R : Copyright 2005, The R Foundation for Statistical Computing Version 2.1.1 (2005-06-20), ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### *
> ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages for base and grid graphics > setHook("plot.new", ".newplot.hook") > setHook("persp", ".newplot.hook") > setHook("grid.newpage", ".gridplot.hook") > > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + delayedAssign("T", stop("T used instead of TRUE"), + assign.env = .CheckExEnv) + delayedAssign("F", stop("F used instead of FALSE"), + assign.env = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > grDevices::postscript("supclust-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > options(warn = 1) > library('supclust') Loading required package: class Loading required package: rpart > > assign(".oldSearch", search(), env = .CheckExEnv) > assign(".oldNS", loadedNamespaces(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "coef.pelora" > > ### * coef.pelora > > flush(stderr()); flush(stdout()) > > ### Name: coef.pelora > ### Title: Extract the Model Coefficients of Pelora > ### Aliases: coef.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Pelora's help page > example(pelora, echo = FALSE) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > coef(fit) Intercept Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 -1.1716983 0.1842654 0.8385458 0.7976833 0.6847451 0.6067519 Predictor 6 Predictor 7 Predictor 8 Predictor 9 Predictor 10 0.8211166 0.4847442 0.2955851 0.1878370 1.2569333 > > > > cleanEx(); ..nameEx <- "dlda" > > ### * dlda > > flush(stderr()); flush(stdout()) > > ### Name: dlda > ### Title: Classification with Wilma's Clusters > ### Aliases: dlda nnr logreg aggtrees > ### Keywords: classif > > ### ** Examples > > ## Generating random learning data: 20 observations and 10 variables (clusters) > set.seed(342) > xlearn <- matrix(rnorm(200), nrow = 20, ncol = 10) > > ## Generating random test data: 8 observations and 10 variables(clusters) > xtest <- matrix(rnorm(80), nrow = 8, ncol = 10) > > ## Generating random class labels for the learning data > ylearn <- as.numeric(runif(20)>0.5) > > ## Predicting the class labels for the test data > nnr(xlearn, xtest, ylearn) [1] 0 0 0 0 0 1 0 0 > dlda(xlearn, xtest, ylearn) [1] 0 0 0 0 1 1 1 0 > logreg(xlearn, xtest, ylearn) [1] 1 0 0 0 1 1 1 0 > aggtrees(xlearn, xtest, ylearn) [1] 1 0 0 0 1 1 1 1 > > > > cleanEx(); ..nameEx <- "fitted.pelora" > > ### * fitted.pelora > > flush(stderr()); flush(stdout()) > > ### Name: fitted.pelora > ### Title: Extract the Fitted Values of Pelora > ### Aliases: fitted.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Pelora's help page > example(pelora, echo = FALSE) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > fitted(fit) Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6 1 -0.4060399 -0.1988190 -0.1764151 -0.5276747 -0.43261774 -0.2709890 2 0.9430274 -0.3024245 -0.3223401 -0.5329070 -0.30186209 -0.2857035 3 -0.6145205 -0.3365585 -0.3011438 -0.3601139 -0.42086686 -0.3006743 4 -1.3627031 -0.2594442 -0.2981212 -0.2832939 -0.38733884 -0.3447153 5 -1.3734152 -0.2692426 -0.2108856 -0.1628854 -0.25294441 -0.2564958 6 1.0657803 -0.3924563 -0.4329788 -0.5385678 -0.37081949 -0.2798448 7 -1.3374205 -0.2294537 -0.2833225 -0.2630923 -0.08457562 -0.2446500 8 -1.3354139 -0.2312732 -0.2094792 -0.3029268 -0.24043921 -0.1731558 9 -0.4067449 -0.3452204 -0.3282927 -0.4073596 -0.46628899 -0.1789397 10 0.2760965 -0.2621182 -0.3549939 -0.3327177 -0.44048202 -0.1903839 11 -1.2437437 -0.2228681 -0.2852932 -0.3878044 -0.58752197 -0.2115417 12 -0.9485866 -0.1954846 -0.2497780 -0.2519208 -0.40750018 -0.2963952 13 -1.3183164 -0.2929590 -0.1526353 -0.3588182 -0.49039866 -0.3520898 14 0.5652176 -0.4275906 -0.3407247 -0.2437327 -0.32728358 -0.3864132 15 -1.3396861 -0.2195409 -0.2474477 -0.3421138 -0.35555360 -0.2834904 16 -1.3573863 -0.3362329 -0.2724343 -0.3233672 -0.22479880 -0.2014709 17 -0.4053540 -0.2170572 -0.3454366 -0.3534689 -0.38016032 -0.1608026 18 -1.1799757 -0.2721089 -0.2945062 -0.3373299 -0.18761222 -0.3230994 19 -1.2076066 -0.2042550 -0.2828239 -0.1467543 -0.15759320 -0.2677612 20 -0.9575222 -0.3129403 -0.2710245 -0.3661953 -0.45554503 -0.2277328 21 -1.0457692 -0.2260243 -0.2695839 -0.1713213 -0.41803519 -0.2698210 22 -1.1115955 -0.1787175 -0.3100426 -0.2658555 -0.32307801 -0.2112505 23 0.1934126 -0.3300765 -0.4028228 -0.2141802 -0.33808943 -0.2949899 24 -1.4346453 -0.2309166 -0.3560609 -0.1628456 -0.29616359 -0.3641453 25 -1.2171742 -0.1839816 -0.2260751 -0.2935019 -0.39610751 -0.3254803 26 -1.2463141 -0.2101915 -0.1701988 -0.3030649 -0.46707433 -0.2582409 27 -1.2163623 -0.3313818 -0.2114892 -0.2873244 -0.40834397 -0.3068746 28 0.7410577 0.8644460 0.8123971 0.8030237 0.95358870 0.5416967 29 2.8713446 0.5091642 0.6323301 0.7137462 0.90306498 0.6968565 30 2.8404211 0.6085351 0.7190366 0.7471776 0.83533181 0.7134020 31 2.5610426 0.6083006 0.6731309 0.6143815 0.92147667 0.6234324 32 2.8598801 0.5794000 0.5498537 0.6949743 0.81219055 0.7228671 33 1.6246713 0.7242354 0.7266119 0.8285891 0.88759536 0.6110106 34 1.1566060 0.7456103 0.7304296 0.9371997 0.98673366 0.5910254 35 1.3758300 0.7578748 0.6902259 0.8781558 0.81929405 0.7543096 36 2.8477323 0.5502931 0.6184029 0.9061539 0.71769130 0.6763093 37 2.8649981 0.5469703 0.7333408 0.6684482 0.98778671 0.6531476 38 1.2206500 0.7245081 0.7205910 0.7292881 0.79434106 0.6830947 Predictor 7 Predictor 8 Predictor 9 Predictor 10 1 -0.3377947 -0.541723991 -0.98103854 -0.24262700 2 -0.2598511 -1.326473015 0.21200654 -0.33026179 3 -0.6078839 -0.444415880 -0.79209596 -0.21531241 4 -0.1707361 -0.388943777 -1.36270310 -0.22026996 5 -0.4517779 -0.115590409 -0.26099616 -0.37148180 6 -0.4129790 -1.192833271 -0.55588074 -0.17041470 7 -0.4831630 -1.337420520 -1.33742052 -0.09763985 8 -0.2067421 -0.507674642 -1.16396233 -0.27696790 9 -0.6862245 -1.056396699 -1.22369368 -0.06686727 10 -0.3417866 -0.718790397 -0.27461021 -0.21466096 11 -0.7233215 -0.943302131 -1.24374365 -0.14290683 12 -0.5365463 0.002029410 0.06379095 -0.34423180 13 -0.4393363 -0.949530487 -1.31831643 -0.10417821 14 -0.5653535 -1.016787100 -0.27144455 -0.31414727 15 -0.2118393 -1.339686102 -1.12421926 -0.10603075 16 -0.3355517 -0.699257517 -1.09044682 -0.19459049 17 -0.4749806 -0.631829865 -1.51021939 -0.22101496 18 -0.3598141 -0.851634184 -1.17997570 -0.15392574 19 -0.5286960 -0.791773468 -1.20760661 -0.22561805 20 -0.3552274 -1.062039246 -1.53441337 -0.12800886 21 -0.8458994 -0.746337740 -0.83562242 -0.17875482 22 -0.1830584 -0.909685156 -1.11159548 -0.23687896 23 -0.4502238 -1.113688251 -1.18711813 -0.19449288 24 -0.3956765 -1.416340528 -0.90685483 -0.04129460 25 -0.5487348 -0.567207282 -1.21717418 -0.14357893 26 -0.3180278 -1.019809640 -1.24631406 -0.17155724 27 -0.3441807 -1.216362346 -0.92405624 -0.12719614 28 0.9471456 -0.354554077 -0.52250494 0.74819296 29 0.7868549 0.525843561 1.48838553 0.50876676 30 1.2425456 0.729954135 2.49675387 0.25958430 31 1.0185054 1.067004349 0.71014772 0.42509865 32 1.1924235 0.407932122 -0.30247047 0.53876303 33 1.2133198 -0.169276344 0.53393296 0.54281280 34 1.0705221 1.103914755 0.48085144 0.41491610 35 0.8002570 0.760881319 0.84562749 0.43643592 36 1.1476762 0.520691473 2.17426590 0.35226695 37 1.1229132 -0.110804905 1.80504585 0.44747837 38 1.0332438 -0.392022495 1.13339969 0.56059432 > > > > cleanEx(); ..nameEx <- "fitted.wilma" > > ### * fitted.wilma > > flush(stderr()); flush(stdout()) > > ### Name: fitted.wilma > ### Title: Extract the Fitted Values of Wilma > ### Aliases: fitted.wilma > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Wilma's help page > example(wilma, echo = FALSE) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > fitted(fit) Predictor 1 Predictor 2 Predictor 3 1 -0.46171740 -0.009992927 -0.3834917 2 -0.07873956 0.063261853 -0.4507562 3 -0.98502735 0.115046790 -0.6588318 4 -0.44679460 0.190811888 -0.3708621 5 -0.60165527 0.160506547 -0.4297218 6 -0.13915781 -0.081445994 -0.5412858 7 -0.60926232 0.233106964 -0.5008374 8 -0.40958990 0.230920699 -0.3737456 9 -0.90332225 -0.205838386 -0.6718678 10 -0.15449904 0.090387741 -0.3621221 11 -0.93321219 -0.166396854 -0.5220501 12 -0.24828228 0.254053226 -0.4432451 13 -0.68080799 -0.275165741 -0.5242771 14 -0.26706279 -0.139745615 -0.4901269 15 -0.59354591 0.013901552 -0.5356795 16 -0.31641321 -0.025168422 -0.6646484 17 -0.12774159 0.243830097 -0.3556577 18 -0.49255028 -0.046791465 -0.3959728 19 -0.10804314 -0.057647582 -0.3670498 20 -0.21844937 -0.020541359 -0.7158141 21 -0.38251170 -0.056594477 -0.4981708 22 -0.52243987 0.041268521 -0.4493086 23 -0.09432030 0.156036729 -0.6578364 24 -0.74887144 0.112149259 -0.4000218 25 -0.31088303 0.155117649 -0.6817786 26 -0.37235541 -0.087960565 -0.4800702 27 -0.65676744 -0.033629112 -0.5413959 28 1.06529951 1.000615155 0.3486579 29 1.40225347 1.385903995 0.5340921 30 1.01794839 1.098640932 0.3200740 31 1.12892126 1.025627213 0.2333483 32 1.25679904 0.979789107 0.2635796 33 0.97891459 1.265071950 0.5098338 34 0.95638559 1.137334725 0.4849519 35 0.97667401 0.992184346 0.2582996 36 1.09683760 0.987807416 0.3759882 37 1.30587995 1.347697651 0.9897420 38 1.09675411 1.178182368 0.2318421 > > > > cleanEx(); ..nameEx <- "leukemia" > > ### * leukemia > > flush(stderr()); flush(stdout()) > > ### Name: leukemia > ### Title: A part of the Golub's famous AML/ALL-leukemia dataset > ### Aliases: leukemia leukemia.x leukemia.y leukemia.z > ### Keywords: datasets > > ### ** Examples > > data(leukemia, package="supclust") > str(leukemia.x) num [1:38, 1:250] 3.15 3.10 2.98 3.24 3.19 ... > str(leukemia.y) num [1:38] 0 0 0 0 0 0 0 0 0 0 ... > str(leukemia.z) num [1:38] 0 1 1 0 0 1 0 0 1 1 ... > op <- par(mfrow= 1:2) > plot(leukemia.x[,56], leukemia.y) > plot(leukemia.x[,174],leukemia.z) > par(op) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "margin" > > ### * margin > > flush(stderr()); flush(stdout()) > > ### Name: margin > ### Title: Classification Margin Between Two Sample Classes > ### Aliases: margin > ### Keywords: htest > > ### ** Examples > > data(leukemia, package="supclust") > op <- par(mfrow=c(1,3)) > plot(leukemia.x[,69],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,69], leukemia.y),2))) > > ## Sign-flipping is very important > plot(leukemia.x[,161],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,161], leukemia.y),2))) > x <- sign.flip(leukemia.x, leukemia.y)$flipped.matrix > plot(x[,161],leukemia.y) > title(paste("Margin = ", round(margin(x[,161], leukemia.y),2))) > par(op) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "pelora" > > ### * pelora > > flush(stderr()); flush(stdout()) > > ### Name: pelora > ### Title: Supervised Grouping of Predictor Variables > ### Aliases: pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Working with a "real" microarray dataset > data(leukemia, package="supclust") > > ## Generating random test data: 3 observations and 250 variables (genes) > set.seed(724) > xN <- matrix(rnorm(750), nrow = 3, ncol = 