R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("sma-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('sma') > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "id2image" > > ### * id2image > > flush(stderr()); flush(stdout()) > > ### Name: id2image > ### Title: Converting an id tag to a Set of Image Coordinates and Vice > ### Versa > ### Aliases: id2image image2id > ### Keywords: attribute > > ### ** Examples > data(MouseArray) > # mouse.setup <- init.grid() > > id2image(1024, mouse.setup) [1] 1 3 11 16 > ## You will see: [1] 1 3 11 16 > ## the grid in which gene 1024 can be found, is in row 1, column 3 > ## and the gene is located in row 11, column 16 of this particular grid. > > image2id(c(2,4,6,8), mouse.setup) [1] 2906 > ## You will see: [1] 2906 > ## the gene located in row 6, column 8 in the grid that is in row 2 and > ## column 4 is the 2906th gene of the data set. > > > > cleanEx(); ..nameEx <- "init.addinfo" > > ### * init.addinfo > > flush(stderr()); flush(stdout()) > > ### Name: init.addinfo > ### Title: Adding Information to a Data Structure for Multi-slide > ### Microarray Experiments > ### Aliases: init.addinfo > ### Keywords: manip > > ### ** Examples > > ## mouse.data <- init.addinfo("mouse", "area") > > > > cleanEx(); ..nameEx <- "init.ctl.index" > > ### * init.ctl.index > > flush(stderr()); flush(stdout()) > > ### Name: init.ctl.index > ### Title: Generates co-ordinates of spots. > ### Aliases: init.ctl.index > ### Keywords: manip > > ### ** Examples > > x <- init.ctl.index(1:4, 1:4, 1:2, 15:20) > ## Generates the 4 co-ordinates index to spots in the first 2 rows, > ## columns 15 to 20 of every print-tips groups. > > > > cleanEx(); ..nameEx <- "init.data" > > ### * init.data > > flush(stderr()); flush(stdout()) > > ### Name: init.data > ### Title: Creating a Data Structure for Multi-slide Microarray Experiments > ### Aliases: init.data > ### Keywords: attribute > > ### ** Examples > > ## mouse.data <- init.data() > > ## Here is what you should see: > ## Are you creating a new data matrix or adding new array data > ## to a prexisting data matrix? > ## Enter "n" for creating and "a" for adding new array data: n > ## Do the names of all your datasets have the following format: > ## prefix1, prefix2, prefix3?, ... Here prefix can be any name, > ## but the suffixes must be integers 1,2, ..., # of arrays. > ## Enter "y" for yes, "n" for no: y > ## Enter the prefix:mouse > ## Enter the number of arrays to be processed:6 > ## Enter the name of Cy3 raw data: Gmean > ## Enter the name of Cy3 background: morphG > ## Enter the name of Cy5 raw data: Rmean > ## Enter the name of Cy5 background: morphR > ## Finished creating new dataset. > > > > cleanEx(); ..nameEx <- "init.grid" > > ### * init.grid > > flush(stderr()); flush(stdout()) > > ### Name: init.grid > ### Title: Initialization of Grid Parameters > ### Aliases: init.grid > ### Keywords: misc > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > > ## Here is what you should see: > # Enter number of rows of grids per image (ngrid.r): 4 > # Enter number of columns of grids per image (ngrid.c): 4 > # Enter number of rows of spots per grid (nspot.r): 19 > # Enter number of columns of spots per grid (nspot.c): 21 > # Initialization complete > > > > cleanEx(); ..nameEx <- "init.names" > > ### * init.names > > flush(stderr()); flush(stdout()) > > ### Name: init.names > ### Title: Set and Read the Names of Experimental Data. > ### Aliases: init.name.exp init.show.exp > ### Keywords: