R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("sn-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('sn') Loading required package: mvtnorm > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "T.Owen" > > ### * T.Owen > > flush(stderr()); flush(stdout()) > > ### Name: T.Owen > ### Title: Owen's function > ### Aliases: T.Owen > ### Keywords: math > > ### ** Examples > > owen <- T.Owen(1:10, 2) > > > > cleanEx(); ..nameEx <- "ais" > > ### * ais > > flush(stderr()); flush(stdout()) > > ### Name: ais > ### Title: Australian Institute of Sport data > ### Aliases: ais > ### Keywords: datasets > > ### ** Examples > > data(ais, package="sn") > attach(ais) > pairs(ais[,c(3:4,10:13)], main = "AIS data") > plot(Wt~sport) > > > > cleanEx(); ..nameEx <- "cp.to.dp" > > ### * cp.to.dp > > flush(stderr()); flush(stdout()) > > ### Name: cp.to.dp > ### Title: Conversion between equivalent parametrizations > ### Aliases: cp.to.dp dp.to.cp > ### Keywords: distribution > > ### ** Examples > > cp <- dp.to.cp(c(30,30,2,4)) > dp <- cp.to.dp(cp) > > > > cleanEx(); ..nameEx <- "dmsn" > > ### * dmsn > > flush(stderr()); flush(stdout()) > > ### Name: dmsn > ### Title: Multivariate skew-normal distribution > ### Aliases: dmsn pmsn rmsn > ### Keywords: distribution multivariate > > ### ** Examples > > x <- seq(-3,3,length=15) > xi <- c(0.5, -1) > Omega <- diag(2) > Omega[2,1] <- Omega[1,2] <- 0.5 > alpha <- c(2,2) > pdf <- dmsn(cbind(x,2*x-1), xi, Omega, alpha) > rnd <- rmsn(10, xi, Omega, alpha) > library(mvtnorm) # only once in the session > cdf <- pmsn(c(2,1), xi, Omega, alpha) > > > > cleanEx(); ..nameEx <- "dmst" > > ### * dmst > > flush(stderr()); flush(stdout()) > > ### Name: dmst > ### Title: Multivariate skew-t distribution > ### Aliases: dmst pmst rmst > ### Keywords: distribution multivariate > > ### ** Examples > > x <- seq(-4,4,length=15) > xi <- c(0.5, -1) > Omega <- diag(2) > Omega[2,1] <- Omega[1,2] <- 0.5 > alpha <- c(2,2) > pdf <- dmst(cbind(x,2*x-1), xi, Omega, alpha, df=5) > rnd <- rmst(10, xi, Omega, alpha, 6) > library(mvtnorm) # only once in the session > cdf <- pmst(c(2,1), xi, Omega, alpha, df=5) > > > > > cleanEx(); ..nameEx <- "dsn" > > ### * dsn > > flush(stderr()); flush(stdout()) > > ### Name: dsn > ### Title: Skew-Normal Distribution > ### Aliases: dsn psn qsn rsn > ### Keywords: distribution > > ### ** Examples > > pdf <- dsn(seq(-3,3,by=0.1), shape=3) > cdf <- psn(seq(-3,3,by=0.1), shape=3) > qu <- qsn(seq(0.1,0.9,by=0.1), shape=-2) > rn <- rsn(100, 5, 2, 5) > > > > cleanEx(); ..nameEx <- "dsn2.plot" > > ### * dsn2.plot > > flush(stderr()); flush(stdout()) > > ### Name: dsn2.plot > ### Title: Plot of Bivariate Skew-normal Density Function > ### Aliases: dsn2.plot > ### Keywords: distribution > > ### ** Examples > > x <- y <- seq(-5, 5, length=35) > dsn2.plot(x, y, c(-1,2), diag(c(1,2.5)), c(2,-3)) > > > > cleanEx(); ..nameEx <- "dst" > > ### * dst > > flush(stderr()); flush(stdout()) > > ### Name: dst > ### Title: Skew-t Distribution > ### Aliases: dst pst qst rst > ### Keywords: distribution > > ### ** Examples > > pdf <- dst(seq(-4,4,by=0.1), shape=3, df=5) > rnd <- rst(100, 5, 2, -5, 8) > q <- qst(c(0.25,0.5,0.75), shape=3, df=5) > pst(q, shape=3, df=5) # must give back c(0.25,0.5,0.75) [1] 0.25 0.50 0.75 > > > > > cleanEx(); ..nameEx <- "dst2.plot" > > ### * dst2.plot > > flush(stderr()); flush(stdout()) > > ### Name: dst2.plot > ### Title: Plot of Bivariate Skew-t Density Function > ### Aliases: dst2.plot > ### Keywords: distribution > > ### ** Examples > > x <- y <- seq(-5, 5, length=35) > dst2.plot(x, y, c(-1,2), diag(c(1,2.5)), c(2,-3), df=5) > > > > cleanEx(); ..nameEx <- "frontier" > > ### * frontier > > flush(stderr()); flush(stdout()) > > ### Name: frontier > ### Title: Simulated sample from a skew-normal distribution > ### Aliases: frontier > ### Keywords: datasets > > ### ** Examples > > data(frontier, package="sn") > a <- sn.2logL.profile(y=frontier) Running until 15 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > a <- sn.2logL.profile(y=frontier, param.range=c(0.8,1.6,10,30), + use.cp=FALSE, npts=11) Running until 11 : 1 2 3 4 5 