.7437 9.5479e-15 Letter.Group <--> Letter.Group > ##D ## > ##D ## Iterations = 53 > ##D > ##D #------------------------- Kerchoff/Kenney path analysis --------------------- > ##D # An observed-variable recursive SEM from the LISREL manual > ##D > ##D R.kerch <- matrix(c( > ##D 1, 0, 0, 0, 0, 0, 0, > ##D -.100, 1, 0, 0, 0, 0, 0, > ##D .277, -.152, 1, 0, 0, 0, 0, > ##D .250, -.108, .611, 1, 0, 0, 0, > ##D .572, -.105, .294, .248, 1, 0, 0, > ##D .489, -.213, .446, .410, .597, 1, 0, > ##D .335, -.153, .303, .331, .478, .651, 1), > ##D ncol=7, byrow=TRUE) > ##D > ##D rownames(R.kerch) <- colnames(R.kerch) <- c('Intelligence','Siblings', > ##D 'FatherEd','FatherOcc','Grades','EducExp','OccupAsp') > ##D > ##D > ##D model.kerch <- specify.model() > ##D Intelligence -> Grades, gam51, NA > ##D Siblings -> Grades, gam52, NA > ##D FatherEd -> Grades, gam53, NA > ##D FatherOcc -> Grades, gam54, NA > ##D Intelligence -> EducExp, gam61, NA > ##D Siblings -> EducExp, gam62, NA > ##D FatherEd -> EducExp, gam63, NA > ##D FatherOcc -> EducExp, gam64, NA > ##D Grades -> EducExp, beta65, NA > ##D Intelligence -> OccupAsp, gam71, NA > ##D Siblings -> OccupAsp, gam72, NA > ##D FatherEd -> OccupAsp, gam73, NA > ##D FatherOcc -> OccupAsp, gam74, NA > ##D Grades -> OccupAsp, beta75, NA > ##D EducExp -> OccupAsp, beta76, NA > ##D Grades <-> Grades, psi5, NA > ##D EducExp <-> EducExp, psi6, NA > ##D OccupAsp <-> OccupAsp, psi7, NA > ##D > ##D > ##D sem.kerch <- sem(model.kerch, R.kerch, 737, fixed.x=c('Intelligence','Siblings', > ##D 'FatherEd','FatherOcc')) > ##D > ##D summary(sem.kerch) > ##D > ##D ## Model Chisquare = 3.2685e-13 Df = 0 Pr(>Chisq) = NA > ##D ## Goodness-of-fit index = 1 > ##D ## Adjusted goodness-of-fit index = NA > ##D ## RMSEA index = Inf 90 > ##D ## BIC = NA > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -4.26e-15 -1.35e-15 0.00e+00 -4.17e-16 0.00e+00 1.49e-15 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## gam51 0.525902 0.031182 16.86530 0.0000e+00 Grades <--- Intelligence > ##D ## gam52 -0.029942 0.030149 -0.99314 3.2064e-01 Grades <--- Siblings > ##D ## gam53 0.118966 0.038259 3.10951 1.8740e-03 Grades <--- FatherEd > ##D ## gam54 0.040603 0.037785 1.07456 2.8257e-01 Grades <--- FatherOcc > ##D ## gam61 0.160270 0.032710 4.89979 9.5940e-07 EducExp <--- Intelligence > ##D ## gam62 -0.111779 0.026876 -4.15899 3.1966e-05 EducExp <--- Siblings > ##D ## gam63 0.172719 0.034306 5.03461 4.7881e-07 EducExp <--- FatherEd > ##D ## gam64 0.151852 0.033688 4.50758 6.5571e-06 EducExp <--- FatherOcc > ##D ## beta65 0.405150 0.032838 12.33799 0.0000e+00 EducExp <--- Grades > ##D ## gam71 -0.039405 0.034500 -1.14215 2.5339e-01 OccupAsp <--- Intelligence > ##D ## gam72 -0.018825 0.028222 -0.66700 5.0477e-01 