| backpropagation | Backpropagation learning function |
| crossEntropyError | Cross entropy error function |
| darch | Fit a deep neural network |
| darch.DataSet | Fit a deep neural network |
| darch.default | Fit a deep neural network |
| darch.formula | Fit a deep neural network |
| darchBench | Benchmarking wrapper for 'darch' |
| darchModelInfo | Creates a custom caret model for 'darch'. |
| darchTest | Test classification network. |
| exponentialLinearUnit | Exponential linear unit (ELU) function with unit derivatives. |
| generateWeightsGlorotNormal | Glorot normal weight initialization |
| generateWeightsGlorotUniform | Glorot uniform weight initialization |
| generateWeightsHeNormal | He normal weight initialization |
| generateWeightsHeUniform | He uniform weight initialization |
| generateWeightsNormal | Generates a weight matrix using rnorm. |
| generateWeightsUniform | Generates a weight matrix using runif |
| linearUnit | Linear unit function with unit derivatives. |
| maxoutUnit | Maxout / LWTA unit function |
| maxoutWeightUpdate | Updates the weight on maxout layers |
| minimizeAutoencoder | Conjugate gradient for a autoencoder network |
| minimizeClassifier | Conjugate gradient for a classification network |
| mseError | Mean squared error function |
| plot.DArch | Plot 'DArch' statistics or structure. |
| predict.DArch | Forward-propagate data. |
| print.DArch | Print 'DArch' details. |
| provideMNIST | Provides MNIST data set in the given folder. |
| rectifiedLinearUnit | Rectified linear unit function with unit derivatives. |
| rmseError | Root-mean-square error function |
| rpropagation | Resilient backpropagation training for deep architectures. |
| sigmoidUnit | Sigmoid unit function with unit derivatives. |
| softmaxUnit | Softmax unit function with unit derivatives. |
| softplusUnit | Softplus unit function with unit derivatives. |
| tanhUnit | Continuous Tan-Sigmoid unit function. |
| weightDecayWeightUpdate | Updates the weight using weight decay. |