6 7 8 9 10 11 > > > > cleanEx(); ..nameEx <- "gamma1.to.lambda" > > ### * gamma1.to.lambda > > flush(stderr()); flush(stdout()) > > ### Name: gamma1.to.lambda > ### Title: Converts skewness to shape parameter of skew-normal distribution > ### Aliases: gamma1.to.lambda > ### Keywords: distribution > > ### ** Examples > > > > > cleanEx(); ..nameEx <- "msn.affine" > > ### * msn.affine > > flush(stderr()); flush(stdout()) > > ### Name: msn.affine > ### Title: Affine transformation a multivariate skew-normal or skew-t > ### variable > ### Aliases: msn.affine mst.affine > ### Keywords: multivariate distribution > > ### ** Examples > > dp<- list(xi=c(1,1,2), Omega=toeplitz(1/1:3), alpha=c(3,-1,2)) > A <- matrix(c(1,-1,1,3,0,-2), 2, 3, byrow=TRUE) > dp1 <- msn.affine(dp, A, 1:2) > # > dp$df <- 5 > dp2<- mst.affine(dp,A[1,,drop=FALSE]) > dp3<- mst.affine(dp,A[1,,drop=FALSE], drop=FALSE) > if(zapsmall(dp2$scale^2 - dp3$Omega)) print("something wrong here!") > > > > cleanEx(); ..nameEx <- "msn.cond.plot" > > ### * msn.cond.plot > > flush(stderr()); flush(stdout()) > > ### Name: msn.cond.plot > ### Title: Plot of the density of a conditional skew-normal variate > ### Aliases: msn.cond.plot > ### Keywords: multivariate distribution > > ### ** Examples > > Omega <- diag(3)+0.5*outer(rep(1,3),rep(1,3)) > a<- msn.cond.plot(rep(0,3), Omega, 1:3, 3, -0.75) > > > > cleanEx(); ..nameEx <- "msn.conditional" > > ### * msn.conditional > > flush(stderr()); flush(stdout()) > > ### Name: msn.conditional > ### Title: Cumulants and distribution of a skew-normal variate after > ### conditioning > ### Aliases: msn.conditional > ### Keywords: multivariate distribution > > ### ** Examples > > Omega <- diag(3)+0.5*outer(rep(1,3),rep(1,3)) > a<- msn.conditional(rep(0,3), Omega, 1:3, 3, -0.75) > > > > cleanEx(); ..nameEx <- "msn.fit" > > ### * msn.fit > > flush(stderr()); flush(stdout()) > > ### Name: msn.fit > ### Title: Fitting multivariate skew-normal distributions > ### Aliases: msn.fit > ### Keywords: distribution regression > > ### ** Examples > > data(ais, package="sn") > attach(ais) > # a simple-sample case > b <- msn.fit(y=cbind(Ht,Wt)) Press to continue...# Press to continue...# a regression case: > a <- msn.fit(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-6)) Press to continue...# Press to continue...# refine the previous outcome > a1 <- msn.fit(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-9), start=a$dp) Press to continue... Press to continue... > > cleanEx(); ..nameEx <- "msn.marginal" > > ### * msn.marginal > > flush(stderr()); flush(stdout()) > > ### Name: msn.marginal > ### Title: Marginal components of a multivariate skew-normal distribution > ### Aliases: msn.marginal > ### Keywords: multivariate distribution > > ### ** Examples > > xi <- c(10,0,-30) > Omega <- 5*diag(3)+outer(1:3,1:3) > alpha <- c(1,-3,5) > marg31 <- msn.marginal(xi,Omega,alpha,c(3,1)) > > > > cleanEx(); ..nameEx <- "msn.mle" > > ### * msn.mle > > flush(stderr()); flush(stdout()) > > ### Name: msn.mle > ### Title: Maximum likelihood estimation for a multivariate skew-normal > ### distribution > ### Aliases: msn.mle > ### Keywords: distribution regression > > ### ** Examples > > data(ais, package="sn") > attach(ais) > # a simple-sample case > b <- msn.mle(y=cbind(Ht,Wt)) > # > # a regression case: > a <- msn.mle(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-6)) > # > # refine the previous outcome > a1 <- msn.mle(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-9), start=a$dp) > > > > cleanEx(); ..nameEx <- "msn.quantities" > > ### * msn.quantities > > flush(stderr()); flush(stdout()) > > ### Name: msn.quantities > ### Title: Quantities related to the multivariate skew-normal distribution. > ### Aliases: msn.quantities > ### Keywords: multivariate distribution > > ### ** Examples > > Omega <- 5*diag(3)+outer(1:3,1:3) > msn.quantities(c(0,0,1), Omega, c(-2,2,3)) $xi [1] 0 0 1 $Omega [,1] [,2] [,3] [1,] 6 2 3 [2,] 2 9 6 [3,] 3 6 14 $alpha [1] -2 2 3 $omega [1] 2.449490 3.000000 3.741657 $mean [1] -0.2163595 1.7113615 3.3822360 $variance [,1] [,2] [,3] [1,] 5.953189 2.370269 3.515419 [2,] 