| rags2ridges-package | Ridge estimation for high-dimensional precision matrices |
| adjacentMat | Transform real matrix into an adjacency matrix |
| conditionNumberPlot | Visualize the spectral condition number against the regularization parameter |
| covML | Maximum likelihood estimation of the covariance matrix |
| default.target | Generate a (data-driven) default target for usage in ridge-type shrinkage estimation |
| edgeHeat | Visualize (precision) matrix as a heatmap |
| evaluateS | Evaluate numerical properties square matrix |
| evaluateSfit | Visual inspection of the fit of a regularized precision matrix |
| fullMontyS | Wrapper function |
| GGMblockNullPenalty | Generate the distribution of the penalty parameter under the null hypothesis of block-independence |
| GGMblockTest | Test for block-indepedence |
| GGMnetworkStats | Gaussian graphical model network statistics |
| GGMpathStats | Gaussian graphical model node pair path statistics |
| KLdiv | Kullback-Leibler divergence between two multivariate normal distributions |
| loss | Evaluate regularized precision under various loss functions |
| optPenalty.aLOOCV | Select optimal penalty parameter by approximate leave-one-out cross-validation |
| optPenalty.LOOCV | Select optimal penalty parameter by leave-one-out cross-validation |
| optPenalty.LOOCVauto | Automatic search for optimal penalty parameter |
| pcor | Compute partial correlation matrix or standardized precision matrix |
| rags2ridges | Ridge estimation for high-dimensional precision matrices |
| ridgePathS | Visualize the regularization path |
| ridgeS | Ridge estimation for high-dimensional precision matrices |
| sparsify | Determine the support of a partial correlation/precision matrix |
| symm | Symmetrize matrix |
| Ugraph | Visualize undirected graph |