R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("sgeostat-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('sgeostat') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "est.variogram" > > ### * est.variogram > > flush(stderr()); flush(stdout()) > > ### Name: est.variogram > ### Title: Variogram Estimator > ### Aliases: est.variogram > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.pair"))==0){example(pair)} pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > ## End Don't show > maas.v<-est.variogram(maas.point,maas.pair,'zinc') > > > > cleanEx(); ..nameEx <- "fit.trend" > > ### * fit.trend > > flush(stderr()); flush(stdout()) > > ### Name: fit.trend > ### Title: Fit polynomial trend functions > ### Aliases: fit.trend > ### Keywords: spatial spatial > > ### ** Examples > > > > > cleanEx(); ..nameEx <- "fit.variogram" > > ### * fit.variogram > > flush(stderr()); flush(stdout()) > > ### Name: fit.variogram > ### Title: Variogram Model Fit > ### Aliases: fit.variogram fit.exponential fit.wave fit.gaussian > ### fit.spherical fit.linear > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.v"))==0){example(est.variogram)} est.vr> if (length(ls(pat = "maas.pair")) == 0) { example(pair) } pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 est.vr> maas.v <- est.variogram(maas.point, maas.pair, "zinc") > ## End Don't show > # > # automatic fit: > # > maas.vmod<-fit.gaussian(maas.v,c0=60000,cg=110000,ag=800,plot.it=TRUE, + iterations=30) Initial parameter estimates: 60000 110000 800 Iteration: 1 Gradient vector: 5499.075 -37894.01 -497.3869 New parameter estimates: 65499.08 72106 302.6131 rse.dif = 249665571 (rse = 249665571 ) ; parm.dist = 38294.16 Iteration: 2 Gradient vector: 1877.678 14818.09 180.7598 New parameter estimates: 67376.75 86924.08 483.373 rse.dif = 1099461343 (rse = 1349126914 ) ; parm.dist = 14937.67 Iteration: 3 Gradient vector: -6669.642 8207.31 -37.26603 New parameter estimates: 60707.11 95131.4 446.1069 rse.dif = -32082819 (rse = 1317044095 ) ; parm.dist = 10575.7 Iteration: 4 Gradient vector: 909.8936 -484.5986 13.38276 New parameter estimates: 61617 94646.8 459.4897 rse.dif = 17615795 (rse = 1334659891 ) ; parm.dist = 1030.981 Iteration: 5 Gradient vector: -290.5093 194.8503 -2.573651 New parameter estimates: 61326.5 94841.64 456.916 rse.dif = -1765886 (rse = 1332894005 ) ; parm.dist = 349.8127 Iteration: 6 Gradient vector: 56.4257 -33.54592 0.5844782 New parameter estimates: 61382.92 94808.1 457.5005 rse.dif = 690040.2 (rse = 1333584045 ) ; parm.dist = 65.64701 Iteration: 7 Gradient vector: -12.63262 7.648973 -0.1273216 New parameter estimates: 61370.29 94815.75 457.3732 rse.dif = -140598.6 (rse = 1333443446 ) ; parm.dist = 14.76841 Iteration: 8 Gradient vector: 2.7564 -1.660847 0.02796193 New parameter estimates: 61373.05 94814.08 457.4012 rse.dif = 31404.83 (rse = 1333474851 ) ; parm.dist = 3.218219 Iteration: 9 Gradient vector: -0.6050773 0.3649581 -0.006129619 New parameter estimates: 61372.44 94814.45 457.395 rse.dif = -6859.57 (rse = 1333467992 ) ; parm.dist = 0.7066474 Iteration: 10 Gradient vector: 0.1326532 -0.07999283 0.001344229 New parameter estimates: 61372.57 94814.37 457.3964 rse.dif = 1505.506 (rse = 1333469497 ) ; parm.dist = 0.1549114 Iteration: 11 Gradient vector: -0.02909032 0.01754299 -0.0002947644 New parameter estimates: 61372.54 94814.39 457.3961 rse.dif = -330.0719 (rse = 1333469167 ) ; parm.dist = 0.0339719 Iteration: 12 Gradient vector: 0.006378995 -0.003846825 6.463759e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 72.38277 (rse = 1333469239 ) ; parm.dist = 0.007449417 Iteration: 13 Gradient vector: -0.001398820 0.0008435545 -1.417403e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -15.8723 (rse = 1333469224 ) ; parm.dist = 0.001633549 Iteration: 14 Gradient vector: 0.0003067399 -0.0001849785 3.108150e-06 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 3.480562 (rse = 1333469227 ) ; parm.dist = 0.0003582123 Iteration: 15 Gradient vector: -6.726341e-05 4.0563e-05 -6.815702e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.7632339 (rse = 1333469226 ) ; parm.dist = 7.855054e-05 Iteration: 16 Gradient vector: 1.474986e-05 -8.894858e-06 1.494581e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.1673656 (rse = 1333469227 ) ; parm.dist = 1.722496e-05 Iteration: 17 Gradient vector: -3.234433e-06 1.950522e-06 -3.277396e-08 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.03670073 (rse = 1333469226 ) ; parm.dist = 3.777191e-06 Iteration: 18 Gradient vector: 7.092709e-07 -4.277348e-07 7.186811e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.008048058 (rse = 1333469226 ) ; parm.dist = 8.282952e-07 Iteration: 19 Gradient vector: -1.555217e-07 9.37892e-08 -1.575938e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.001764536 (rse = 1333469226 ) ; parm.dist = 1.816207e-07 Iteration: 20 Gradient vector: 3.410008e-08 -2.055502e-08 3.456296e-10 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.0003864765 (rse = 1333469226 ) ; parm.dist = 3.982316e-08 Iteration: 21 Gradient vector: -7.49142e-09 4.52347e-09 -7.593299e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -8.416176e-05 (rse = 1333469226 ) ; parm.dist = 8.755045e-09 Iteration: 22 Gradient vector: 1.650187e-09 -9.971753e-10 1.676294e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 1.716614e-05 (rse = 1333469226 ) ; parm.dist = 1.932973e-09 Iteration: 23 Gradient vector: -3.678616e-10 2.341807e-10 -3.730106e-12 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -2.622604e-06 (rse = 1333469226 ) ; parm.dist = 4.380867e-10 Iteration: 24 Gradient vector: 1.004182e-10 -7.590225e-11 8.078534e-13 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -1.430511e-06 (rse = 1333469226 ) ; parm.dist = 1.251828e-10 Iteration: 25 Gradient vector: -2.121985e-11 2.328697e-11 -2.071375e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 2.861023e-06 (rse = 1333469226 ) ; parm.dist = 3.637979e-11 Iteration: 26 Gradient vector: -1.061002e-11 5.692926e-12 -6.3925e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -9.536743e-07 (rse = 1333469226 ) ; parm.dist = 7.27618e-12 Convergence achieved by sums of squares. Final parameter estimates: 61372.55 94814.38 457.3961 > # > # iterations=0, means no fit, intended for "subjective" fit > # > maas.vmod.fixed<-fit.variogram("gaussian",maas.v,nugget=60000,sill=110000,range=800,plot.it=TRUE,iterations=0) Convergence not achieved! > > > > cleanEx(); ..nameEx <- "identify.point" > > ### * identify.point > > flush(stderr()); flush(stdout()) > > ### Name: identify.point > ### Title: Identify points on a Point Object > ### Aliases: identify.point > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.point"))==0){example(point)} point> data(maas) point> maas.point <- point(maas) > ## End Don't show > plot(maas.point) > # use indices as labels: > identify(maas.point) numeric(0) > # use values as labels: > identify(maas.point,v="zinc") numeric(0) > > > > cleanEx(); ..nameEx <- "in.chull" > > ### * in.chull > > flush(stderr()); flush(stdout()) > > ### Name: in.chull > ### Title: Convex hull test > ### Aliases: in.chull > ### Keywords: spatial > > ### ** Examples > > in.chull(c(0,1),c(0,1),c(0,1,0,-1),c(-1,0,1,0)) [1] TRUE FALSE > # should give: TRUE FALSE > > > > cleanEx(); ..nameEx <- "in.polygon" > > ### * in.polygon > > flush(stderr()); flush(stdout()) > > ### Name: in.polygon > ### Title: In-Polygon test > ### Aliases: in.polygon > ### Keywords: spatial > > ### ** Examples > > in.polygon(c(0,1),c(0,1),c(0,1,0,-1),c(-1,0,1,0)) [1] TRUE FALSE > # should give: TRUE FALSE > > > > cleanEx(); ..nameEx <- "krige" > > ### * krige > > flush(stderr()); flush(stdout()) > > ### Name: krige > ### Title: Kriging > ### Aliases: krige > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.vmod"))==0){example(fit.variogram)} ft.vrg> if (length(ls(pat = "maas.v")) == 0) { example(est.variogram) } est.vr> if (length(ls(pat = "maas.pair")) == 0) { example(pair) } pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 est.vr> maas.v <- est.variogram(maas.point, maas.pair, "zinc") ft.vrg> maas.vmod <- fit.gaussian(maas.v, c0 = 60000, cg = 110000, ag = 800, plot.it = TRUE, iterations = 30) Initial parameter estimates: 60000 110000 800 Iteration: 1 Gradient vector: 5499.075 -37894.01 -497.3869 New parameter estimates: 65499.08 72106 302.6131 rse.dif = 249665571 (rse = 249665571 ) ; parm.dist = 38294.16 Iteration: 2 Gradient vector: 1877.678 14818.09 180.7598 New parameter estimates: 67376.75 86924.08 483.373 rse.dif = 1099461343 (rse = 1349126914 ) ; parm.dist = 14937.67 Iteration: 3 Gradient vector: -6669.642 8207.31 -37.26603 New parameter estimates: 60707.11 95131.4 446.1069 rse.dif = -32082819 (rse = 1317044095 ) ; parm.dist = 10575.7 Iteration: 4 Gradient vector: 909.8936 -484.5986 13.38276 New parameter estimates: 61617 94646.8 459.4897 rse.dif = 17615795 (rse = 1334659891 ) ; parm.dist = 1030.981 Iteration: 5 Gradient vector: -290.5093 194.8503 -2.573651 New parameter estimates: 61326.5 94841.64 456.916 rse.dif = -1765886 (rse = 1332894005 ) ; parm.dist = 349.8127 Iteration: 6 Gradient vector: 56.4257 -33.54592 0.5844782 New parameter estimates: 61382.92 94808.1 457.5005 rse.dif = 690040.2 (rse = 1333584045 ) ; parm.dist = 65.64701 Iteration: 7 Gradient vector: -12.63262 7.648973 -0.1273216 New parameter estimates: 61370.29 94815.75 457.3732 rse.dif = -140598.6 (rse = 1333443446 ) ; parm.dist = 14.76841 Iteration: 8 Gradient vector: 2.7564 -1.660847 0.02796193 New parameter estimates: 61373.05 94814.08 457.4012 rse.dif = 31404.83 (rse = 1333474851 ) ; parm.dist = 3.218219 Iteration: 9 Gradient vector: -0.6050773 0.3649581 -0.006129619 New parameter estimates: 61372.44 94814.45 457.395 rse.dif = -6859.57 (rse = 1333467992 ) ; parm.dist = 0.7066474 Iteration: 10 Gradient vector: 0.1326532 -0.07999283 0.001344229 New parameter estimates: 61372.57 94814.37 457.3964 rse.dif = 1505.506 (rse = 1333469497 ) ; parm.dist = 0.1549114 Iteration: 11 Gradient vector: -0.02909032 0.01754299 -0.0002947644 New parameter estimates: 61372.54 94814.39 457.3961 rse.dif = -330.0719 (rse = 1333469167 ) ; parm.dist = 0.0339719 Iteration: 12 Gradient vector: 0.006378995 -0.003846825 6.463759e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 72.38277 (rse = 1333469239 ) ; parm.dist = 0.007449417 Iteration: 13 Gradient vector: -0.001398820 0.0008435545 -1.417403e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -15.8723 (rse = 1333469224 ) ; parm.dist = 0.001633549 Iteration: 14 Gradient vector: 0.0003067399 -0.0001849785 3.108150e-06 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 3.480562 (rse = 1333469227 ) ; parm.dist = 0.0003582123 Iteration: 15 Gradient vector: -6.726341e-05 4.0563e-05 -6.815702e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.7632339 (rse = 1333469226 ) ; parm.dist = 7.855054e-05 Iteration: 16 Gradient vector: 1.474986e-05 -8.894858e-06 1.494581e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.1673656 (rse = 1333469227 ) ; parm.dist = 1.722496e-05 