| Anova.glmmTMB | Downstream methods for glmmTMB objects |
| as.data.frame.ranef.glmmTMB | Extract Random Effects |
| betabinomial | Family functions for glmmTMB |
| beta_family | Family functions for glmmTMB |
| coef.glmmTMB | Extract Random Effects |
| compois | Family functions for glmmTMB |
| confint.glmmTMB | Calculate confidence intervals |
| confint.profile.glmmTMB | Compute likelihood profiles for a fitted model |
| downstream_methods | Downstream methods for glmmTMB objects |
| Effect.glmmTMB | Downstream methods for glmmTMB objects |
| emm_basis.glmmTMB | Downstream methods for glmmTMB objects |
| epil2 | Seizure Counts for Epileptics - Extended |
| family_glmmTMB | Family functions for glmmTMB |
| findReTrmClasses | list of specials - taken from enum.R |
| fixef | Extract fixed-effects estimates |
| fixef.glmmTMB | Extract fixed-effects estimates |
| formatVC | Format the 'VarCorr' Matrix of Random Effects |
| formula.glmmTMB | Extract the formula of a glmmTMB object |
| genpois | Family functions for glmmTMB |
| getCapabilities | List model options that glmmTMB knows about |
| getME | Extract or Get Generalize Components from a Fitted Mixed Effects Model |
| getME.glmmTMB | Extract or Get Generalize Components from a Fitted Mixed Effects Model |
| getReStruc | Calculate random effect structure Calculates number of random effects, number of parameters, blocksize and number of blocks. Mostly for internal use. |
| getXReTrms | Create X and random effect terms from formula |
| get_cor | translate vector of correlation parameters to correlation values, following the definition at <URL: http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html>: if L is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as Sigma = sqrt(D) L L' sqrt(D), where D = diag(L L'). For a single correlation parameter theta0, this works out to rho = theta0/sqrt(1+theta0^2). |
| glmmTMB | Fit models with TMB |
| glmmTMBControl | Control parameters for glmmTMB optimization |
| isLMM.glmmTMB | support methods for parametric bootstrapping |
| nbinom1 | Family functions for glmmTMB |
| nbinom2 | Family functions for glmmTMB |
| numFactor | Factor with numeric interpretable levels. |
| OwlModel | Begging by Owl Nestlings |
| OwlModel_nb1_bs | Begging by Owl Nestlings |
| OwlModel_nb1_bs_mcmc | Begging by Owl Nestlings |
| Owls | Begging by Owl Nestlings |
| parseNumLevels | Factor with numeric interpretable levels. |
| predict.glmmTMB | prediction |
| print.VarCorr.glmmTMB | Printing The Variance and Correlation Parameters of a 'glmmTMB' |
| profile.glmmTMB | Compute likelihood profiles for a fitted model |
| ranef | Extract Random Effects |
| ranef.glmmTMB | Extract Random Effects |
| recover_data.glmmTMB | Downstream methods for glmmTMB objects |
| refit.glmmTMB | support methods for parametric bootstrapping |
| residuals.glmmTMB | Compute residuals for a glmmTMB object |
| Salamanders | Repeated counts of salamanders in streams |
| sigma | Extract residual standard deviation or dispersion parameter |
| sigma.glmmTMB | Extract residual standard deviation or dispersion parameter |
| simulate.glmmTMB | Simulate from a glmmTMB fitted model |
| tmbroot | Compute likelihood profile confidence intervals of a TMB object by root-finding (generalized from TMB::tmbprofile) |
| truncated_compois | Family functions for glmmTMB |
| truncated_genpois | Family functions for glmmTMB |
| truncated_nbinom1 | Family functions for glmmTMB |
| truncated_nbinom2 | Family functions for glmmTMB |
| truncated_poisson | Family functions for glmmTMB |
| tweedie | Family functions for glmmTMB |
| vcov.glmmTMB | Calculate Variance-Covariance Matrix for a Fitted glmmTMB model |