2.370269 6.071242 1.923133 [3,] 3.515419 1.923133 8.324952 $Omega.conc [,1] [,2] [,3] [1,] 0.18947368 -0.02105263 -0.03157895 [2,] -0.02105263 0.15789474 -0.06315789 [3,] -0.03157895 -0.06315789 0.10526316 $Omega.cor [,1] [,2] [,3] [1,] 1.0000000 0.2721655 0.3273268 [2,] 0.2721655 1.0000000 0.5345225 [3,] 0.3273268 0.5345225 1.0000000 $Omega.pcor [,1] [,2] [,3] [1,] 1.0000000 0.1217161 0.2236068 [2,] 0.1217161 1.0000000 0.4898979 [3,] 0.2236068 0.4898979 1.0000000 $lambda [1] -0.1113878 1.0225845 1.3239490 $Psi [,1] [,2] [,3] [1,] 1.0000000 0.50558175 0.69392104 [2,] 0.5055818 1.00000000 -0.08539405 [3,] 0.6939210 -0.08539405 1.00000000 $delta [1] -0.1107032 0.7149579 0.7979592 $skewness [1] -0.0002992724 0.1438044833 0.2415712104 > > > > cleanEx(); ..nameEx <- "mst.fit" > > ### * mst.fit > > flush(stderr()); flush(stdout()) > > ### Name: mst.fit > ### Title: Fitting multivariate skew-t distributions > ### Aliases: mst.fit > ### Keywords: distribution regression > > ### ** Examples > > data(ais, package="sn") > attach(ais) > # a simple-sample case > b <- mst.fit(y=cbind(Ht,Wt)) Press to continue...# Press to continue...# a regression case: > a <- mst.fit(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-6)) Press to continue...# Press to continue...# refine the previous outcome > a1 <- mst.fit(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-9), start=a$dp) Press to continue... Press to continue... > > cleanEx(); ..nameEx <- "mst.mle" > > ### * mst.mle > > flush(stderr()); flush(stdout()) > > ### Name: mst.mle > ### Title: Maximum likelihood estimation for a (multivariate) skew-t > ### distribution > ### Aliases: mst.mle st.mle > ### Keywords: distribution regression > > ### ** Examples > > data(ais, package="sn") > attach(ais) > X.mat <- model.matrix(~lbm+sex) > b <- sn.mle(X.mat, bmi) > # > b <- mst.mle(y=cbind(Ht,Wt)) > # > # a multivariate regression case: > a <- mst.mle(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-6)) > # > # refine the previous outcome > a1 <- mst.mle(X=cbind(1,Ht,Wt), y=bmi, control=list(x.tol=1e-9), start=a$dp) > > > > cleanEx(); ..nameEx <- "pnorm2" > > ### * pnorm2 > > flush(stderr()); flush(stdout()) > > ### Name: pnorm2 > ### Title: Bivariate normal integral > ### Aliases: pnorm2 > ### Keywords: distribution multivariate > > ### ** Examples > > p <- pnorm2(1.2, 0.5, 0.67) > > > > cleanEx(); ..nameEx <- "sn.2logL.profile" > > ### * sn.2logL.profile > > flush(stderr()); flush(stdout()) > > ### Name: sn.2logL.profile > ### Title: Profile twice loglikelihood for skew-normal models > ### Aliases: sn.2logL.profile > ### Keywords: distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > a <- sn.2logL.profile(y=bmi) Running until 15 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > a <- sn.2logL.profile(y=bmi, use.cp=FALSE, param.range=c(3,6,1,5)) Running until 15 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > a <- sn.2logL.profile(X=cbind(1,lbm), y=bmi, param.range=c(0,0.9), + npts=50) Running until 50 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > # > data(frontier, package="sn") > a <- sn.2logL.profile(y=frontier, param.range=c(0.8,1.6,10,30), + use.cp=FALSE, npts=11) Running until 11 : 1 2 3 4 5 6 7 8 9 10 11 > > > > cleanEx(); ..nameEx <- "sn.Einfo" > > ### * sn.Einfo > > flush(stderr()); flush(stdout()) > > ### Name: sn.Einfo > ### Title: Expected Fisher information for SN distribution parameters > ### Aliases: sn.Einfo > ### Keywords: distribution > > ### ** Examples > > info <- sn.Einfo(dp=c(0,1,5), n=3) > # > data(ais, package="sn") > M <- model.matrix(~ais$"Ht") > mle <- sn.mle(X=M, y=ais$"Wt", plot.it=FALSE) > info <- sn.Einfo(cp=mle$cp, x=M) > > > > cleanEx(); ..nameEx <- "sn.cumulants" > > ### * sn.cumulants > > flush(stderr()); flush(stdout()) > > ### Name: sn.cumulants > ### Title: Cumulants of the skew-normal distribution > ### Aliases: sn.cumulants > ### Keywords: distribution > > ### ** Examples > > cum <- sn.cumulants(c(0,1,2,5,10),4) > > > > cleanEx(); ..nameEx <- "sn.em" > > ### * sn.em > > flush(stderr()); flush(stdout()) > > ### Name: sn.em > ### Title: Fitting Skew-normal variables using