OccupAsp <--- Siblings > ##D ## gam73 -0.041333 0.036216 -1.14126 2.5376e-01 OccupAsp <--- FatherEd > ##D ## gam74 0.099577 0.035446 2.80924 4.9658e-03 OccupAsp <--- FatherOcc > ##D ## beta75 0.157912 0.037443 4.21738 2.4716e-05 OccupAsp <--- Grades > ##D ## beta76 0.549593 0.038260 14.36486 0.0000e+00 OccupAsp <--- EducExp > ##D ## psi5 0.650995 0.033946 19.17743 0.0000e+00 Grades <--> Grades > ##D ## psi6 0.516652 0.026943 19.17590 0.0000e+00 EducExp <--> EducExp > ##D ## psi7 0.556617 0.029026 19.17644 0.0000e+00 OccupAsp <--> OccupAsp > ##D ## > ##D ## Iterations = 0 > ##D > ##D #------------------- McArdle/Epstein latent-growth-curve model ----------------- > ##D # This model, from McArdle and Epstein (1987, p.118), illustrates the use of a > ##D # raw moment matrix to fit a model with an intercept. (The example was suggested > ##D # by Mike Stoolmiller.) > ##D > ##D M.McArdle <- scan() > ##D 365.661 0 0 0 0 > ##D 503.175 719.905 0 0 0 > ##D 675.656 958.479 1303.392 0 0 > ##D 890.680 1265.846 1712.475 2278.257 0 > ##D 18.034 25.819 35.255 46.593 1.000 > ##D > ##D M.McArdle <- matrix(M.McArdle, 5, 5, byrow=TRUE) > ##D rownames(M.McArdle) <- colnames(M.McArdle) <- scan(what="") > ##D WISC1 WISC2 WISC3 WISC4 UNIT > ##D > ##D mod.McArdle <- specify.model() > ##D C -> WISC1, NA, 6.07 > ##D C -> WISC2, B2, NA > ##D C -> WISC3, B3, NA > ##D C -> WISC4, B4, NA > ##D UNIT -> C, Mc, NA > ##D C <-> C, Vc, NA, > ##D WISC1 <-> WISC1, Vd, NA > ##D WISC2 <-> WISC2, Vd, NA > ##D WISC3 <-> WISC3, Vd, NA > ##D WISC4 <-> WISC4, Vd, NA > ##D > ##D sem.McArdle <- sem(mod.McArdle, M.McArdle, 204, fixed.x="UNIT", raw=TRUE) > ##D summary(sem.McArdle) > ##D > ##D ## Model fit to raw moment matrix. > ##D ## > ##D ## Model Chisquare = 83.791 Df = 8 Pr(>Chisq) = 8.4377e-15 > ##D ## Goodness-of-fit index = 0.84537 > ##D ## Adjusted goodness-of-fit index = 0.71007 > ##D ## RMSEA index = 0.2155 90 > ##D ## BIC = 28.371 > ##D ## > ##D ## Normalized Residuals > ##D ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ##D ## -0.15300 -0.01840 0.00132 -0.00576 0.02400 0.07760 > ##D ## > ##D ## Parameter Estimates > ##D ## Estimate Std Error z value Pr(>|z|) > ##D ## B2 8.61354 0.135438 63.5976 0 WISC2 <--- C > ##D ## B3 11.64054 0.168854 68.9387 0 WISC3 <--- C > ##D ## B4 15.40323 0.213071 72.2916 0 WISC4 <--- C > ##D ## Mc 3.01763 0.060690 49.7219 0 C <--- UNIT > ##D ## Vc 0.44343 0.047704 9.2955 0 C <--> C > ##D ## Vd 11.78832 0.674059 17.4885 0 WISC1 <--> WISC1 > ##D ## > ##D ## Iterations = 37 > ##D > ## End(Not run) > > > > cleanEx(); ..nameEx <- "specify.model" > > ### * specify.model > > flush(stderr()); flush(stdout()) > > ### Name: specify.model > ### Title: Specify a Structural Equation Model > ### Aliases: specify.model print.mod > ### Keywords: models > > ### ** Examples > > model.dhp <- specify.model() 1: RParAsp -> RGenAsp, gam11, NA 2: RIQ -> RGenAsp, gam12, NA 3: RSES -> RGenAsp, gam13, NA 4: FSES -> RGenAsp, gam14, NA 5: RSES -> FGenAsp, gam23, NA 6: FSES -> FGenAsp, gam24, NA 7: FIQ -> FGenAsp, gam25, NA 8: FParAsp -> FGenAsp, gam26, NA 9: FGenAsp -> RGenAsp, beta12, NA 10: RGenAsp -> FGenAsp, beta21, NA 11: RGenAsp -> ROccAsp, NA, 1 12: RGenAsp -> REdAsp, lam21, NA 13: FGenAsp -> FOccAsp, NA, 1 14: FGenAsp -> FEdAsp, lam42, NA 15: RGenAsp <-> RGenAsp, ps11, NA 16: FGenAsp <-> FGenAsp, ps22, NA 17: RGenAsp <-> FGenAsp, ps12, NA 18: ROccAsp <-> ROccAsp, theta1, NA 19: REdAsp <-> REdAsp, theta2, NA 20: FOccAsp <-> FOccAsp, theta3, NA 21: FEdAsp <-> FEdAsp, theta4, NA 22: Read 21 records > model.dhp Path Parameter StartValue 1 RParAsp -> RGenAsp gam11 NA 2 RIQ -> RGenAsp gam12 NA 3 RSES -> RGenAsp gam13 NA 4 FSES -> RGenAsp gam14 NA 5 RSES -> FGenAsp gam23 NA 6 FSES -> FGenAsp gam24 NA 7 FIQ -> FGenAsp gam25 NA 8 FParAsp -> FGenAsp gam26 NA 9 FGenAsp -> RGenAsp beta12 NA 10 RGenAsp -> FGenAsp beta21 NA 11 RGenAsp -> ROccAsp 1 12 RGenAsp -> REdAsp lam21 NA 13 FGenAsp -> FOccAsp 1 14 FGenAsp -> FEdAsp lam42 NA 15 RGenAsp <-> RGenAsp ps11 NA 16 FGenAsp <-> FGenAsp ps22 NA 17 RGenAsp <-> FGenAsp ps12 NA 18 ROccAsp <-> ROccAsp theta1 NA 19 REdAsp <-> REdAsp theta2 NA 20 FOccAsp <-> FOccAsp theta3 NA 21 FEdAsp <-> FEdAsp theta4 NA > > > > cleanEx(); ..nameEx <- "standardized.coefficients" > > ### * standardized.coefficients > > flush(stderr()); flush(stdout()) > > ### Name: standardized.coefficients > ### Title: Standardized Coefficients for Structural Equation Models > ### Aliases: standardized.coefficients std.coef > ### Keywords: models > > ### ** Examples > > > # ------------- assumes that Duncan, Haller and Portes peer-influences model > # ------------- has been fit and is in sem.dhp.1 > ## Not run: > ##D standardized.coefficients(sem.dhp.1) > ##D > ##D ## Std. Estimate > ##D ## 1 gam11 0.210278 RGenAsp <--- RParAsp > ##D ## 2 gam12 0.325612 RGenAsp <--- RIQ > ##D ## 3 gam13 0.284855 RGenAsp <--- RSES > ##D ## 4 gam14 0.093702 RGenAsp <--- FSES > ##D ## 5 gam23 0.074576 FGenAsp <--- RSES > ##D ## 6 gam24 0.275763 FGenAsp <--- FSES > ##D ## 7 gam25 0.420558 FGenAsp <--- FIQ > ##D ## 8 gam26 0.192224 FGenAsp <--- FParAsp > ##D ## 9 beta12 0.199418 RGenAsp <--- FGenAsp > ##D ## 10 beta21 0.217521 FGenAsp <--- RGenAsp > ##D ## 11 0.766717 ROccAsp <--- RGenAsp > ##D ## 12 lam21 0.814771 REdAsp <--- RGenAsp > ##D ## 13 0.829943 FOccAsp <--- FGenAsp > ##D ## 14 lam42 0.771619 FEdAsp <--- FGenAsp > ##D > ## End(Not run) > > > > cleanEx(); ..nameEx <- "tsls" > > ### * tsls > > flush(stderr()); flush(stdout()) > > ### Name: tsls > ### Title: Two-Stage Least Squares > ### Aliases: tsls tsls.formula tsls.default fitted.tsls residuals.tsls > ### coefficients.tsls vcov.tsls anova.tsls print.tsls summary.tsls > ### Keywords: models > > ### ** Examples > > data(Kmenta) > summary(tsls(Q ~ P + D, ~ D + F + A, data=Kmenta)) # demand equation 2SLS Estimates Model Formula: Q ~ P + D Instruments: ~D + F + A Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -3.43e+00 -1.24e+00 -1.89e-01 5.74e-12 1.58e+00 2.49e+00 Estimate Std. Error t value Pr(>|t|) (Intercept) 94.6333 7.92084 11.947 1.076e-09 P -0.2436 0.09648 -2.524 2.183e-02 D 0.3140 0.04694 6.689 3.811e-06 Residual standard error: 1.9663 on 17 degrees of freedom > > ## 2SLS Estimates > ## > ## Model Formula: Q ~ P + D > ## > ## Instruments: ~D + F + A > ## > ## Residuals: > ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ## -3.43e+00 -1.24e+00 -1.89e-01 -2.49e-13 1.58e+00 2.49e+00 > ## > ## Estimate Std. Error t value Pr(>|t|) > ## (Intercept) 94.6333 7.92084 11.947 1.076e-09 > ## P -0.2436 0.09648 -2.524 2.183e-02 > ## D 0.3140 0.04694 6.689 3.811e-06 > ## > ## Residual standard error: 1.9663 on 17 degrees of freedom > > summary(tsls(Q ~ P + F + A, ~ D + F + A, data=Kmenta)) # supply equation 2SLS Estimates Model Formula: Q ~ P + F + A Instruments: ~D + F + A Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max. -4.87e+00 -1.26e+00 6.42e-01 -2.46e-12 1.47e+00 3.49e+00 Estimate Std. Error t value Pr(>|t|) (Intercept) 49.5324 12.01053 4.124 7.954e-04 P 0.2401 0.09993 2.402 2.878e-02 F 0.2556 0.04725 5.410 5.785e-05 A 0.2529 0.09966 2.538 2.193e-02 Residual standard error: 2.4576 on 16 degrees of freedom > > ## 2SLS Estimates > ## > ## Model Formula: Q ~ P + F + A > ## > ## Instruments: ~D + F + A > ## > ## Residuals: > ## Min. 1st Qu. Median Mean 3rd Qu. Max. > ## -4.87e+00 -1.26e+00 6.42e-01 -5.64e-12 1.47e+00 3.49e+00 > ## > ## Estimate Std. Error t value Pr(>|t|) > ## (Intercept) 49.5324 12.01053 4.124 7.954e-04 > ## P 0.2401 0.09993 2.402 2.878e-02 > ## F 0.2556 0.04725 5.410 5.785e-05 > ## A 0.2529 0.09966 2.538 2.193e-02 > ## > ## Residual standard error: 2.4576 on 16 degrees of freedom > > anova(tsls(Q ~ P + F + A, ~ D + F + A, data=Kmenta), + tsls(Q ~ 1, ~ D + F + A, data=Kmenta)) Analysis of Variance Model 1: Q ~ P + F + A Instruments: ~D + F + A Model 2: Q ~ 1 Instruments: ~D + F + A Res.Df RSS Df Sum of Sq F Pr(>F) Model 1 16 96.633 Model 2 19 268.114 3 171.481 4.0507 0.02553 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > > ## Analysis of Variance > ## > ## Model 1: Q ~ P + F + A Instruments: ~D + F + A > ## Model 2: Q ~ 1 Instruments: ~D + F + A > ## > ## Res.Df RSS Df Sum of Sq F Pr(>F) > ## Model 1 16 96.633 > ## Model 2 19 268.114 3 171.481 4.0507 0.02553 > > > > > ### *