250) > > ## Fitting Pelora > fit <- pelora(leukemia.x, leukemia.y, noc = 3) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated > > ## Working with the output > fit Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Cluster 2 : Contains 11 genes, final criterion 6.157 Cluster 3 : Contains 13 genes, final criterion 4.870 > summary(fit) Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) > plot(fit) > fitted(fit) Predictor 1 Predictor 2 Predictor 3 1 -0.3067501 -0.2965628 -0.2807912 2 -0.2374449 -0.3131413 -0.2380897 3 -0.4191425 -0.3808118 -0.2312147 4 -0.3244100 -0.4359319 -0.3629393 5 -0.3349981 -0.2282353 -0.2410168 6 -0.3680656 -0.4578520 -0.1462987 7 -0.2662159 -0.2216154 -0.2543470 8 -0.2709801 -0.6160297 -0.2720166 9 -0.3497270 -0.2566270 -0.3303750 10 -0.2484176 -0.2943709 -0.2994681 11 -0.4637102 -0.3178805 -0.2984117 12 -0.3235507 -0.2917100 -0.3461716 13 -0.3366444 -0.3897017 -0.4069550 14 -0.2931148 -0.3388245 -0.3624948 15 -0.4169962 -0.2032941 -0.3515948 16 -0.4391570 -0.3784187 -0.2363739 17 -0.3128851 -0.3411971 -0.2828232 18 -0.2615623 -0.3756845 -0.2058427 19 -0.2831775 -0.2943629 -0.2397261 20 -0.3336864 -0.5069509 -0.2640107 21 -0.3837958 -0.3845756 -0.2993117 22 -0.3142992 -0.4328201 -0.1530615 23 -0.1996516 -0.4057742 -0.1693670 24 -0.2665744 -0.4606513 -0.1923565 25 -0.3142851 -0.3554785 -0.2537461 26 -0.3204541 -0.3454162 -0.1195990 27 -0.4312616 -0.2115664 -0.2837958 28 0.7438087 0.9335735 0.5623016 29 0.7871312 0.9655664 0.5585013 30 0.7860592 0.9352526 0.6519974 31 0.9007759 0.8123499 0.5657786 32 0.8102071 0.7373147 0.5826707 33 0.8063673 0.8564196 0.7031533 34 0.7725103 0.8871276 0.6922753 35 0.7453184 0.7902142 0.7821098 36 0.8641912 0.8211966 0.6916977 37 0.7685894 0.9798044 0.6990970 38 0.8359995 0.8166661 0.6326162 > coef(fit) Intercept Predictor 1 Predictor 2 Predictor 3 -1.393629 1.797641 1.636808 2.152874 > > ## Fitted values and class probabilities for the training data > predict(fit, type = "cla") 3 Predictors 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 > predict(fit, type = "prob") 3 Predictors 1 0.04587036 2 0.05490925 3 0.03667876 4 0.03012823 5 0.05273539 6 0.04230364 7 0.05827671 8 0.03004090 9 0.04094897 10 0.04895124 11 0.03261054 12 0.03924127 13 0.02895065 14 0.03712830 15 0.03794509 16 0.03518360 17 0.04215062 18 0.05108146 19 0.05212408 20 0.03255774 21 0.03365325 22 0.04758007 23 0.05834136 24 0.04560974 25 0.04365777 26 0.05772796 27 0.04204126 28 0.93596308 29 0.94290124 30 0.95044840 31 0.94121875 32 0.92581351 33 0.95127097 34 0.94966962 35 0.94899101 36 0.95226392 37 0.95676209 38 0.94309939 > > ## Predicting fitted values and class labels for the random test data > predict(fit, newdata = xN) Predictor 1 Predictor 2 Predictor 3 1 -0.4320335 -0.27838607 -0.02386751 2 -0.1053294 -0.01931307 -0.09584530 3 -0.1268362 -0.08248432 -0.14098159 > predict(fit, newdata = xN, type = "cla", noc = c(1,2,3)) 1 Predictors 2 Predictors 3 Predictors 1 0 0 0 2 0 0 0 3 0 0 0 > predict(fit, newdata = xN, type = "pro", noc = c(1,3)) 1 Predictors 3 Predictors 1 0.0386497 0.06432507 2 0.1397782 0.13932249 3 0.1290847 0.11302959 > > ## Fitting Pelora such that the first 70 variables (genes) are not grouped > fit <- pelora(leukemia.x[, -(1:70)], leukemia.y, leukemia.x[,1:70]) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated > > ## Working with the output > fit Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Predictor 3 : Cluster with 16 genes, final criterion 5.154 Predictor 4 : Cluster with 12 genes, final criterion 4.285 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 > summary(fit) Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > plot(fit) > fitted(fit) Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6 1 -0.4060399 -0.1988190 -0.1764151 -0.5276747 -0.43261774 -0.2709890 2 0.9430274 -0.3024245 -0.3223401 -0.5329070 -0.30186209 -0.2857035 3 -0.6145205 -0.3365585 -0.3011438 -0.3601139 -0.42086686 -0.3006743 4 -1.3627031 -0.2594442 -0.2981212 -0.2832939 -0.38733884 -0.3447153 5 -1.3734152 -0.2692426 -0.2108856 -0.1628854 -0.25294441 -0.2564958 6 1.0657803 -0.3924563 -0.4329788 -0.5385678 -0.37081949 -0.2798448 7 -1.3374205 -0.2294537 -0.2833225 -0.2630923 -0.08457562 -0.2446500 8 -1.3354139 -0.2312732 -0.2094792 -0.3029268 -0.24043921 -0.1731558 9 -0.4067449 -0.3452204 -0.3282927 -0.4073596 -0.46628899 -0.1789397 10 0.2760965 -0.2621182 -0.3549939 -0.3327177 -0.44048202 -0.1903839 11 -1.2437437 -0.2228681 -0.2852932 -0.3878044 -0.58752197 -0.2115417 12 -0.9485866 -0.1954846 -0.2497780 -0.2519208 -0.40750018 -0.2963952 13 -1.3183164 -0.2929590 -0.1526353 -0.3588182 -0.49039866 -0.3520898 14 0.5652176 -0.4275906 -0.3407247 -0.2437327 -0.32728358 -0.3864132 15 -1.3396861 -0.2195409 -0.2474477 -0.3421138 -0.35555360 -0.2834904 16 -1.3573863 -0.3362329 -0.2724343 -0.3233672 -0.22479880 -0.2014709 17 -0.4053540 -0.2170572 -0.3454366 -0.3534689 -0.38016032 -0.1608026 18 -1.1799757 -0.2721089 -0.2945062 -0.3373299 -0.18761222 -0.3230994 19 -1.2076066 -0.2042550 -0.2828239 -0.1467543 -0.15759320 -0.2677612 20 -0.9575222 -0.3129403 -0.2710245 -0.3661953 -0.45554503 -0.2277328 21 -1.0457692 -0.2260243 -0.2695839 -0.1713213 -0.41803519 -0.2698210 22 -1.1115955 -0.1787175 -0.3100426 -0.2658555 -0.32307801 -0.2112505 23 0.1934126 -0.3300765 -0.4028228 -0.2141802 -0.33808943 -0.2949899 24 -1.4346453 -0.2309166 -0.3560609 -0.1628456 -0.29616359 -0.3641453 25 -1.2171742 -0.1839816 -0.2260751 -0.2935019 -0.39610751 -0.3254803 26 -1.2463141 -0.2101915 -0.1701988 -0.3030649 -0.46707433 -0.2582409 27 -1.2163623 -0.3313818 -0.2114892 -0.2873244 -0.40834397 -0.3068746 28 0.7410577 0.8644460 0.8123971 0.8030237 0.95358870 0.5416967 29 2.8713446 0.5091642 0.6323301 0.7137462 0.90306498 0.6968565 30 2.8404211 0.6085351 0.7190366 0.7471776 0.83533181 0.7134020 31 2.5610426 0.6083006 0.6731309 0.6143815 0.92147667 0.6234324 32 2.8598801 0.5794000 0.5498537 0.6949743 0.81219055 0.7228671 33 1.6246713 0.7242354 0.7266119 0.8285891 0.88759536 0.6110106 34 1.1566060 0.7456103 0.7304296 0.9371997 0.98673366 0.5910254 35 1.3758300 0.7578748 0.6902259 0.8781558 0.81929405 0.7543096 36 2.8477323 0.5502931 0.6184029 0.9061539 0.71769130 0.6763093 37 2.8649981 0.5469703 0.7333408 0.6684482 0.98778671 0.6531476 38 1.2206500 0.7245081 0.7205910 0.7292881 0.79434106 0.6830947 Predictor 7 Predictor 8 Predictor 9 Predictor 10 1 -0.3377947 -0.541723991 -0.98103854 -0.24262700 2 -0.2598511 -1.326473015 0.21200654 -0.33026179 3 -0.6078839 -0.444415880 -0.79209596 -0.21531241 4 -0.1707361 -0.388943777 -1.36270310 -0.22026996 5 -0.4517779 -0.115590409 -0.26099616 -0.37148180 6 -0.4129790 -1.192833271 -0.55588074 -0.17041470 7 -0.4831630 -1.337420520 -1.33742052 -0.09763985 8 -0.2067421 -0.507674642 -1.16396233 -0.27696790 9 -0.6862245 -1.056396699 -1.22369368 -0.06686727 10 -0.3417866 -0.718790397 -0.27461021 -0.21466096 11 -0.7233215 -0.943302131 -1.24374365 -0.14290683 12 -0.5365463 0.002029410 0.06379095 -0.34423180 13 -0.4393363 -0.949530487 -1.31831643 -0.10417821 14 -0.5653535 -1.016787100 -0.27144455 -0.31414727 15 -0.2118393 -1.339686102 -1.12421926 -0.10603075 16 -0.3355517 -0.699257517 -1.09044682 -0.19459049 17 -0.4749806 -0.631829865 -1.51021939 -0.22101496 18 -0.3598141 -0.851634184 -1.17997570 -0.15392574 19 -0.5286960 -0.791773468 -1.20760661 -0.22561805 20 -0.3552274 -1.062039246 -1.53441337 -0.12800886 21 -0.8458994 -0.746337740 -0.83562242 -0.17875482 22 -0.1830584 -0.909685156 -1.11159548 -0.23687896 23 -0.4502238 -1.113688251 -1.18711813 -0.19449288 24 -0.3956765 -1.416340528 -0.90685483 -0.04129460 25 -0.5487348 -0.567207282 -1.21717418 -0.14357893 26 -0.3180278 -1.019809640 -1.24631406 -0.17155724 27 -0.3441807 -1.216362346 -0.92405624 -0.12719614 28 0.9471456 -0.354554077 -0.52250494 0.74819296 29 0.7868549 0.525843561 1.48838553 0.50876676 30 1.2425456 0.729954135 2.49675387 0.25958430 31 1.0185054 1.067004349 0.71014772 0.42509865 32 1.1924235 0.407932122 -0.30247047 0.53876303 33 1.2133198 -0.169276344 0.53393296 0.54281280 34 1.0705221 1.103914755 0.48085144 0.41491610 35 0.8002570 0.760881319 0.84562749 0.43643592 36 1.1476762 0.520691473 2.17426590 0.35226695 37 1.1229132 -0.110804905 1.80504585 0.44747837 38 1.0332438 -0.392022495 1.13339969 0.56059432 > coef(fit) Intercept Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 -1.1716983 0.1842654 0.8385458 0.7976833 0.6847451 0.6067519 Predictor 6 Predictor 7 Predictor 8 Predictor 9 Predictor 10 0.8211166 0.4847442 0.2955851 0.1878370 1.2569333 > > ## Fitted values and class probabilities for the training data > predict(fit, type = "cla") 10 Predictors 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 > predict(fit, type = "prob") 10 Predictors 1 0.03866462 2 0.03974743 3 0.03224375 4 0.03486537 5 0.04463813 6 0.03406801 7 0.03653106 8 0.04346592 9 0.03030718 10 0.04857966 11 0.02524001 12 0.04508957 13 0.02969606 14 0.03226090 15 0.03469224 16 0.03685924 17 0.03601400 18 0.03544747 19 0.03887285 20 0.02999918 21 0.03312515 22 0.03956643 23 0.03412293 24 0.03433607 25 0.03619673 26 0.03483489 27 0.03233529 28 0.95720621 29 0.96622035 30 0.97474460 31 0.96496611 32 0.95933805 33 0.96241723 34 0.96869354 35 0.96463227 36 0.97012698 37 0.96790089 38 0.95607335 > > ## Predicting fitted values and class labels for the random test data > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70]) Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6 1 0.4595198 -0.24995809 -0.13411424 -0.4149285 -0.62144662 -0.07272322 2 0.3588264 -0.01687939 0.13076628 -0.2711565 0.01436380 0.41795265 3 -1.4099869 -0.14563161 -0.06807276 0.2943940 -0.18814987 -0.01274870 Predictor 7 Predictor 8 Predictor 9 Predictor 10 1 -0.5565468 0.8467976 -0.2796180 -0.187531434 2 0.2207801 -0.2882260 2.0823453 0.001349072 3 0.1095344 0.7402682 0.2787512 -0.112053556 > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70], "cla", noc = 1:10) 1 Predictors 2 Predictors 3 Predictors 4 Predictors 5 Predictors 6 Predictors 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 7 Predictors 8 Predictors 9 Predictors 10 Predictors 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70], type = "pro") 10 Predictors 1 0.0807482 2 0.3930453 3 0.2062714 > > > > cleanEx(); ..nameEx <- "plot.pelora" > > ### * plot.pelora > > flush(stderr()); flush(stdout()) > > ### Name: plot.pelora > ### Title: 2-Dimensional Visualization of Pelora's Output > ### Aliases: plot.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Pelora's help page > example(pelora, echo = FALSE) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > plot(fit) > > > > cleanEx(); ..nameEx <- "plot.wilma" > > ### * plot.wilma > > flush(stderr()); flush(stdout()) > > ### Name: plot.wilma > ### Title: 2-Dimensional Visualization of Wilma's Output > ### Aliases: plot.wilma > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Wilma's help page > example(wilma, echo = FALSE) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > plot(fit) > > > > cleanEx(); ..nameEx <- "predict.pelora" > > ### * predict.pelora > > flush(stderr()); flush(stdout()) > > ### Name: predict.pelora > ### Title: Predict Method for Pelora > ### Aliases: predict.