the EM algorithm > ### Aliases: sn.em > ### Keywords: regression distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > # > a<-sn.em(y=bmi) > # > a<-sn.em(X=cbind(1,lbm,lbm^2),y=bmi) > # > M<-model.matrix(~lbm+I(ais$sex)) > b<-sn.em(M,bmi) > # > fit <- sn.em(y=bmi, fixed=c(NA, 2, 3), l.eps=0.001) > > > > cleanEx(); ..nameEx <- "sn.mle" > > ### * sn.mle > > flush(stderr()); flush(stdout()) > > ### Name: sn.mle > ### Title: Maximum likelihood estimation for skew-normal models > ### Aliases: sn.mle > ### Keywords: regression distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > a<-sn.mle(y=bmi) > # > a<-sn.mle(X=cbind(1,lbm),y=bmi) > # > b<-sn.mle(X=model.matrix(~lbm+sex), y=bmi) > > > > cleanEx(); ..nameEx <- "sn.mle.grouped" > > ### * sn.mle.grouped > > flush(stderr()); flush(stdout()) > > ### Name: sn.mle.grouped > ### Title: Maximum likelihood estimation of SN and ST distribution for > ### grouped data > ### Aliases: sn.mle.grouped st.mle.grouped > ### Keywords: distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > breaks<- c(130,160, seq(170, 190, by=2.5), 200, 230) > f <- cut(Ht[sex=="female"], breaks = breaks) > freq <- tabulate(f, length(levels(f))) > b1 <- sn.mle.grouped(breaks, freq) Warning in log(x) : NaNs produced Warning in log(x) : NaNs produced > b2 <- st.mle.grouped(breaks, freq, start=c(b1$end,log(5))) > print(b2$dp) [1] 1.820848e+02 1.103457e+01 -1.802708e+00 4.044000e+08 > # > us.income <- c(0,seq(from=0.2, to=1.8, by=0.1), 2.0, 2.5, 5.0, Inf) > mid <- (us.income[-1]+us.income[-length(us.income)])/2 > mid[length(mid)] <- 6.5 > cum.freq<- c(1.78, 3.25, 5.56, 8.16, 11.12, 14.21, 17.54, 20.78, 24.00, + 27.52, 30.77, 34.21, 37.56, 40.70, 44.41, 47.85, 51.22, + 57.60, 72.12, 96.40, 100) / 100 > freq<- round(diff(c(0,cum.freq*34660))) > a <- st.mle.grouped(breaks=log(us.income), freq, trace=TRUE, + start=c(1.2, log(0.9), -2.1, log(20))) [1] 1.200000e+00 -1.053605e-01 -2.100000e+00 2.995732e+00 -1.052365e+05 [1] 1.499573e+00 -1.053605e-01 -2.100000e+00 2.995732e+00 -1.090037e+05 [1] 1.200000e+00 1.942127e-01 -2.100000e+00 2.995732e+00 -1.068531e+05 [1] 1.200000e+00 -1.053605e-01 -1.800427e+00 2.995732e+00 -1.052218e+05 [1] 1.200000e+00 -1.053605e-01 -2.100000e+00 3.295306e+00 -1.052633e+05 [1] 9.004268e-01 4.442610e-02 -1.950213e+00 3.145519e+00 -1.091734e+05 [1] 1.349787e+00 -6.791386e-02 -2.062553e+00 3.033179e+00 -1.060077e+05 [1] 1.274893e+00 -3.862104e-01 -1.931490e+00 3.164242e+00 -1.110635e+05 [1] 1.218723e+00 4.910693e-02 -2.057873e+00 3.037860e+00 -1.053842e+05 [1] 1.059575e+00 -6.557345e-02 -1.966596e+00 3.129136e+00 -1.057690e+05 [1] 1.132128e+00 -6.615855e-02 -1.990586e+00 3.105147e+00 -1.052560e+05 [1] 1.147341e+00 -2.402270e-01 -1.937634e+00 3.158099e+00 -1.061049e+05 [1] 1.200878e+00 -2.322655e-02 -2.027813e+00 3.067919e+00 -1.051458e+05 [1] 1.166503e+00 -4.469255e-02 -1.859413e+00 2.786960e+00 -1.052091e+05 [1] 1.174877e+00 -5.985954e-02 -1.919559e+00 2.914046e+00 -1.051452e+05 [1] 1.255749e+00 -8.074501e-02 -1.933314e+00 2.881568e+00 -1.053485e+05 [1] 1.163033e+00 -6.980517e-02 -1.976268e+00 3.049252e+00 -1.051522e+05 [1] 1.169394e+00 -2.376537e-02 -1.762033e+00 3.017743e+00 -1.052423e+05 [1] 1.192349e+00 -8.496173e-02 -2.015508e+00 3.001235e+00 -1.051539e+05 [1] 1.165568e+00 -1.356598e-02 -2.169147e+00 3.020494e+00 -1.052979e+05 [1] 1.191392e+00 -8.241188e-02 -1.892607e+00 3.001923e+00 -1.051429e+05 [1] 1.172742e+00 -3.268984e-02 -1.892615e+00 3.015335e+00 -1.051808e+05 [1] 1.187447e+00 -7.189376e-02 -1.984785e+00 3.004760e+00 -1.051325e+05 [1] 1.214263e+00 -4.889070e-02 -1.936114e+00 2.945072e+00 -1.051545e+05 [1] 1.175841e+00 -6.457655e-02 -1.966229e+00 3.023207e+00 -1.051339e+05 [1] 1.163901e+00 -1.161443e-01 -1.853778e+00 2.904049e+00 -1.051736e+05 [1] 1.191633e+00 -4.645599e-02 -1.984304e+00 3.026952e+00 -1.051304e+05 [1] 1.198279e+00 -7.280955e-02 -1.994403e+00 3.114375e+00 -1.051342e+05 [1] 1.192429e+00 -6.957205e-02 -1.975692e+00 3.064292e+00 -1.051278e+05 [1] 1.182283e+00 -4.383729e-02 -2.062898e+00 3.057683e+00 -1.051477e+05 [1] 1.189115e+00 -7.276823e-02 -1.935180e+00 3.015863e+00 -1.051301e+05 [1] 1.204471e+00 -6.576846e-02 -1.973751e+00 3.032726e+00 -1.051346e+05 [1] 1.182998e+00 -6.487453e-02 -1.968110e+00 3.025587e+00 -1.051283e+05 [1] 1.190641e+00 -5.494164e-02 -1.946858e+00 3.061587e+00 -1.051236e+05 [1] 1.192238e+00 -4.646558e-02 -1.927894e+00 3.090000e+00 -1.051266e+05 [1] 1.185958e+00 -8.462223e-02 -1.928616e+00 3.056713e+00 -1.051393e+05 [1] 1.190215e+00 -5.599755e-02 -1.970382e+00 3.034392e+00 -1.051255e+05 [1] 1.189027e+00 -4.992465e-02 -1.995341e+00 3.077066e+00 -1.051250e+05 [1] 1.189049e+00 -5.563554e-02 -1.980301e+00 3.061766e+00 -1.051238e+05 [1] 1.198168e+00 -5.319886e-02 -1.968507e+00 3.085432e+00 -1.051216e+05 [1] 1.205753e+00 -4.736103e-02 -1.968705e+00 3.115354e+00 -1.051231e+05 [1] 1.191607e+00 -4.031475e-02 -1.957331e+00 3.057296e+00 -1.051339e+05 [1] 1.192223e+00 -6.225772e-02 -1.971102e+00 3.062543e+00 -1.051234e+05 [1] 1.194826e+00 -5.701934e-02 -1.963002e+00 3.101272e+00 -1.051201e+05 [1] 1.197132e+00 -5.753023e-02 -1.959312e+00 3.134711e+00 -1.051190e+05 [1] 1.200034e+00 -5.832868e-02 -1.942588e+00 3.110371e+00 -1.051236e+05 [1] 1.197287e+00 -5.765540e-02 -1.952016e+00 3.098220e+00 -1.051217e+05 [1] 1.201764e+00 -6.037947e-02 -1.978611e+00 3.128866e+00 -1.051228e+05 [1] 1.198984e+00 -5.902001e-02 -1.970672e+00 3.112046e+00 -1.051213e+05 [1] 1.203562e+00 -5.144453e-02 -1.954152e+00 3.152661e+00 -1.051207e+05 [1] 1.200727e+00 -5.414783e-02 -1.958389e+00 3.130132e+00 -1.051203e+05 [1] 1.200218e+00 -5.429307e-02 -1.976423e+00 3.132941e+00 -1.051188e+05 [1] 1.201683e+00 -5.261190e-02 -1.988627e+00 3.150301e+00 -1.051174e+05 [1] 1.201095e+00 -5.845612e-02 -1.969993e+00 3.178164e+00 -1.051190e+05 [1] 1.200363e+00 -5.714180e-02 -1.969622e+00 3.154981e+00 -1.051189e+05 [1] 1.200969e+00 -5.169587e-02 -1.967302e+00 3.173016e+00 -1.051165e+05 [1] 1.201962e+00 -4.803380e-02 -1.965617e+00 3.203501e+00 -1.051148e+05 [1] 1.199843e+00 -5.351104e-02 -1.983200e+00 3.191616e+00 -1.051147e+05 [1] 1.199401e+00 -5.319265e-02 -1.995605e+00 3.222358e+00 -1.051127e+05 [1] 1.204573e+00 -4.795985e-02 -2.000424e+00 3.230859e+00 -1.051121e+05 [1] 1.208294e+00 -4.317465e-02 -2.020980e+00 3.278933e+00 -1.051091e+05 [1] 1.205307e+00 -4.136470e-02 -2.015793e+00 3.272566e+00 -1.051083e+05 [1] 1.207779e+00 -3.347614e-02 -2.038879e+00 3.331359e+00 -1.051049e+05 [1] 1.207034e+00 -3.632672e-02 -2.021914e+00 3.367774e+00 -1.051030e+05 [1] 1.209710e+00 -2.818413e-02 -2.038557e+00 3.476510e+00 -1.050978e+05 [1] 1.210630e+00 -3.097999e-02 -2.081393e+00 3.451078e+00 -1.050980e+05 [1] 1.208463e+00 -3.524344e-02 -2.052449e+00 3.389184e+00 -1.051012e+05 [1] 1.218805e+00 -1.471481e-02 -2.094299e+00 3.546583e+00 -1.050963e+05 [1] 1.228507e+00 4.524105e-03 -2.143647e+00 3.708695e+00 -1.050978e+05 [1] 1.215168e+00 -1.050288e-02 -2.105584e+00 3.623832e+00 -1.050950e+05 [1] 1.218605e+00 5.833005e-03 -2.147886e+00 3.796281e+00 -1.050996e+05 [1] 1.219377e+00 -8.714766e-03 -2.121038e+00 3.717643e+00 -1.050892e+05 [1] 1.225177e+00 3.665921e-03 -2.162118e+00 3.910785e+00 -1.050860e+05 [1] 1.223800e+00 6.112035e-03 -2.118886e+00 3.827777e+00 -1.050964e+05 [1] 1.220508e+00 -3.160970e-03 -2.109513e+00 3.733602e+00 -1.050930e+05 [1] 1.230119e+00 1.582776e-02 -2.197200e+00 3.930891e+00 -1.050950e+05 [1] 1.225017e+00 4.824788e-03 -2.157539e+00 3.817296e+00 -1.050920e+05 [1] 1.224129e+00 1.212824e-02 -2.173077e+00 3.996175e+00 -1.050920e+05 [1] 1.222798e+00 5.417477e-03 -2.153383e+00 3.883777e+00 -1.050907e+05 [1] 1.231582e+00 1.587649e-02 -2.185692e+00 4.048898e+00 -1.050889e+05 [1] 1.227478e+00 9.281647e-03 -2.165665e+00 3.942631e+00 -1.050890e+05 [1] 1.231779e+00 1.805331e-02 -2.219853e+00 4.096776e+00 -1.050879e+05 [1] 1.228961e+00 1.274974e-02 -2.192268e+00 4.005982e+00 -1.050881e+05 [1] 1.230651e+00 1.668181e-02 -2.202984e+00 4.152822e+00 -1.050851e+05 [1] 1.233468e+00 2.261032e-02 -2.225706e+00 4.320586e+00 -1.050838e+05 [1] 1.238205e+00 2.468554e-02 -2.243302e+00 4.304746e+00 -1.050833e+05 [1] 1.245908e+00 3.431958e-02 -2.288261e+00 4.515230e+00 -1.050831e+05 [1] 1.236584e+00 2.344807e-02 -2.262277e+00 4.372790e+00 -1.050801e+05 [1] 1.239086e+00 2.723387e-02 -2.300569e+00 4.534737e+00 -1.050782e+05 [1] 1.240040e+00 