attribute > > ### ** Examples > > ## init.name.exp() ## To create the look-up table. > > ## This is what you should see: > ## Are you creating a new batch.exp file or adding new data names > ## to a prexisting batch.exp file? > ## Enter "n" for creating and "a" for adding new data names: n > ## Enter the batch name for the new .exp file: mouse1 > ## Enter the number of names of files to be entered: 2 > ## Enter the R name of your 1 th dataset: m1 > ## Enter the actual file name including the full path name for m1 ? > ## ~/path/image1.data > ## Enter the R name of your 2 th dataset: m2 > ## Enter the actual file name including the full path name for m2 ? > ## ~/path/image2.data > ## Finished adding names to .exp file. > ## NULL > > ## View the look-up table. > ## init.show.exp("mouse1") > ## > ## Name in R Filename > ## 1 m1 ~/path/image1.data > ## 2 m2 ~/path/image2.data > > > > cleanEx(); ..nameEx <- "init.read.exp" > > ### * init.read.exp > > flush(stderr()); flush(stdout()) > > ### Name: init.read.exp > ### Title: Reads the Output of the Computed Statistics > ### Aliases: init.read.exp > ### Keywords: file > > ### ** Examples > > ## apoa1.info <- init.read.exp("apoa1", 1) ## obtains the matrix > ## of 30 measurements for all the genes spotted on slide 1 of the MouseArray > ## experiment. > > > cleanEx(); ..nameEx <- "is.odd" > > ### * is.odd > > flush(stderr()); flush(stdout()) > > ### Name: is.odd > ### Title: Determining if a Value is Odd or Even > ### Aliases: is.odd is.even > ### Keywords: logic > > ### ** Examples > > is.odd(4) [1] FALSE > ## FALSE > is.even(100) [1] TRUE > ## TRUE > > > > cleanEx(); ..nameEx <- "plot.bayesian" > > ### * plot.bayesian > > flush(stderr()); flush(stdout()) > > ### Name: plot.bayesian > ### Title: Plots lodscore vs effect estimate (the output of stat.bayesian() > ### or stat.bay.est()). > ### Aliases: plot.bayesian > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > ## mouse.lratio <- stat.ma(mouse.data, mouse.setup) > mouse.bayesian<-stat.bayesian(M=mouse.lratio$M) > > plot.bayesian(mouse.bayesian) > plot.bayesian(mouse.bayesian,type='c',spec=0,col='blue') > plot.bayesian(mouse.bayesian,type='i',spec=c(1000,2000),col='green') > plot.bayesian(mouse.bayesian,type='i',spec=1:length(mouse.bayesian$lods)) > > > > > cleanEx(); ..nameEx <- "plot.confband.lines" > > ### * plot.confband.lines > > flush(stderr()); flush(stdout()) > > ### Name: plot.confband.lines > ### Title: Adding Lines Satisfying a Confidence Criterion to the Current M > ### vs A Plot > ### Aliases: plot.confband.lines > ### Keywords: aplot > > ### ** Examples > data(MouseArray) > ## mouse.setup <- init.grid > ## mouse.data <- init.data > > ## To display an M vs A plot of the data > plot.mva(mouse.data, mouse.setup) > > ## Calculate M and A values > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## To add default upper and lower confidence curves line to the M vs A plot > plot.confband.lines(mouse.lratio$A, mouse.lratio$M) > > > > cleanEx(); ..nameEx <- "plot.confband.points" > > ### * plot.confband.points > > flush(stderr()); flush(stdout()) > > ### Name: plot.confband.points > ### Title: Highlights a Set of Points on the Current M vs A Plot > ### Aliases: plot.confband.points > ### Keywords: aplot > > ### ** Examples > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() > > plot.mva(mouse.data, mouse.setup) ## an M vs A plot > > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > plot.confband.points(mouse.lratio$A, mouse.lratio$M) > > ## 