Iteration: 17 Gradient vector: -3.234433e-06 1.950522e-06 -3.277396e-08 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.03670073 (rse = 1333469226 ) ; parm.dist = 3.777191e-06 Iteration: 18 Gradient vector: 7.092709e-07 -4.277348e-07 7.186811e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.008048058 (rse = 1333469226 ) ; parm.dist = 8.282952e-07 Iteration: 19 Gradient vector: -1.555217e-07 9.37892e-08 -1.575938e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.001764536 (rse = 1333469226 ) ; parm.dist = 1.816207e-07 Iteration: 20 Gradient vector: 3.410008e-08 -2.055502e-08 3.456296e-10 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.0003864765 (rse = 1333469226 ) ; parm.dist = 3.982316e-08 Iteration: 21 Gradient vector: -7.49142e-09 4.52347e-09 -7.593299e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -8.416176e-05 (rse = 1333469226 ) ; parm.dist = 8.755045e-09 Iteration: 22 Gradient vector: 1.650187e-09 -9.971753e-10 1.676294e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 1.716614e-05 (rse = 1333469226 ) ; parm.dist = 1.932973e-09 Iteration: 23 Gradient vector: -3.678616e-10 2.341807e-10 -3.730106e-12 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -2.622604e-06 (rse = 1333469226 ) ; parm.dist = 4.380867e-10 Iteration: 24 Gradient vector: 1.004182e-10 -7.590225e-11 8.078534e-13 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -1.430511e-06 (rse = 1333469226 ) ; parm.dist = 1.251828e-10 Iteration: 25 Gradient vector: -2.121985e-11 2.328697e-11 -2.071375e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 2.861023e-06 (rse = 1333469226 ) ; parm.dist = 3.637979e-11 Iteration: 26 Gradient vector: -1.061002e-11 5.692926e-12 -6.3925e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -9.536743e-07 (rse = 1333469226 ) ; parm.dist = 7.27618e-12 Convergence achieved by sums of squares. Final parameter estimates: 61372.55 94814.38 457.3961 ft.vrg> maas.vmod.fixed <- fit.variogram("gaussian", maas.v, nugget = 60000, sill = 110000, range = 800, plot.it = TRUE, iterations = 0) Convergence not achieved! > ## End Don't show > # a single point: > prdpnt <- point(data.frame(list(x=180000,y=331000))) > prdpnt <- krige(prdpnt, maas.point, 'zinc', maas.vmod) Using all points. Preparing the kriging system matrix... Inverting the matrix (and it's a big one)... Predicting. > prdpnt Point object: structure(list(x = 180000, y = 331000, do = TRUE, zhat = 179.126792748158, Point object: sigma2hat = 72787.0311334009), .Names = c("x", "y", "do", Point object: "zhat", "sigma2hat"), row.names = "1", class = c("point", "data.frame" Point object: )) Locations: 1 Attributes: x y do zhat sigma2hat > > # kriging on a grid (slow!) > grid <- list(x=seq(min(maas$x),max(maas$x),by=100), + y=seq(min(maas$y),max(maas$y),by=100)) > grid$xr <- range(grid$x) > grid$xs <- grid$xr[2] - grid$xr[1] > grid$yr <- range(grid$y) > grid$ys <- grid$yr[2] - grid$yr[1] > grid$max <- max(grid$xs, grid$ys) > grid$xy <- data.frame(cbind(c(matrix(grid$x, length(grid$x), length(grid$y))), + c(matrix(grid$y, length(grid$x), length(grid$y), byrow=TRUE)))) > colnames(grid$xy) <- c("x", "y") > grid$point <- point(grid$xy) > data(maas.bank) > grid$krige <- krige(grid$point,maas.point,'zinc',maas.vmod, + maxdist=1000,extrap=FALSE,border=maas.bank) Using points within 1000 units of prediction points. Predicting.