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Working with a "real" microarray dataset > data(leukemia, package="supclust") > > ## Generating random test data: 3 observations and 250 variables (genes) > set.seed(724) > xN <- matrix(rnorm(750), nrow = 3, ncol = 250) > > ## Fitting Pelora > fit <- pelora(leukemia.x, leukemia.y, noc = 3) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated > > ## Fitted values and class probabilities for the training data > predict(fit, type = "cla") 3 Predictors 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 > predict(fit, type = "prob") 3 Predictors 1 0.04587036 2 0.05490925 3 0.03667876 4 0.03012823 5 0.05273539 6 0.04230364 7 0.05827671 8 0.03004090 9 0.04094897 10 0.04895124 11 0.03261054 12 0.03924127 13 0.02895065 14 0.03712830 15 0.03794509 16 0.03518360 17 0.04215062 18 0.05108146 19 0.05212408 20 0.03255774 21 0.03365325 22 0.04758007 23 0.05834136 24 0.04560974 25 0.04365777 26 0.05772796 27 0.04204126 28 0.93596308 29 0.94290124 30 0.95044840 31 0.94121875 32 0.92581351 33 0.95127097 34 0.94966962 35 0.94899101 36 0.95226392 37 0.95676209 38 0.94309939 > > ## Predicting fitted values and class labels for the random test data > predict(fit, newdata = xN) Predictor 1 Predictor 2 Predictor 3 1 -0.4320335 -0.27838607 -0.02386751 2 -0.1053294 -0.01931307 -0.09584530 3 -0.1268362 -0.08248432 -0.14098159 > predict(fit, newdata = xN, type = "cla", noc = c(1,2,3)) 1 Predictors 2 Predictors 3 Predictors 1 0 0 0 2 0 0 0 3 0 0 0 > predict(fit, newdata = xN, type = "pro", noc = c(1,3)) 1 Predictors 3 Predictors 1 0.0386497 0.06432507 2 0.1397782 0.13932249 3 0.1290847 0.11302959 > > ## Fitting Pelora such that the first 70 variables (genes) are not grouped > fit <- pelora(leukemia.x[, -(1:70)], leukemia.y, leukemia.x[,1:70]) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated > > ## Fitted values and class probabilities for the training data > predict(fit, type = "cla") 10 Predictors 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 > predict(fit, type = "prob") 10 Predictors 1 0.03866462 2 0.03974743 3 0.03224375 4 0.03486537 5 0.04463813 6 0.03406801 7 0.03653106 8 0.04346592 9 0.03030718 10 0.04857966 11 0.02524001 12 0.04508957 13 0.02969606 14 0.03226090 15 0.03469224 16 0.03685924 17 0.03601400 18 0.03544747 19 0.03887285 20 0.02999918 21 0.03312515 22 0.03956643 23 0.03412293 24 0.03433607 25 0.03619673 26 0.03483489 27 0.03233529 28 0.95720621 29 0.96622035 30 0.97474460 31 0.96496611 32 0.95933805 33 0.96241723 34 0.96869354 35 0.96463227 36 0.97012698 37 0.96790089 38 0.95607335 > > ## Predicting fitted values and class labels for the random test data > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70]) Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6 1 0.4595198 -0.24995809 -0.13411424 -0.4149285 -0.62144662 -0.07272322 2 0.3588264 -0.01687939 0.13076628 -0.2711565 0.01436380 0.41795265 3 -1.4099869 -0.14563161 -0.06807276 0.2943940 -0.18814987 -0.01274870 Predictor 7 Predictor 8 Predictor 9 Predictor 10 1 -0.5565468 0.8467976 -0.2796180 -0.187531434 2 0.2207801 -0.2882260 2.0823453 0.001349072 3 0.1095344 0.7402682 0.2787512 -0.112053556 > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70], "cla", noc = 1:10) 1 Predictors 2 Predictors 3 Predictors 4 Predictors 5 Predictors 6 Predictors 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 7 Predictors 8 Predictors 9 Predictors 10 Predictors 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 > predict(fit, newdata = xN[, -(1:70)], newclin = xN[, 1:70], type = "pro") 10 Predictors 1 0.0807482 2 0.3930453 3 0.2062714 > > > > cleanEx(); ..nameEx <- "predict.wilma" > > ### * predict.wilma > > flush(stderr()); flush(stdout()) > > ### Name: predict.wilma > ### Title: Predict Method for Wilma > ### Aliases: predict.wilma > ### Keywords: classif cluster > > ### ** Examples > > ## Working with a "real" microarray dataset > data(leukemia, package="supclust") > > ## Generating random test data: 3 observations and 250 variables (genes) > set.seed(724) > xN <- matrix(rnorm(750), nrow = 3, ncol = 250) > > ## Fitting Wilma > fit <- wilma(leukemia.x, leukemia.y, noc = 3, trace = 1) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > > ## Fitted values and class predictions for the training data > predict(fit, type = "cla") [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 > predict(fit, type = "fitt") Predictor 1 Predictor 2 Predictor 3 1 -0.46171740 -0.009992927 -0.3834917 2 -0.07873956 0.063261853 -0.4507562 3 -0.98502735 0.115046790 -0.6588318 4 -0.44679460 0.190811888 -0.3708621 5 -0.60165527 0.160506547 -0.4297218 6 -0.13915781 -0.081445994 -0.5412858 7 -0.60926232 0.233106964 -0.5008374 8 -0.40958990 0.230920699 -0.3737456 9 -0.90332225 -0.205838386 -0.6718678 10 -0.15449904 0.090387741 -0.3621221 11 -0.93321219 -0.166396854 -0.5220501 12 -0.24828228 0.254053226 -0.4432451 13 -0.68080799 -0.275165741 -0.5242771 14 -0.26706279 -0.139745615 -0.4901269 15 -0.59354591 0.013901552 -0.5356795 16 -0.31641321 -0.025168422 -0.6646484 17 -0.12774159 0.243830097 -0.3556577 18 -0.49255028 -0.046791465 -0.3959728 19 -0.10804314 -0.057647582 -0.3670498 20 -0.21844937 -0.020541359 -0.7158141 21 -0.38251170 -0.056594477 -0.4981708 22 -0.52243987 0.041268521 -0.4493086 23 -0.09432030 0.156036729 -0.6578364 24 -0.74887144 