| rstanarm-package | Applied Regression Modeling via RStan |
| adapt_delta | Target average acceptance probability |
| as.array.stanreg | Extract the posterior sample |
| as.data.frame.stanreg | Extract the posterior sample |
| as.data.frame.summary.stanreg | Summary method for stanreg objects |
| as.matrix.stanreg | Extract the posterior sample |
| cauchy | Prior distributions and options |
| coef.stanreg | Methods for stanreg objects |
| compare | Leave-one-out (LOO) and K-fold cross-validation |
| confint.stanreg | Methods for stanreg objects |
| decov | Prior distributions and options |
| dirichlet | Prior distributions and options |
| example_model | Example model |
| fitted.stanreg | Methods for stanreg objects |
| fixef | Methods for stanreg objects |
| fixef.stanreg | Methods for stanreg objects |
| hs | Prior distributions and options |
| hs_plus | Prior distributions and options |
| kfold | Leave-one-out (LOO) and K-fold cross-validation |
| launch_shinystan | Using the ShinyStan GUI with rstanarm models |
| log_lik.stanreg | Methods for stanreg objects |
| loo | Leave-one-out (LOO) and K-fold cross-validation |
| loo.stanreg | Leave-one-out (LOO) and K-fold cross-validation |
| neg_binomial_2 | Family function for negative binomial GLMs |
| ngrps | Methods for stanreg objects |
| ngrps.stanreg | Methods for stanreg objects |
| nobs.stanreg | Methods for stanreg objects |
| normal | Prior distributions and options |
| pairs.stanreg | Pairs method for stanreg objects |
| plot.stanreg | Plot method for stanreg objects |
| posterior_interval | Posterior uncertainty intervals |
| posterior_predict | Draw from posterior predictive distribution |
| posterior_vs_prior | Juxtapose prior and posterior |
| pp_check | Graphical posterior predictive checks |
| pp_validate | Model validation via simulation |
| predict.stanreg | Predict method for stanreg objects |
| print.stanreg | Print method for stanreg objects |
| print.summary.stanreg | Summary method for stanreg objects |
| priors | Prior distributions and options |
| prior_options | Prior distributions and options |
| R2 | Prior distributions and options |
| ranef | Methods for stanreg objects |
| ranef.stanreg | Methods for stanreg objects |
| residuals.stanreg | Methods for stanreg objects |
| rstanarm | Applied Regression Modeling via RStan |
| rstanarm-plots | Plots for rstanarm models |
| se.stanreg | Methods for stanreg objects |
| shinystan | Using the ShinyStan GUI with rstanarm models |
| sigma | Methods for stanreg objects |
| sigma.stanreg | Methods for stanreg objects |
| stanreg-methods | Methods for stanreg objects |
| stanreg-objects | Fitted model objects |
| stan_aov | Bayesian regularized linear models via Stan |
| stan_biglm | Bayesian regularized linear but big models via Stan |
| stan_biglm.fit | Bayesian regularized linear but big models via Stan |
| stan_gamm4 | Bayesian generalized linear additive models with group-specific terms via Stan |
| stan_glm | Bayesian generalized linear models via Stan |
| stan_glm.fit | Bayesian generalized linear models via Stan |
| stan_glm.nb | Bayesian generalized linear models via Stan |
| stan_glmer | Bayesian generalized linear models with group-specific terms via Stan |
| stan_glmer.nb | Bayesian generalized linear models with group-specific terms via Stan |
| stan_lm | Bayesian regularized linear models via Stan |
| stan_lm.fit | Bayesian regularized linear models via Stan |
| stan_lm.wfit | Bayesian regularized linear models via Stan |
| stan_lmer | Bayesian generalized linear models with group-specific terms via Stan |
| stan_polr | Bayesian ordinal regression models via Stan |
| stan_polr.fit | Bayesian ordinal regression models via Stan |
| student_t | Prior distributions and options |
| summary.stanreg | Summary method for stanreg objects |
| update.stanreg | Methods for stanreg objects |
| VarCorr | Methods for stanreg objects |
| VarCorr.stanreg | Methods for stanreg objects |
| vcov.stanreg | Methods for stanreg objects |
| waic | Leave-one-out (LOO) and K-fold cross-validation |
| waic.stanreg | Leave-one-out (LOO) and K-fold cross-validation |