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... > op <- par(no.readonly = TRUE) > par(pty="s") > plot(grid$xy, type="n", xlim=c(grid$xr[1], grid$xr[1]+grid$max), + ylim=c(grid$yr[1], grid$yr[1]+grid$max)) > image(grid$x,grid$y, + matrix(grid$krige$zhat,length(grid$x),length(grid$y)), + add=TRUE) > contour(grid$x,grid$y, + matrix(grid$krige$zhat,length(grid$x),length(grid$y)), + add=TRUE) > data(maas.bank) > lines(maas.bank$x,maas.bank$y,col="blue") > par(op) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "lagplot" > > ### * lagplot > > flush(stderr()); flush(stdout()) > > ### Name: lagplot > ### Title: Lag Scatter Plot > ### Aliases: lagplot > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.pair"))==0){example(pair)} pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > ## End Don't show > opar <- par(ask = interactive() && .Device == "X11") > lagplot(maas.point,maas.pair,'zinc') > # with identifying pairs: > lagplot(maas.point,maas.pair,'zinc',lag=2,query.a='zinc') Identify "from" points... Identify "to" points...numeric(0) > par(opar) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "pair" > > ### * pair > > flush(stderr()); flush(stdout()) > > ### Name: pair > ### Title: Pair Object > ### Aliases: pair > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.point"))==0){example(point)} point> data(maas) point> maas.point <- point(maas) > ## End Don't show > maas.pair <- pair(maas.point,num.lags=10,maxdist=2000) .......................................................................................................................................................... > maas.pair25 <- pair(maas.point,num.lags=10,type='anisotropic', + theta=25,maxdist=500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > > > > cleanEx(); ..nameEx <- "plot.point" > > ### * plot.point > > flush(stderr()); flush(stdout()) > > ### Name: plot.point > ### Title: Plot Point Objects > ### Aliases: plot.point > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > if(length(ls(pat="maas.point"))==0){example(point)} point> data(maas) point> maas.point <- point(maas) > ## End Don't show > plot(maas.point) > plot(maas.point,v='zinc') > plot(maas.point,v='zinc',xlab='easting',ylab='northing',axes=TRUE,legend.pos=4) > # plot additionally the maas bank: > data(maas.bank) > lines(maas.bank) > > > > cleanEx(); ..nameEx <- "plot.variogram" > > ### * plot.variogram > > flush(stderr()); flush(stdout()) > > ### Name: plot.variogram > ### Title: Plot Variogram > ### Aliases: plot.variogram > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.vmod"))==0){example(fit.variogram)} ft.vrg> if (length(ls(pat = "maas.v")) == 0) { example(est.variogram) } est.vr> if (length(ls(pat = "maas.pair")) == 0) { example(pair) } pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 est.vr> maas.v <- est.variogram(maas.point, maas.pair, "zinc") ft.vrg> maas.vmod <- fit.gaussian(maas.v, c0 = 60000, cg = 110000, ag = 800, plot.it = TRUE, iterations = 30) Initial parameter estimates: 60000 110000 800 Iteration: 1 Gradient vector: 5499.075 -37894.01 -497.3869 New parameter estimates: 65499.08 72106 302.6131 rse.dif = 249665571 (rse = 249665571 ) ; parm.dist = 38294.16 Iteration: 2 Gradient vector: 1877.678 14818.09 180.7598 New parameter estimates: 67376.75 86924.08 483.373 rse.dif = 1099461343 (rse = 1349126914 ) ; parm.dist = 14937.67 Iteration: 3 Gradient vector: -6669.642 8207.31 -37.26603 New parameter estimates: 60707.11 95131.4 446.1069 rse.dif = -32082819 (rse = 1317044095 ) ; parm.dist = 10575.7 Iteration: 4 Gradient vector: 909.8936 -484.5986 13.38276 New parameter estimates: 61617 94646.8 459.4897 rse.dif = 17615795 (rse = 1334659891 ) ; parm.dist = 1030.981 Iteration: 5 Gradient vector: -290.5093 194.8503 -2.573651 New parameter estimates: 61326.5 94841.64 456.916 rse.dif = -1765886 (rse = 1332894005 ) ; parm.dist = 349.8127 Iteration: 6 Gradient vector: 56.4257 -33.54592 0.5844782 New parameter estimates: 61382.92 94808.1 457.5005 rse.dif = 690040.2 (rse = 1333584045 ) ; parm.dist = 65.64701 Iteration: 7 Gradient vector: -12.63262 7.648973 -0.1273216 New parameter estimates: 61370.29 94815.75 457.3732 rse.dif = -140598.6 (rse = 1333443446 ) ; parm.dist = 14.76841 Iteration: 8 Gradient vector: 2.7564 -1.660847 0.02796193 New parameter estimates: 61373.05 94814.08 457.4012 rse.dif = 31404.83 (rse = 1333474851 ) ; parm.dist = 3.218219 Iteration: 9 Gradient vector: -0.6050773 0.3649581 -0.006129619 New parameter estimates: 61372.44 94814.45 457.395 rse.dif = -6859.57 (rse = 1333467992 ) ; parm.dist = 0.7066474 Iteration: 10 Gradient vector: 0.1326532 -0.07999283 0.001344229 New parameter estimates: 61372.57 94814.37 457.3964 rse.dif = 1505.506 (rse = 1333469497 ) ; parm.dist = 0.1549114 Iteration: 11 Gradient vector: -0.02909032 0.01754299 -0.0002947644 New parameter estimates: 61372.54 94814.39 457.3961 rse.dif = -330.0719 (rse = 1333469167 ) ; parm.dist = 0.0339719 Iteration: 12 Gradient vector: 0.006378995 -0.003846825 6.463759e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 72.38277 (rse = 1333469239 ) ; parm.dist = 0.007449417 Iteration: 13 Gradient vector: -0.001398820 0.0008435545 -1.417403e-05 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -15.8723 (rse = 1333469224 ) ; parm.dist = 0.001633549 Iteration: 14 Gradient vector: 0.0003067399 -0.0001849785 3.108150e-06 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 3.480562 (rse = 1333469227 ) ; parm.dist = 0.0003582123 Iteration: 15 Gradient vector: -6.726341e-05 4.0563e-05 -6.815702e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.7632339 (rse = 1333469226 ) ; parm.dist = 7.855054e-05 Iteration: 16 Gradient vector: 1.474986e-05 -8.894858e-06 1.494581e-07 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.1673656 (rse = 1333469227 ) ; parm.dist = 1.722496e-05 Iteration: 17 Gradient vector: -3.234433e-06 1.950522e-06 -3.277396e-08 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.03670073 (rse = 1333469226 ) ; parm.dist = 3.777191e-06 Iteration: 18 Gradient vector: 7.092709e-07 -4.277348e-07 7.186811e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.008048058 (rse = 1333469226 ) ; parm.dist = 8.282952e-07 Iteration: 19 Gradient vector: -1.555217e-07 9.37892e-08 -1.575938e-09 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -0.001764536 (rse = 1333469226 ) ; parm.dist = 1.816207e-07 Iteration: 20 Gradient vector: 3.410008e-08 -2.055502e-08 3.456296e-10 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 0.0003864765 (rse = 1333469226 ) ; parm.dist = 3.982316e-08 Iteration: 21 Gradient vector: -7.49142e-09 4.52347e-09 -7.593299e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -8.416176e-05 (rse = 1333469226 ) ; parm.dist = 8.755045e-09 Iteration: 22 Gradient vector: 1.650187e-09 -9.971753e-10 1.676294e-11 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 1.716614e-05 (rse = 1333469226 ) ; parm.dist = 1.932973e-09 Iteration: 23 Gradient vector: -3.678616e-10 2.341807e-10 -3.730106e-12 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -2.622604e-06 (rse = 1333469226 ) ; parm.dist = 4.380867e-10 Iteration: 24 Gradient vector: 1.004182e-10 -7.590225e-11 8.078534e-13 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -1.430511e-06 (rse = 1333469226 ) ; parm.dist = 1.251828e-10 Iteration: 25 Gradient vector: -2.121985e-11 2.328697e-11 -2.071375e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = 2.861023e-06 (rse = 1333469226 ) ; parm.dist = 3.637979e-11 Iteration: 26 Gradient vector: -1.061002e-11 5.692926e-12 -6.3925e-14 New parameter estimates: 61372.55 94814.38 457.3961 rse.dif = -9.536743e-07 (rse = 1333469226 ) ; parm.dist = 7.27618e-12 Convergence achieved by sums of