0.112149259 -0.4000218 25 -0.31088303 0.155117649 -0.6817786 26 -0.37235541 -0.087960565 -0.4800702 27 -0.65676744 -0.033629112 -0.5413959 28 1.06529951 1.000615155 0.3486579 29 1.40225347 1.385903995 0.5340921 30 1.01794839 1.098640932 0.3200740 31 1.12892126 1.025627213 0.2333483 32 1.25679904 0.979789107 0.2635796 33 0.97891459 1.265071950 0.5098338 34 0.95638559 1.137334725 0.4849519 35 0.97667401 0.992184346 0.2582996 36 1.09683760 0.987807416 0.3759882 37 1.30587995 1.347697651 0.9897420 38 1.09675411 1.178182368 0.2318421 > > ## Predicting fitted values and class labels for test data > predict(fit, newdata = xN) Predictor 1 Predictor 2 Predictor 3 1 -0.08242748 -0.4723073 -0.6131918 2 -0.15667388 -0.5359670 -0.2249549 3 -0.11445314 -0.4265685 0.2245120 > predict(fit, newdata = xN, type = "cla", classifier = "nnr", noc = c(1,2,3)) 1 Predictors 2 Predictors 3 Predictors 1 0 0 0 2 0 0 0 3 0 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "dlda", noc = c(1,3)) 1 Predictors 3 Predictors 1 0 0 2 0 0 3 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "logreg") [1] 0 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "aggtrees") [1] 0 0 0 > > > > cleanEx(); ..nameEx <- "print.pelora" > > ### * print.pelora > > flush(stderr()); flush(stdout()) > > ### Name: print.pelora > ### Title: Print Method for Pelora Objects > ### Aliases: print.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Pelora's help page > example(pelora, echo = FALSE) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > print(fit) Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Predictor 3 : Cluster with 16 genes, final criterion 5.154 Predictor 4 : Cluster with 12 genes, final criterion 4.285 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 > > > > cleanEx(); ..nameEx <- "print.wilma" > > ### * print.wilma > > flush(stderr()); flush(stdout()) > > ### Name: print.wilma > ### Title: Print Method for Wilma Objects > ### Aliases: print.wilma > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Wilma's help page > example(wilma, echo = FALSE) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > print(fit) Wilma called to fit 3 clusters Cluster 1 : Contains 5 genes, final score 0, final margin 1.04 Cluster 2 : Contains 13 genes, final score 0, final margin 0.73 Cluster 3 : Contains 7 genes, final score 0, final margin 0.59 > > > > cleanEx(); ..nameEx <- "score" > > ### * score > > flush(stderr()); flush(stdout()) > > ### Name: score > ### Title: Wilcoxon Score for Binary Problems > ### Aliases: score > ### Keywords: htest > > ### ** Examples > > data(leukemia, package="supclust") > op <- par(mfrow=c(1,3)) > plot(leukemia.x[,69],leukemia.y) > title(paste("Score = ", score(leukemia.x[,69], leukemia.y))) > > ## Sign-flipping is very important > plot(leukemia.x[,161],leukemia.y) > title(paste("Score = ", score(leukemia.x[,161], leukemia.y),2)) > x <- sign.flip(leukemia.x, leukemia.y)$flipped.matrix > plot(x[,161],leukemia.y) > title(paste("Score = ", score(x[,161], leukemia.y),2)) > par(op) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "sign.change" > > ### * sign.change > > flush(stderr()); flush(stdout()) > > ### Name: sign.change > ### Title: Sign-flipping of Predictor Variables to Obtain Equal Polarity > ### Aliases: sign.change > ### Keywords: manip > > ### ** Examples > > data(leukemia, package="supclust") > > op <- par(mfrow=c(1,3)) > plot(leukemia.x[,69],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,69], leukemia.y),2))) > > ## Sign-flipping is very important > plot(leukemia.x[,161],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,161], leukemia.y),2))) > x <- sign.change(leukemia.x, leukemia.y)$x.new > plot(x[,161],leukemia.y) > title(paste("Margin = ", round(margin(x[,161], leukemia.y),2))) > par(op) > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "signflip" > > ### * signflip > > flush(stderr()); flush(stdout()) > > ### Name: sign.flip > ### Title: Sign-flipping of Predictor Variables to Obtain Equal Polarity > ### Aliases: sign.flip > ### Keywords: manip > > ### ** Examples > > data(leukemia, package="supclust") > > op <- par(mfrow=c(1,3)) > plot(leukemia.x[,69],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,69], leukemia.y),2))) > > ## Sign-flipping is very important > plot(leukemia.x[,161],leukemia.y) > title(paste("Margin = ", round(margin(leukemia.x[,161], leukemia.y),2))) > x <- sign.flip(leukemia.x, leukemia.y)$flipped.matrix > plot(x[,161],leukemia.y) > title(paste("Margin = ", round(margin(x[,161], leukemia.y),2))) > par(op)# reset > > > > graphics::par(get("par.postscript", env = .CheckExEnv)) > cleanEx(); ..nameEx <- "summary.pelora" > > ### * summary.pelora > > flush(stderr()); flush(stdout()) > > ### Name: summary.pelora > ### Title: Summary Method for Pelora Objects > ### Aliases: summary.pelora > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Pelora's help page > example(pelora, echo = FALSE) ................... Cluster 1 terminated ............. Cluster 2 terminated .............. Cluster 3 terminated Pelora called with lambda = 0.03125, 3 clusters fitted Cluster 1 : Contains 18 genes, final criterion 8.967 Entry 1 : Gene 69 Entry 2 : Gene 174 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 183 Entry 5 : Gene 161 (flipped) Entry 6 : Gene 160 Entry 7 : Gene 100 Entry 8 : Gene 225 Entry 9 : Gene 148 Entry 10 : Gene 188 (flipped) Entry 11 : Gene 7 (flipped) Entry 12 : Gene 211 Entry 13 : Gene 99 Entry 14 : Gene 105 Entry 15 : Gene 215 Entry 16 : Gene 