2.586154e-02 -2.268474e+00 4.543893e+00 -1.050756e+05 [1] 1.244171e+00 2.976565e-02 -2.292784e+00 4.767452e+00 -1.050719e+05 [1] 1.256140e+00 5.329879e-02 -2.391543e+00 5.158217e+00 -1.050879e+05 [1] 1.232917e+00 1.607414e-02 -2.219474e+00 4.222643e+00 -1.050799e+05 [1] 1.247573e+00 3.108629e-02 -2.324838e+00 4.699445e+00 -1.050727e+05 [1] 1.244047e+00 2.896730e-02 -2.300055e+00 4.604730e+00 -1.050747e+05 [1] 1.235966e+00 1.776040e-02 -2.280571e+00 4.596908e+00 -1.050702e+05 [1] 1.230995e+00 9.480806e-03 -2.276727e+00 4.637748e+00 -1.050695e+05 [1] 1.247994e+00 3.270917e-02 -2.377985e+00 5.097047e+00 -1.050687e+05 [1] 1.255533e+00 4.102669e-02 -2.457240e+00 5.534250e+00 -9.401522e+04 [1] 1.250050e+00 2.844585e-02 -2.375225e+00 5.284710e+00 -1.050630e+05 [1] 1.247309e+00 2.814285e-02 -2.356561e+00 5.097217e+00 -1.050651e+05 [1] 1.242802e+00 2.327320e-02 -2.376150e+00 5.412635e+00 -1.050652e+05 [1] 1.243994e+00 2.522647e-02 -2.363322e+00 5.234337e+00 -1.050649e+05 [1] 1.246115e+00 2.232426e-02 -2.443473e+00 5.578071e+00 -9.410162e+04 [1] 1.245629e+00 2.418461e-02 -2.405801e+00 5.375416e+00 -1.050672e+05 [1] 1.266851e+00 4.903083e-02 -2.542904e+00 6.177936e+00 -9.399934e+04 [1] 1.284780e+00 6.880584e-02 -2.675993e+00 6.948031e+00 -9.394790e+04 [1] 1.274244e+00 5.507484e-02 -2.612644e+00 6.438193e+00 -9.398827e+04 [1] 1.266682e+00 4.761275e-02 -2.550313e+00 6.137229e+00 -9.400679e+04 [1] 1.280286e+00 6.516996e-02 -2.719450e+00 6.964562e+00 -9.396516e+04 [1] 1.272727e+00 5.598894e-02 -2.633394e+00 6.544599e+00 -9.398550e+04 [1] 1.301307e+00 9.271441e-02 -2.789190e+00 7.364447e+00 -9.389042e+04 [1] 1.328903e+00 1.279095e-01 -2.962049e+00 8.257635e+00 -9.384346e+04 [1] 1.328574e+00 1.174534e-01 -3.027827e+00 8.769961e+00 -9.387037e+04 [1] 1.310313e+00 9.834671e-02 -2.885181e+00 7.961033e+00 -9.389106e+04 [1] 1.337027e+00 1.345945e-01 -3.080016e+00 9.031901e+00 -9.384601e+04 [1] 1.321331e+00 1.147146e-01 -2.963173e+00 8.383474e+00 -9.386357e+04 [1] 1.359355e+00 1.592116e-01 -3.153492e+00 9.539202e+00 -9.384369e+04 [1] 1.339588e+00 1.357012e-01 -3.044982e+00 8.895542e+00 -9.384521e+04 [1] 1.392150e+00 2.007786e-01 -3.435699e+00 1.085132e+01 -9.388223e+04 [1] 1.365307e+00 1.677854e-01 -3.245773e+00 9.875496e+00 -9.384620e+04 [1] 1.366723e+00 1.772971e-01 -3.192837e+00 9.582156e+00 -9.384622e+04 [1] 1.357185e+00 1.623362e-01 -3.151585e+00 9.379107e+00 -9.383858e+04 [1] 1.325928e+00 1.242405e-01 -2.927798e+00 8.228426e+00 -9.384586e+04 [1] 1.335773e+00 1.351267e-01 -3.007292e+00 8.640193e+00 -9.384044e+04 [1] 1.353581e+00 1.576975e-01 -3.057193e+00 8.876168e+00 -9.383870e+04 [1] 1.349443e+00 1.519218e-01 -3.062899e+00 8.915101e+00 -9.383714e+04 [1] 1.326296e+00 1.294354e-01 -2.938420e+00 8.056817e+00 -9.383780e+04 [1] 1.334561e+00 1.368795e-01 -2.992188e+00 8.427413e+00 -9.383630e+04 [1] 1.359578e+00 1.652226e-01 -3.144933e+00 9.423272e+00 -9.384027e+04 [1] 1.351909e+00 1.558943e-01 -3.099212e+00 9.131863e+00 -9.383662e+04 [1] 1.360776e+00 1.683892e-01 -3.145650e+00 9.286549e+00 -9.384077e+04 [1] 1.342024e+00 1.434423e-01 -3.041881e+00 8.801782e+00 -9.383683e+04 [1] 1.331783e+00 1.317327e-01 -2.946505e+00 8.258972e+00 -9.384019e+04 [1] 1.350835e+00 1.546853e-01 -3.100315e+00 9.099074e+00 -9.383624e+04 [1] 1.340222e+00 1.435290e-01 -3.053899e+00 8.814965e+00 -9.383497e+04 [1] 1.335611e+00 1.393326e-01 -3.049399e+00 8.764897e+00 -9.383573e+04 [1] 1.346740e+00 1.520517e-01 -3.080926e+00 8.934875e+00 -9.383370e+04 [1] 1.349098e+00 1.563564e-01 -3.100448e+00 9.001421e+00 -9.383314e+04 [1] 1.335448e+00 1.398308e-01 -3.024213e+00 8.539573e+00 -9.383408e+04 [1] 1.339564e+00 1.438467e-01 -3.042963e+00 8.687646e+00 -9.383374e+04 [1] 1.355298e+00 1.623292e-01 -3.156624e+00 9.374140e+00 -9.383643e+04 [1] 1.339745e+00 1.432419e-01 -3.033297e+00 8.664095e+00 -9.383445e+04 [1] 1.333479e+00 1.388017e-01 -3.014988e+00 8.484990e+00 -9.383336e+04 [1] 1.337818e+00 1.427726e-01 -3.036320e+00 8.638511e+00 -9.383313e+04 [1] 1.342891e+00 1.495798e-01 -3.052615e+00 8.680871e+00 -9.383167e+04 [1] 1.344225e+00 1.526053e-01 -3.051972e+00 8.613824e+00 -9.383081e+04 [1] 1.345607e+00 1.545486e-01 -3.082554e+00 