squares. Final parameter estimates: 61372.55 94814.38 457.3961 ft.vrg> maas.vmod.fixed <- fit.variogram("gaussian", maas.v, nugget = 60000, sill = 110000, range = 800, plot.it = TRUE, iterations = 0) Convergence not achieved! > ## End Don't show > # two plots > oldpar <- par(mfrow=c(2,1)) > plot(maas.v) > plot(maas.v,var.mod.obj=maas.vmod) > par(oldpar) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "point" > > ### * point > > flush(stderr()); flush(stdout()) > > ### Name: point > ### Title: Point Object > ### Aliases: point > ### Keywords: spatial > > ### ** Examples > > data(maas) > maas.point <- point(maas) > > > > cleanEx(); ..nameEx <- "print.pair" > > ### * print.pair > > flush(stderr()); flush(stdout()) > > ### Name: print.pair > ### Title: Pairs Object Description > ### Aliases: print.pair > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.pair"))==0){example(pair)} pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > ## End Don't show > print(maas.pair) Pair object: maas.pair Type: isotropic Number of pairs: 8370 Number of lags: 10 Max h: 1999.867 > # gives: > # Pairs object: maas.pair > # > # Type: isotropic > # Number of pairs: 8370 > # Number of lags: 10 > # Max h: 1999.867 > > > > cleanEx(); ..nameEx <- "print.point" > > ### * print.point > > flush(stderr()); flush(stdout()) > > ### Name: print.point > ### Title: Point Object Description > ### Aliases: print.point > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > if(length(ls(pat="maas.point"))==0){example(point)} point> data(maas) point> maas.point <- point(maas) > ## End Don't show > print.point(maas.point) Point object: maas.point Locations: 155 Attributes: x y zinc > # gives > # Point object: maas.point > # > # Locations: 155 > # > # Attributes: > # x > # y > # zinc > > > > cleanEx(); ..nameEx <- "spacebox" > > ### * spacebox > > flush(stderr()); flush(stdout()) > > ### Name: spacebox > ### Title: Boxplot of Variogram Cloud > ### Aliases: spacebox > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.pair"))==0){example(pair)} pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > ## End Don't show > spacebox(maas.point,maas.pair,'zinc') > > > > cleanEx(); ..nameEx <- "spacecloud" > > ### * spacecloud > > flush(stderr()); flush(stdout()) > > ### Name: spacecloud > ### Title: Variogram Cloud > ### Aliases: spacecloud > ### Keywords: spatial > > ### ** Examples > > ## Don't show: > # prepare variables from other example pages if they are not already there: > if(length(ls(pat="maas.pair"))==0){example(pair)} pair> if (length(ls(pat = "maas.point")) == 0) { example(point) } point> data(maas) point> maas.point <- point(maas) pair> maas.pair <- pair(maas.point, num.lags = 10, maxdist = 2000) .......................................................................................................................................................... pair> maas.pair25 <- pair(maas.point, num.lags = 10, type = "anisotropic", theta = 25, maxdist = 500) .............................. NOTE: Number of pairs in lag 1 : 0 NOTE: Number of pairs in lag 2 : 1 NOTE: Number of pairs in lag 3 : 3 NOTE: Number of pairs in lag 4 : 12 NOTE: Number of pairs in lag 5 : 10 NOTE: Number of pairs in lag 6 : 12 NOTE: Number of pairs in lag 7 : 10 NOTE: Number of pairs in lag 8 : 13 NOTE: Number of pairs in lag 9 : 10 NOTE: Number of pairs in lag 10 : 19 > ## End Don't show > opar <- par(ask = interactive() && .Device == "X11") > spacecloud(maas.point,maas.pair,'zinc') > # identify some points: > spacecloud(maas.point,maas.pair,'zinc',query.a='zinc') Identify "from" points... Identify "to" points... > par(opar) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > ### *