106 Entry 17 : Gene 59 Entry 18 : Gene 185 Cluster 2 : Contains 11 genes, final criterion 6.157 Entry 1 : Gene 174 Entry 2 : Gene 126 (flipped) Entry 3 : Gene 183 Entry 4 : Gene 160 Entry 5 : Gene 219 Entry 6 : Gene 75 Entry 7 : Gene 82 Entry 8 : Gene 96 Entry 9 : Gene 30 (flipped) Entry 10 : Gene 224 Entry 11 : Gene 16 (flipped) Cluster 3 : Contains 13 genes, final criterion 4.870 Entry 1 : Gene 69 Entry 2 : Gene 183 Entry 3 : Gene 126 (flipped) Entry 4 : Gene 160 Entry 5 : Gene 208 Entry 6 : Gene 114 Entry 7 : Gene 174 Entry 8 : Gene 94 Entry 9 : Gene 53 Entry 10 : Gene 73 Entry 11 : Gene 172 (flipped) Entry 12 : Gene 120 Entry 13 : Gene 66 (flipped) . Cluster 1 terminated ...................... Cluster 2 terminated ................. Cluster 3 terminated ............. Cluster 4 terminated ........... Cluster 5 terminated ................. Cluster 6 terminated ...... Cluster 7 terminated . Cluster 8 terminated . Cluster 9 terminated ............................ Cluster 10 terminated Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > summary(fit) Pelora called with lambda = 0.03125, 7 clusters and 3 clinical variables fitted Predictor 1 : Clinical variable 69, final criterion 12.146 Predictor 2 : Cluster with 20 genes, final criterion 6.805 Entry 1 : Gene 104 Entry 2 : Gene 56 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 149 Entry 5 : Gene 44 Entry 6 : Gene 49 Entry 7 : Gene 12 Entry 8 : Gene 36 Entry 9 : Gene 27 Entry 10 : Gene 122 Entry 11 : Gene 147 (flipped) Entry 12 : Gene 90 Entry 13 : Gene 152 Entry 14 : Gene 76 Entry 15 : Gene 138 Entry 16 : Gene 129 Entry 17 : Gene 26 Entry 18 : Gene 128 Entry 19 : Gene 170 Entry 20 : Gene 109 (flipped) Predictor 3 : Cluster with 16 genes, final criterion 5.154 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 149 Entry 7 : Gene 12 Entry 8 : Gene 26 Entry 9 : Gene 76 Entry 10 : Gene 131 Entry 11 : Gene 122 Entry 12 : Gene 155 Entry 13 : Gene 100 (flipped) Entry 14 : Gene 30 Entry 15 : Gene 62 Entry 16 : Gene 10 (flipped) Predictor 4 : Cluster with 12 genes, final criterion 4.285 Entry 1 : Gene 104 Entry 2 : Gene 113 Entry 3 : Gene 56 (flipped) Entry 4 : Gene 90 Entry 5 : Gene 5 Entry 6 : Gene 126 Entry 7 : Gene 155 Entry 8 : Gene 16 Entry 9 : Gene 158 Entry 10 : Gene 84 Entry 11 : Gene 161 (flipped) Entry 12 : Gene 3 Predictor 5 : Cluster with 10 genes, final criterion 3.739 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 78 Entry 9 : Gene 161 (flipped) Entry 10 : Gene 9 Predictor 6 : Cluster with 16 genes, final criterion 3.348 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Entry 6 : Gene 155 Entry 7 : Gene 154 Entry 8 : Gene 5 Entry 9 : Gene 119 Entry 10 : Gene 24 Entry 11 : Gene 151 (flipped) Entry 12 : Gene 149 Entry 13 : Gene 140 (flipped) Entry 14 : Gene 10 (flipped) Entry 15 : Gene 71 Entry 16 : Gene 50 Predictor 7 : Cluster with 5 genes, final criterion 3.077 Entry 1 : Gene 104 Entry 2 : Gene 91 (flipped) Entry 3 : Gene 113 Entry 4 : Gene 30 Entry 5 : Gene 132 Predictor 8 : Clinical variable 66, final criterion 2.959 Predictor 9 : Clinical variable 31, final criterion 2.867 Predictor 10 : Cluster with 26 genes, final criterion 2.662 Entry 1 : Gene 149 Entry 2 : Gene 12 Entry 3 : Gene 113 Entry 4 : Gene 26 Entry 5 : Gene 65 Entry 6 : Gene 121 Entry 7 : Gene 161 (flipped) Entry 8 : Gene 132 Entry 9 : Gene 44 Entry 10 : Gene 170 Entry 11 : Gene 137 Entry 12 : Gene 133 (flipped) Entry 13 : Gene 120 Entry 14 : Gene 30 Entry 15 : Gene 58 Entry 16 : Gene 145 Entry 17 : Gene 122 Entry 18 : Gene 138 Entry 19 : Gene 100 (flipped) Entry 20 : Gene 76 Entry 21 : Gene 177 Entry 22 : Gene 63 (flipped) Entry 23 : Gene 128 Entry 24 : Gene 178 Entry 25 : Gene 10 (flipped) Entry 26 : Gene 147 > > > > cleanEx(); ..nameEx <- "summary.wilma" > > ### * summary.wilma > > flush(stderr()); flush(stdout()) > > ### Name: summary.wilma > ### Title: Summary Method for Wilma Objects > ### Aliases: summary.wilma > ### Keywords: classif cluster > > ### ** Examples > > ## Running the examples of Wilma's help page > example(wilma, echo = FALSE) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > summary(fit) `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > > > > cleanEx(); ..nameEx <- "wilma" > > ### * wilma > > flush(stderr()); flush(stdout()) > > ### Name: wilma > ### Title: Supervised Clustering of Predictor Variables > ### Aliases: wilma > ### Keywords: cluster > > ### ** Examples > > ## Working with a "real" microarray dataset > data(leukemia, package="supclust") > > ## Generating random test data: 3 observations and 250 variables (genes) > set.seed(724) > xN <- matrix(rnorm(750), nrow = 3, ncol = 250) > > ## Fitting Wilma > fit <- wilma(leukemia.x, leukemia.y, noc = 3, trace = 1) Cluster 1 ---------- Accepted Gen[1] : 174 Score: 0 Margin: 0.402 Gen[2] : 69 Score: 0 Margin: 0.716 Gen[3] : 225 Score: 0 Margin: 0.942 Gen[4] : 216 Score: 0 Margin: 1.025 Gen[5] : 161 Score: 0 Margin: 1.035 gic size changed from 0 to 5 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Cluster 2 ---------- Accepted Gen[1] : 80 Score: 0 Margin: 0.062 Gen[2] : 66 Score: 0 Margin: 0.228 Gen[3] : 119 Score: 0 Margin: 0.400 Gen[4] : 183 Score: 0 Margin: 0.455 Gen[5] : 202 Score: 0 Margin: 0.546 Gen[6] : 146 Score: 0 Margin: 0.552 Gen[7] : 167 Score: 0 Margin: 0.614 Gen[8] : 219 Score: 0 Margin: 0.650 Gen[9] : 217 Score: 0 Margin: 0.664 Gen[10]: 183 Score: 0 Margin: 0.667 Gen[11]: 82 Score: 0 Margin: 0.701 Gen[12]: 183 Score: 0 Margin: 0.712 Gen[13]: 82 Score: 0 Margin: 