8.806606e+00 -9.383085e+04 [1] 1.344142e+00 1.517219e-01 -3.070240e+00 8.770978e+00 -9.383130e+04 [1] 1.348811e+00 1.592948e-01 -3.092685e+00 8.842536e+00 -9.383145e+04 [1] 1.346499e+00 1.554327e-01 -3.080254e+00 8.803813e+00 -9.383116e+04 [1] 1.337977e+00 1.463232e-01 -3.025103e+00 8.429956e+00 -9.382972e+04 [1] 1.332417e+00 1.413065e-01 -2.987430e+00 8.144223e+00 -9.382934e+04 [1] 1.346556e+00 1.591740e-01 -3.064785e+00 8.545723e+00 -9.382989e+04 [1] 1.344371e+00 1.550736e-01 -3.057669e+00 8.568920e+00 -9.382956e+04 [1] 1.336811e+00 1.463343e-01 -3.009559e+00 8.262974e+00 -9.382869e+04 [1] 1.331967 0.141785 -2.974211 7.992554 -93828.509092 [1] 1.330883e+00 1.408366e-01 -2.953087e+00 7.853155e+00 -9.382855e+04 [1] 1.334564e+00 1.442646e-01 -2.985454e+00 8.091518e+00 -9.382851e+04 [1] 1.327435e+00 1.386096e-01 -2.950410e+00 7.784783e+00 -9.382803e+04 [1] 1.319039e+00 1.316118e-01 -2.899628e+00 7.370263e+00 -9.382949e+04 [1] 1.318820e+00 1.279092e-01 -2.891083e+00 7.437619e+00 -9.383337e+04 [1] 1.337984e+00 1.482825e-01 -3.016023e+00 8.286095e+00 -9.382827e+04 [1] 1.333558e+00 1.451644e-01 -2.975619e+00 7.933252e+00 -9.382717e+04 [1] 1.334129e+00 1.470933e-01 -2.969713e+00 7.827766e+00 -9.382655e+04 [1] 1.335088 0.147340 -2.986588 8.002526 -93826.847641 [1] 1.334308e+00 1.459513e-01 -2.983494e+00 8.000033e+00 -9.382714e+04 [1] 1.332753e+00 1.463981e-01 -2.975913e+00 7.859068e+00 -9.382589e+04 [1] 1.331848e+00 1.474648e-01 -2.971143e+00 7.742842e+00 -9.382490e+04 [1] 1.326266e+00 1.419713e-01 -2.922904e+00 7.392864e+00 -9.382516e+04 [1] 1.329196e+00 1.435491e-01 -2.946184e+00 7.616172e+00 -9.382559e+04 [1] 1.336231e+00 1.533251e-01 -2.974764e+00 7.698216e+00 -9.382580e+04 [1] 1.334032e+00 1.496463e-01 -2.968676e+00 7.719858e+00 -9.382544e+04 [1] 1.328050e+00 1.457478e-01 -2.929629e+00 7.339139e+00 -9.382433e+04 [1] 1.324531e+00 1.449518e-01 -2.901150e+00 7.007445e+00 -9.382385e+04 [1] 1.324210e+00 1.449238e-01 -2.912223e+00 7.103739e+00 -9.382344e+04 [1] 1.319250e+00 1.438391e-01 -2.883478e+00 6.741725e+00 -9.382326e+04 [1] 1.316915e+00 1.394672e-01 -2.870662e+00 6.722580e+00 -9.382397e+04 [1] 1.321194 0.142012 -2.895165 6.971900 -93823.666140 [1] 1.322145e+00 1.471625e-01 -2.902564e+00 6.839092e+00 -9.382305e+04 [1] 1.320084e+00 1.497581e-01 -2.892394e+00 6.562206e+00 -9.382379e+04 [1] 1.311712e+00 1.415178e-01 -2.820036e+00 6.037238e+00 -9.382529e+04 [1] 1.326814e+00 1.459781e-01 -2.933366e+00 7.316441e+00 -9.382364e+04 [1] 1.320171e+00 1.445440e-01 -2.906137e+00 6.927134e+00 -9.382286e+04 [1] 1.317991e+00 1.443402e-01 -2.908630e+00 6.886979e+00 -9.382289e+04 [1] 1.322995e+00 1.487498e-01 -2.917607e+00 6.940297e+00 -9.382287e+04 [1] 1.322545e+00 1.470654e-01 -2.911997e+00 6.948198e+00 -9.382287e+04 [1] 1.315242e+00 1.453274e-01 -2.868722e+00 6.411633e+00 -9.382388e+04 [1] 1.323921e+00 1.458154e-01 -2.917205e+00 7.090239e+00 -9.382309e+04 [1] 1.325141e+00 1.484546e-01 -2.935473e+00 7.160606e+00 -9.382278e+04 [1] 1.328087e+00 1.507624e-01 -2.961470e+00 7.370047e+00 -9.382289e+04 [1] 1.321080e+00 1.477978e-01 -2.910880e+00 6.847276e+00 -9.382285e+04 [1] 1.321791e+00 1.473022e-01 -2.912461e+00 6.908017e+00 -9.382280e+04 [1] 1.322679e+00 1.465206e-01 -2.930470e+00 7.132886e+00 -9.382263e+04 [1] 1.322946e+00 1.461997e-01 -2.944423e+00 7.279782e+00 -9.382265e+04 [1] 1.322346e+00 1.463454e-01 -2.930274e+00 7.116124e+00 -9.382262e+04 [1] 1.322246e+00 1.459854e-01 -2.939412e+00 7.200087e+00 -9.382263e+04 [1] 1.325807e+00 1.497674e-01 -2.948202e+00 7.231682e+00 -9.382268e+04 [1] 1.324398e+00 1.484615e-01 -2.937686e+00 7.155545e+00 -9.382264e+04 [1] 1.325492e+00 1.475888e-01 -2.954490e+00 7.374564e+00 -9.382273e+04 [1] 1.324566e+00 1.475172e-01 -2.943983e+00 7.257927e+00 -9.382265e+04 [1] 1.321854e+00 1.459678e-01 -2.935734e+00 7.170634e+00 -9.382262e+04 [1] 1.320210e+00 1.447244e-01 -2.935864e+00 7.175648e+00 -9.382278e+04 [1] 1.321072e+00 1.461305e-01 -2.923099e+00 7.029668e+00 -9.382263e+04 [1] 1.321946e+00 1.464772e-01 -2.928320e+00 7.086732e+00 -9.382261e+04 [1] 1.320014e+00 1.441939e-01 -2.924713e+00 7.097643e+00 -9.382280e+04 [1] 1.323302e+00 1.473946e-01 -2.934443e+00 