2.5% of the spots with the smallest and largest M values are > ## highlighted on the M vs A plot. > > > > cleanEx(); ..nameEx <- "plot.confband.text" > > ### * plot.confband.text > > flush(stderr()); flush(stdout()) > > ### Name: plot.confband.text > ### Title: Add Selected Text to an M vs A Plot > ### Aliases: plot.confband.text > ### Keywords: aplot > > ### ** Examples > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() > > plot.mva(mouse.data, mouse.setup) ## an M vs A plot > > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > plot.confband.text(mouse.lratio$A, mouse.lratio$M) NULL > ## 2.5% of the spots with the largest and smallest M values are > ## highlighted on the M vs A plot, and each spot is assigned the > ## default label of its corresponding index value. > > > > cleanEx(); ..nameEx <- "plot.mat" > > ### * plot.mat > > flush(stderr()); flush(stdout()) > > ### Name: plot.mat > ### Title: Red and Green Color Image of Data Matrix > ### Aliases: plot.mat > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > ##mouse.setup <- init.grid() > ##mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## Looking at log ratios of mouse1 > plot.mat(spatial.func(mouse.lratio$M[,1], mouse.setup)) > > > > cleanEx(); ..nameEx <- "plot.mva" > > ### * plot.mva > > flush(stderr()); flush(stdout()) > > ### Name: plot.mva > ### Title: M vs. A Plot > ### Aliases: plot.mva > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## Look at the normalized second data sets in the list using points to > ## highlight large positive or large negative ratios. > plot.mva(mouse.data, mouse.setup, norm="l", 2, extra.type="pci", + plot.type="n") > > ## Look at the both unnormalized and normalized first data sets in the > ## list using text to highlight large positive or negative ratios. > ## plot.mva(mouse.data, mouse.setup, norm="l", 2, extra.type="tci", plot.type="b") > > > > cleanEx(); ..nameEx <- "plot.print.tip.lowess" > > ### * plot.print.tip.lowess > > flush(stderr()); flush(stdout()) > > ### Name: plot.print.tip.lowess > ### Title: M vs. A Plot with print tip lowess lines > ### Aliases: plot.print.tip.lowess > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > plot.print.tip.lowess(mouse.data,mouse.setup) > > > > cleanEx(); ..nameEx <- "plot.qq" > > ### * plot.qq > > flush(stderr()); flush(stdout()) > > ### Name: plot.qq > ### Title: Histogram and Normal Quantile-Quantile plot > ### Aliases: plot.qq > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > ## mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## Calculation of t-statistics > ## cl <- c(rep(1,3), rep(2,3)) > ## mouse.t2 <- stat.t2(mouse.lratio, cl) > > ## Diagnostic plots > plot.qq(mouse.t2$t, "Mouse") > > > > cleanEx(); ..nameEx <- "plot.qqline" > > ### * plot.qqline > > flush(stderr()); flush(stdout()) > > ### Name: plot.qqline > ### Title: Add Line Going Through the Quantiles of a Q-Q Plot > ### Aliases: plot.qqline > ### Keywords: aplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > # mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## Calculation of t-statistics > ## cl <- c(rep(1,3), rep(2,3)) > ## mouse.t2 <- stat.t2(mouse.lratio, cl) > > ## Diagnostic plots > plot.qq(mouse.t2$t, "Mouse") > > ## Using the QQline function > q <- quantile(rnorm(1000)) > plot.qqline(q, mouse.t2$t) > > > > cleanEx(); ..nameEx <- "plot.scale.box" > > ### * plot.scale.box > > flush(stderr()); flush(stdout()) > > ### Name: plot.scale.box > ### Title: Box plots for microarray > ### Aliases: plot.scale.box > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > ## Producing boxplots for different print-tips groups. > plot.scale.box(mouse.lratio$M[,1], mouse.setup) > ## Producing boxplots for different slides. > plot.scale.box(mouse.lratio$M) > > > > cleanEx(); ..nameEx <- "plot.single.slide" > > ### * plot.single.slide > > flush(stderr()); flush(stdout()) > > ### Name: plot.single.slide > ### Title: M vs. A Plot > ### Aliases: plot.single.slide > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > plot.single.slide(mouse.data, mouse.setup, norm="p", image.id=3) > > > > cleanEx(); ..nameEx <- "plot.smooth.line" > > ### * plot.smooth.line > > flush(stderr()); flush(stdout()) > > ### Name: plot.smooth.line > ### Title: Adding Lowess Lines to Current Plot > ### Aliases: plot.smooth.line > ### Keywords: aplot > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() > > plot.mva(mouse.data, mouse.setup) > plot.smooth.line(mouse.lratio$A, mouse.lratio$M) Warning in approx(lowess(x[ind], M[ind], f = f)) : collapsing to unique 'x' values > > > > cleanEx(); ..nameEx <- "plot.spatial" > > ### * plot.spatial > > flush(stderr()); flush(stdout()) > > ### Name: plot.spatial > ### Title: Spatial Representation of Microarray Spot Statistics > ### Aliases: plot.spatial draw.image.func spatial.func > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > plot.spatial(mouse.lratio$M[,1], mouse.setup) ## default 85 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -1.43300 -0.61770 0.07446 0.20780 0.90280 3.16700 5746.00000 > > # Looking for areas where the spots are not quite circular > plot.spatial(mouse1[,"shape"], mouse.setup, crit1=0.1) Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.1312 0.5729 1.5710 Inf 1.7930 Inf 5093.0000 > > > > cleanEx(); ..nameEx <- "plot.svb" > > ### * plot.svb > > flush(stderr()); flush(stdout()) > > ### Name: plot.svb > ### Title: Plot of Signal vs. Background > ### Aliases: plot.svb svb.func > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > > plot.svb(mouse.data, "green", 3) > ## thiscreates a plot of the signal versus background intensities > ## for the green channel, using data collected from the third slide. > > > > cleanEx(); ..nameEx <- "plot.t2" > > ### * plot.t2 > > flush(stderr()); flush(stdout()) > > ### Name: plot.t2 > ### Title: Diagnostic Plots for Two-Sample t-statistics > ### Aliases: plot.t2 > ### Keywords: hplot > > ### ** Examples > > data(MouseArray) > # mouse.setup <- init.grid() > # mouse.data <- init.data() ## see \emph{init.data} > # mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > ## Calculation of t-statistics > ## cl <- c(rep(1,3), rep(2,3)) > ## mouse.t2 <- stat.t2(mouse.lratio, cl) > > ## Diagnostic plots > plot.t2(mouse.t2, "Mouse") > > > > cleanEx(); ..nameEx <- "read.spot" > > ### * read.spot > > flush(stderr()); flush(stdout()) > > ### Name: read.spot > ### Title: Reading in Data Generated by the Image Analysis Package Spot > ### Aliases: read.spot > ### Keywords: file > > ### ** Examples > > > ## write.spot(mouse.array, 1, "mouse") > ## mouse1 <- read.spot("mouse.1.spot") > > > > cleanEx(); ..nameEx <- "rgcolors.func" > > ### * rgcolors.func > > flush(stderr()); flush(stdout()) > > ### Name: rgcolors.func > ### Title: Red and Green Color Specification > ### Aliases: rgcolors.func > ### Keywords: color > > ### ** Examples > > rgcolors.func(n=5) [1] "#00FF00" "#000000" "#000000" "#FF0000" > ## The following vector is returned: > ## "#00FF00" "#40BF00" "#808000" "#BF4000" "#FF0000" > > > > cleanEx(); ..nameEx <- "stat.Chen" > > ### * stat.Chen > > flush(stderr()); flush(stdout()) > > ### Name: stat.Chen > ### Title: Apply Chen's single slide method > ### Aliases: stat.Chen > ### Keywords: models > > ### ** Examples > > data(MouseArray) > ##mouse.setup <- init.grid() > ##mouse.data <- init.data() ## see \emph{init.data} > stat.Chen(mouse.data,mouse.setup,image.id=3) > > > > cleanEx(); ..nameEx <- "stat.ChurSap" > > ### * stat.ChurSap > > flush(stderr()); flush(stdout()) > > ### Name: stat.ChurSap > ### Title: Apply Sapir and Churchills single slide method > ### Aliases: stat.ChurSap > ### Keywords: models > > ### ** Examples > > data(MouseArray) > ##mouse.setup <- init.grid() > ##mouse.data <- init.data() ## see \emph{init.data} > stat.ChurSap(mouse.data,mouse.setup,pp=0.95,image.id=3) > > > > cleanEx(); ..nameEx <- "stat.Newton" > > ### * stat.Newton > > flush(stderr()); flush(stdout()) > > ### Name: stat.Newton > ### Title: Apply Newtons single slide method > ### Aliases: stat.Newton > ### Keywords: models > > ### ** Examples > > data(MouseArray) > ##mouse.setup <- init.grid() > ##mouse.data <- init.data() ## see \emph{init.data} > stat.Newton(mouse.data,mouse.setup,image.id=3) > > > > cleanEx(); ..nameEx <- "stat.bay.est" > > ### * stat.bay.est > > flush(stderr()); flush(stdout()) > > ### Name: stat.bay.est > ### Title: Calculates an Odds Ratio for Each Gene in a Multi-slide > ### Microarray Experiment. > ### Aliases: stat.bay.est > ### Keywords: models > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > ## mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > mouse.bayesian<-stat.bay.est(M=mouse.lratio$M) > plot(mouse.bayesian$Xprep$Mbar, mouse.bayesian$lods) > > #alternatively > > mouse.est<-apply(mouse.lratio$M,1,mean.na) > mouse.Vest<-apply(mouse.lratio$M,1,var.na) > n<-ncol(mouse.lratio$M) > k<-n > f<-n-1 > mouse.Xprep<-list(Mbar=mouse.est,Vest=mouse.Vest,k=k,f=f) > > mouse.bayest<-stat.bay.est(Xprep=mouse.Xprep) > plot(mouse.bayest$Xprep$Mbar, mouse.bayest$lods) > > > > > cleanEx(); ..nameEx <- "stat.bayesian" > > ### * stat.bayesian > > flush(stderr()); flush(stdout()) > > ### Name: stat.bayesian > ### Title: Calculates an Odds Ratio of Each Gene in a Multi-slide > ### microarray Experiment > ### Aliases: stat.bayesian > ### Keywords: models > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > mouse.bayesian<-stat.bayesian(M=mouse.lratio$M) > plot(mouse.bayesian$Xprep$Mbar, mouse.bayesian$lods) > > > > > cleanEx(); ..nameEx <- "stat.gnames" > > ### * stat.gnames > > flush(stderr()); flush(stdout()) > > ### Name: stat.gnames > ### Title: Sort Genes According to the Value of a Statistic > ### Aliases: stat.gnames > ### Keywords: misc > > ### ** Examples > > ## Calculating log ratio and performing a t test. > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > cl <- c(rep(1,3), rep(2,3)) > mouse.t2 <- stat.t2(mouse.lratio, cl) > > ## Looking at gene names > ## Finding the top 10 t-statistics > stat.gnames(abs(mouse.t2$t), mouse.gnames, crit=10) $gnames [1] "2537" "720" "2149" "3136" "2270" "5762" "3607" "5356" "5954" "1372" $t [1] 22.086256 18.773782 18.024979 17.873581 14.038102 10.859668 10.668207 [8] 8.978152 8.272516 8.029156 > > ## Finding the top 1 > stat.gnames(abs(mouse.t2$t), mouse.gnames, crit=0.01) $gnames [1] "2537" "720" "2149" "3136" "2270" "5762" "3607" "5356" "5954" "1372" [11] "4530" "1496" "438" "2507" "2962" "751" "1739" "1457" "4133" "1812" [21] "3937" "4857" "3984" "2847" "1774" "6319" "6354" "4353" "634" "6234" [31] "1577" "2727" "2552" "1005" "4962" "6121" "1337" "1667" "5375" "3892" [41] "834" "2422" "1686" "2146" "3334" "3073" "4840" "3546" "3524" "3853" [51] "55" "5685" "4139" "2160" "815" "95" "1045" "885" "6261" "4188" [61] "5344" "1770" "3307" "2306" $t [1] 22.086256 18.773782 18.024979 17.873581 14.038102 10.859668 10.668207 [8] 8.978152 8.272516 8.029156 7.788586 7.729940 7.565154 7.269420 [15] 7.242933 7.172458 6.936318 6.850161 6.848099 6.741371 6.460019 [22] 6.281574 6.172339 6.171186 6.170007 6.035888 5.951187 5.938929 [29] 5.902411 5.717835 5.701596 5.643471 5.586883 5.583210 5.548203 [36] 5.528417 5.512230 5.488486 5.446824 5.413551 5.405699 5.402522 [43] 5.399490 5.348837 5.341991 5.234975 5.213604 5.203122 5.159127 [50] 5.145850 5.056717 5.050813 5.032236 4.998076 4.992609 4.979529 [57] 4.863267 4.858311 4.856797 4.803160 4.761582 4.736982 4.660011 [64] 4.643792 > > ## Finding the 10 extreme M values in the first slide > stat.gnames(abs(mouse.lratio$M[, 1]), mouse.gnames, crit=10) $gnames [1] "6067" "6173" "4638" "1062" "4676" "4659" "2001" "3544" "3577" "5470" $t [1] 3.167494 3.090640 3.019157 2.969282 2.959414 2.763548 2.701883 2.679197 [9] 2.545123 2.505968 > > > > cleanEx(); ..nameEx <- "stat.ma" > > ### * stat.ma > > flush(stderr()); flush(stdout()) > > ### Name: stat.ma > ### Title: Calculation of log Intensity Ratios and Average log Intensities > ### Aliases: stat.ma ma.func norm.l.func norm.pin.func norm.scale.func > ### Keywords: datagen > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > > > > cleanEx(); ..nameEx <- "stat.norm.exp" > > ### * stat.norm.exp > > flush(stderr()); flush(stdout()) > > ### Name: stat.norm.exp > ### Title: Normalization of log Intensity Ratios across slides / > ### experiments. > ### Aliases: stat.norm.exp > ### Keywords: manip > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > mouse.lratio <- stat.ma(mouse.data, mouse.setup) > mouse.norm.lratio <- stat.norm.exp(mouse.lratio$M) > > > > cleanEx(); ..nameEx <- "stat.t2" > > ### * stat.t2 > > flush(stderr()); flush(stdout()) > > ### Name: stat.t2 > ### Title: Two-sample t-statistics > ### Aliases: stat.t2 t2stat.func > ### Keywords: htest > > ### ** Examples > > data(MouseArray) > ## mouse.setup <- init.grid() > ## mouse.data <- init.data() ## see \emph{init.data} > ## mouse.lratio <- stat.ma(mouse.data, mouse.setup) > cl <- c(rep(1,3), rep(2,3)) > mouse.t2 <- stat.t2(mouse.lratio, cl) > > > > cleanEx(); ..nameEx <- "write.spot" > > ### * write.spot > > flush(stderr()); flush(stdout()) > > ### Name: write.spot > ### Title: Writing in Data Generated by the Image Analysis Package Spot > ### Aliases: write.spot > ### Keywords: file > > ### ** Examples > ## Setting up the data > ## library(Spot) > ## SetParameters("mouse") > ## Here is what you should see: > ## Enter number of rows of grids per image (ngrid.r): 4 > ## Enter number of columns of grids per image (ngrid.c): 4 > ## Enter number of rows of spots per grid (nspot.r): 19 > ## Enter number of columns of spots per grid (nspot.c): 21 > ## Enter top/bottom translation tolerance, default is 50 (tolerance.r): 20 > ## Enter left/right translation, default is 50 (tolerance.c): 30 > ## Initialization complete > > ##Inputting Image Data > ## SetImages("mouse") > ## Combining the red and green channels for the first slide > ## mouse.array <- Spots("mouse", 1) > > ## Calling the function to write the data in > ## write.spot(mouse.array, 1, "mouse") > > > > ### *