0.726 gic size changed from 0 to 13 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Cluster 3 ---------- Accepted Gen[1] : 59 Score: 5 Margin: -0.301 Gen[2] : 56 Score: 0 Margin: 0.185 Gen[3] : 126 Score: 0 Margin: 0.366 Gen[4] : 104 Score: 0 Margin: 0.390 Gen[5] : 211 Score: 0 Margin: 0.446 Gen[6] : 79 Score: 0 Margin: 0.528 Gen[7] : 104 Score: 0 Margin: 0.587 gic size changed from 0 to 7 Eliminating -- no reduction --> end{repeat} after 1 step Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > > ## Working with the output > fit Wilma called to fit 3 clusters Cluster 1 : Contains 5 genes, final score 0, final margin 1.04 Cluster 2 : Contains 13 genes, final score 0, final margin 0.73 Cluster 3 : Contains 7 genes, final score 0, final margin 0.59 > summary(fit) `Wilma' object: number of clusters `noc' = 3 Final Cluster 1 ---------------- Gen: 174 Score: 0 Margin: 0.402 Gen: 69 Score: 0 Margin: 0.716 Gen: 225 Score: 0 Margin: 0.942 Gen: 216 Score: 0 Margin: 1.025 Gen: 161 Score: 0 Margin: 1.035 Final Cluster 2 ---------------- Gen: 80 Score: 0 Margin: 0.062 Gen: 66 Score: 0 Margin: 0.228 Gen: 119 Score: 0 Margin: 0.400 Gen: 183 Score: 0 Margin: 0.455 Gen: 202 Score: 0 Margin: 0.546 Gen: 146 Score: 0 Margin: 0.552 Gen: 167 Score: 0 Margin: 0.614 Gen: 219 Score: 0 Margin: 0.650 Gen: 217 Score: 0 Margin: 0.664 Gen: 183 Score: 0 Margin: 0.667 Gen: 82 Score: 0 Margin: 0.701 Gen: 183 Score: 0 Margin: 0.712 Gen: 82 Score: 0 Margin: 0.726 Final Cluster 3 ---------------- Gen: 59 Score: 5 Margin: -0.301 Gen: 56 Score: 0 Margin: 0.185 Gen: 126 Score: 0 Margin: 0.366 Gen: 104 Score: 0 Margin: 0.390 Gen: 211 Score: 0 Margin: 0.446 Gen: 79 Score: 0 Margin: 0.528 Gen: 104 Score: 0 Margin: 0.587 > plot(fit) > fitted(fit) Predictor 1 Predictor 2 Predictor 3 1 -0.46171740 -0.009992927 -0.3834917 2 -0.07873956 0.063261853 -0.4507562 3 -0.98502735 0.115046790 -0.6588318 4 -0.44679460 0.190811888 -0.3708621 5 -0.60165527 0.160506547 -0.4297218 6 -0.13915781 -0.081445994 -0.5412858 7 -0.60926232 0.233106964 -0.5008374 8 -0.40958990 0.230920699 -0.3737456 9 -0.90332225 -0.205838386 -0.6718678 10 -0.15449904 0.090387741 -0.3621221 11 -0.93321219 -0.166396854 -0.5220501 12 -0.24828228 0.254053226 -0.4432451 13 -0.68080799 -0.275165741 -0.5242771 14 -0.26706279 -0.139745615 -0.4901269 15 -0.59354591 0.013901552 -0.5356795 16 -0.31641321 -0.025168422 -0.6646484 17 -0.12774159 0.243830097 -0.3556577 18 -0.49255028 -0.046791465 -0.3959728 19 -0.10804314 -0.057647582 -0.3670498 20 -0.21844937 -0.020541359 -0.7158141 21 -0.38251170 -0.056594477 -0.4981708 22 -0.52243987 0.041268521 -0.4493086 23 -0.09432030 0.156036729 -0.6578364 24 -0.74887144 0.112149259 -0.4000218 25 -0.31088303 0.155117649 -0.6817786 26 -0.37235541 -0.087960565 -0.4800702 27 -0.65676744 -0.033629112 -0.5413959 28 1.06529951 1.000615155 0.3486579 29 1.40225347 1.385903995 0.5340921 30 1.01794839 1.098640932 0.3200740 31 1.12892126 1.025627213 0.2333483 32 1.25679904 0.979789107 0.2635796 33 0.97891459 1.265071950 0.5098338 34 0.95638559 1.137334725 0.4849519 35 0.97667401 0.992184346 0.2582996 36 1.09683760 0.987807416 0.3759882 37 1.30587995 1.347697651 0.9897420 38 1.09675411 1.178182368 0.2318421 > > ## Fitted values and class predictions for the training data > predict(fit, type = "cla") [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 > predict(fit, type = "fitt") Predictor 1 Predictor 2 Predictor 3 1 -0.46171740 -0.009992927 -0.3834917 2 -0.07873956 0.063261853 -0.4507562 3 -0.98502735 0.115046790 -0.6588318 4 -0.44679460 0.190811888 -0.3708621 5 -0.60165527 0.160506547 -0.4297218 6 -0.13915781 -0.081445994 -0.5412858 7 -0.60926232 0.233106964 -0.5008374 8 -0.40958990 0.230920699 -0.3737456 9 -0.90332225 -0.205838386 -0.6718678 10 -0.15449904 0.090387741 -0.3621221 11 -0.93321219 -0.166396854 -0.5220501 12 -0.24828228 0.254053226 -0.4432451 13 -0.68080799 -0.275165741 -0.5242771 14 -0.26706279 -0.139745615 -0.4901269 15 -0.59354591 0.013901552 -0.5356795 16 -0.31641321 -0.025168422 -0.6646484 17 -0.12774159 0.243830097 -0.3556577 18 -0.49255028 -0.046791465 -0.3959728 19 -0.10804314 -0.057647582 -0.3670498 20 -0.21844937 -0.020541359 -0.7158141 21 -0.38251170 -0.056594477 -0.4981708 22 -0.52243987 0.041268521 -0.4493086 23 -0.09432030 0.156036729 -0.6578364 24 -0.74887144 0.112149259 -0.4000218 25 -0.31088303 0.155117649 -0.6817786 26 -0.37235541 -0.087960565 -0.4800702 27 -0.65676744 -0.033629112 -0.5413959 28 1.06529951 1.000615155 0.3486579 29 1.40225347 1.385903995 0.5340921 30 1.01794839 1.098640932 0.3200740 31 1.12892126 1.025627213 0.2333483 32 1.25679904 0.979789107 0.2635796 33 0.97891459 1.265071950 0.5098338 34 0.95638559 1.137334725 0.4849519 35 0.97667401 0.992184346 0.2582996 36 1.09683760 0.987807416 0.3759882 37 1.30587995 1.347697651 0.9897420 38 1.09675411 1.178182368 0.2318421 > > ## Predicting fitted values and class labels for test data > predict(fit, newdata = xN) Predictor 1 Predictor 2 Predictor 3 1 -0.08242748 -0.4723073 -0.6131918 2 -0.15667388 -0.5359670 -0.2249549 3 -0.11445314 -0.4265685 0.2245120 > predict(fit, newdata = xN, type = "cla", classifier = "nnr", noc = c(1,2,3)) 1 Predictors 2 Predictors 3 Predictors 1 0 0 0 2 0 0 0 3 0 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "dlda", noc = c(1,3)) 1 Predictors 3 Predictors 1 0 0 2 0 0 3 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "logreg") [1] 0 0 0 > predict(fit, newdata = xN, type = "cla", classifier = "aggtrees") [1] 0 0 0 > > > > ### *