7.141070e+00 -9.382260e+04 [1] 1.322044e+00 1.465718e-01 -2.933915e+00 7.124395e+00 -9.382258e+04 [1] 1.321727e+00 1.465974e-01 -2.935637e+00 7.120149e+00 -9.382257e+04 [1] 1.322068e+00 1.468731e-01 -2.936793e+00 7.143169e+00 -9.382255e+04 [1] 1.321929 0.147137 -2.940052 7.156691 -93822.544953 [1] 1.322599e+00 1.478353e-01 -2.933492e+00 7.081687e+00 -9.382256e+04 [1] 1.322412e+00 1.473685e-01 -2.934053e+00 7.103924e+00 -9.382255e+04 [1] 1.322740e+00 1.477716e-01 -2.943772e+00 7.174184e+00 -9.382252e+04 [1] 1.323137e+00 1.484189e-01 -2.951499e+00 7.217910e+00 -9.382251e+04 [1] 1.321301e+00 1.473662e-01 -2.946178e+00 7.158268e+00 -9.382260e+04 [1] 1.322802e+00 1.473875e-01 -2.937376e+00 7.145369e+00 -9.382255e+04 [1] 1.323413e+00 1.485585e-01 -2.945853e+00 7.191798e+00 -9.382252e+04 [1] 1.322992e+00 1.480682e-01 -2.943299e+00 7.173886e+00 -9.382252e+04 [1] 1.323229e+00 1.483825e-01 -2.953337e+00 7.251961e+00 -9.382252e+04 [1] 1.323025e+00 1.481290e-01 -2.948516e+00 7.214951e+00 -9.382251e+04 [1] 1.322950e+00 1.487341e-01 -2.955584e+00 7.245306e+00 -9.382254e+04 [1] 1.322913e+00 1.483975e-01 -2.951032e+00 7.220322e+00 -9.382252e+04 [1] 1.324315e+00 1.496149e-01 -2.958398e+00 7.265800e+00 -9.382253e+04 [1] 1.323718e+00 1.489954e-01 -2.953811e+00 7.238523e+00 -9.382251e+04 [1] 1.323733e+00 1.486534e-01 -2.948808e+00 7.211269e+00 -9.382251e+04 [1] 1.323528e+00 1.485894e-01 -2.949364e+00 7.213532e+00 -9.382251e+04 [1] 1.323291e+00 1.485078e-01 -2.955742e+00 7.250660e+00 -9.382252e+04 [1] 1.323383e+00 1.485458e-01 -2.948325e+00 7.206514e+00 -9.382251e+04 [1] 1.323690e+00 1.487110e-01 -2.948509e+00 7.218850e+00 -9.382251e+04 [1] 1.323552e+00 1.486379e-01 -2.949257e+00 7.218615e+00 -9.382251e+04 [1] 1.324066e+00 1.492553e-01 -2.951862e+00 7.223640e+00 -9.382252e+04 [1] 1.323285e+00 1.484106e-01 -2.949353e+00 7.217124e+00 -9.382251e+04 [1] 1.323155e+00 1.480965e-01 -2.944338e+00 7.189370e+00 -9.382252e+04 [1] 1.323578e+00 1.487707e-01 -2.951443e+00 7.226234e+00 -9.382251e+04 > print(a$dp) [1] 1.323285 1.159989 -2.949353 1362.564092 > > > > cleanEx(); ..nameEx <- "sn.mmle" > > ### * sn.mmle > > flush(stderr()); flush(stdout()) > > ### Name: sn.mmle > ### Title: Modified maximum likelihood estimation for skew-normal models > ### Aliases: sn.mmle > ### Keywords: regression distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > a <- sn.mmle(y=bmi) > # > M <- model.matrix(~lbm+sex) > b <- sn.mmle(M,bmi) > > > > cleanEx(); ..nameEx <- "st.2logL.profile" > > ### * st.2logL.profile > > flush(stderr()); flush(stdout()) > > ### Name: st.2logL.profile > ### Title: Profile twice loglikelihood for skew-t models > ### Aliases: st.2logL.profile > ### Keywords: distribution > > ### ** Examples > > data(ais, package="sn") > attach(ais) > a <- st.2logL.profile(y=bmi, xlab="alpha", ylab="log(df)") Running up to 15 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > a <- st.2logL.profile(y=bmi, fixed.comp=4, fixed.values=log(c(1,25))) Running up to 30 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > a <- st.2logL.profile(X=cbind(1,lbm), y=bmi, fixed.comp=5, + fixed.values=log(c(5,25)), xlab="log(df)", npts=50) Running up to 50 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > a <- st.2logL.profile(X=cbind(1,Ht), y=Wt, fixed.comp=c(4,5), + fixed.values=cbind(c(-1,5), log(c(2,25))), + xlab="alpha", ylab="log(df)") Running up to 15 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > > > > cleanEx(); ..nameEx <- "st.cumulants" > > ### * st.cumulants > > flush(stderr()); flush(stdout()) > > ### Name: st.cumulants > ### Title: Cumulants of the skew-t distribution > ### Aliases: st.cumulants > ### Keywords: distribution > > ### ** Examples > > cum <- st.cumulants(shape=3, df=5) > > > > cleanEx(); ..nameEx <- "zeta" > > ### * zeta > > flush(stderr()); flush(stdout()) > > ### Name: zeta > ### Title: Function `log(2*pnorm(x))' and its derivatives > ### Aliases: zeta > ### Keywords: math > > ### ** Examples > > y <- zeta(2,seq(-20,20,by=0.5)) > # > for(k in 0:4) curve(zeta(k,x), from=-1, to=5, col = k+2, add = k > 0) > legend(3, -0.5, legend=as.character(0:4), col=2:6, lty=1) > > > > ### *