A B C D E F G H I M N O P R S V
| affective | Data from the Affective Style Questionnaire (ASQ - French Validation) |
| analyze | Analyze objects. |
| analyze.aov | Analyze aov and anova objects. |
| analyze.fa | Analyze fa objects. |
| analyze.glm | Analyze glm objects. |
| analyze.glmerMod | Analyze glmerMod objects. |
| analyze.htest | Analyze htest (correlation, t-test...) objects. |
| analyze.lavaan | Analyze aov objects. |
| analyze.lm | Analyze lm objects. |
| analyze.lmerModLmerTest | Analyze lmerModLmerTest objects. |
| analyze.stanreg | Analyze stanreg objects. |
| as.data.frame.density | Coerce to a Data Frame. |
| assess | Compare a patient's score to a control group |
| bayes_cor | Bayesian Correlation Matrix. |
| bayes_cor.test | Performs a Bayesian correlation. |
| correlation | Multiple Correlations. |
| crawford.test | Crawford-Garthwaite (2007) Bayesian test for single-case analysis. |
| crawford.test.freq | Crawford-Howell (1998) frequentist t-test for single-case analysis. |
| crawford_dissociation.test | Crawford-Howell (1998) modified t-test for testing difference between a patient’s performance on two tasks. |
| create_intervals | Overlap of Two Empirical Distributions. |
| dprime | Dprime and Other Signal Detection Theory indices. |
| emotion | Emotional Ratings of Pictures |
| find_best_model | Returns the best model. |
| find_best_model.merModLmerTest | Returns the best combination of predictors for lmerTest objects. |
| find_best_model.stanreg | Returns the best combination of predictors based on LOO cross-validation indices. |
| find_combinations | Generate all combinations. |
| find_combinations.formula | Generate all combinations of predictors of a formula. |
| find_matching_string | Fuzzy string matching. |
| find_random_effects | Find random effects in formula. |
| find_season | Find season of dates. |
| format_bf | Bayes factor formatting |
| format_digit | Format digits. |
| format_formula | Clean and format formula. |
| format_loadings | Format the loadings of a factor analysis. |
| format_p | Format p values. |
| format_string | Tidyverse-friendly sprintf. |
| get_cfa_model | Get CFA model. |
| get_contrasts | Get Marginal Means and Contrasts. |
| get_contrasts.glmerMod | Compute estimated marginal means and contrasts from glmerMod models. |
| get_contrasts.lmerModLmerTest | Compute estimated marginal means and contrasts from lmerModLmerTest models. |
| get_contrasts.stanreg | Compute estimated marginal means and contrasts from stanreg models. |
| get_data | Extract the dataframe used in a model. |
| get_formula | Get formula of models. |
| get_info | Get information about objects. |
| get_info.lmerModLmerTest | Get information about models. |
| get_loadings_max | Get loadings max. |
| get_predicted | Compute predicted values from models. |
| get_predicted.glm | Compute predicted values of lm models. |
| get_predicted.lm | Compute predicted values of lm models. |
| get_predicted.merMod | Compute predicted values of lm models. |
| get_predicted.stanreg | Compute predicted values of stanreg models. |
| get_R2 | Get Indices of Explanatory Power. |
| get_R2.glm | Pseudo-R-squared for Logistic Models. |
| get_R2.lm | R2 and adjusted R2 for Linear Models. |
| get_R2.merMod | R2 and adjusted R2 for GLMMs. |
| get_R2.stanreg | R2 or Bayesian Models. |
| hdi | Highest Density Intervals (HDI). |
| interpret_bf | Bayes Factor Interpretation |
| interpret_d | Standardized difference (Cohen's d) interpreation. |
| interpret_d_posterior | Standardized difference (Cohen's d) interpreation for a posterior distribution. |
| interpret_odds | Omega Squared Interpretation |
| interpret_odds_posterior | Odds ratio interpreation for a posterior distribution. |
| interpret_omega_sq | Omega Squared Interpretation |
| interpret_r | Correlation coefficient r interpreation. |
| interpret_R2 | R2 interpreation. |
| interpret_R2_posterior | R2 interpreation for a posterior distribution. |
| interpret_RMSEA | RMSEA interpreation. |
| interpret_r_posterior | Correlation coefficient r interpreation for a posterior distribution. |
| is.mixed | Check if model includes random effects. |
| is.mixed.stanreg | Check if model includes random effects. |
| is.psychobject | Creates or tests for objects of mode "psychobject". |
| is.standardized | Check if a dataframe is standardized. |
| mellenbergh.test | Mellenbergh & van den Brink (1998) test for pre-post comparison. |
| model_to_priors | Model to Prior. |
| mpe | Compute Maximum Probability of Effect (MPE). |
| n_factors | Find Optimal Factor Number. |
| odds_to_d | (Log) odds ratio to Cohen's d |
| odds_to_probs | Convert (log)odds to probabilies. |
| omega_sq | Partial Omega Squared. |
| overlap | Overlap of Two Empirical Distributions. |
| percentile | Transform z score to percentile. |
| percentile_to_z | Transform a percentile to a z score. |
| plot.psychobject | Plot the results. |
| plot_loadings | Plot loadings. |
| power_analysis | Power analysis for fitted models. |
| print.psychobject | Print the results. |
| probs_to_odds | Convert probabilities to (log)odds. |
| R2_LOO_Adjusted | Compute LOO-adjusted R2. |
| R2_nakagawa | Pseudo-R-squared for Generalized Mixed-Effect models. |
| R2_tjur | Tjur's (2009) coefficient of determination. |
| refdata | Create a reference grid. |
| remove_empty_cols | Remove empty columns.. |
| reorder_matrix | Reorder square matrix. |
| rnorm_perfect | Perfect Normal Distribution. |
| rope | Region of Practical Equivalence (ROPE) |
| standardize | Standardize. |
| standardize.data.frame | Standardize (scale and reduce) Dataframe. |
| standardize.glm | Standardize Coefficients. |
| standardize.lm | Standardize Coefficients. |
| standardize.numeric | Standardize (scale and reduce) numeric variables. |
| standardize.stanreg | Standardize Posteriors. |
| summary.psychobject | Print the results. |
| values | Extract values as list. |