| Gammad-class {distr} | R Documentation |
The Gammad distribution with parameters shape = a,
by default = 1, and scale = s, by default = 1, has
density
d(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)
for x > 0, a > 0 and s > 0.
The mean and variance are
E(X) = a*s and
Var(X) = a*s^2. C.f. rgamma
Objects can be created by calls of the form Gammad(scale, shape).
This object is a gamma distribution.
img:"Reals": The space of the image of this distribution has got dimension 1
and the name "Real Space". param:"GammaParameter": the parameter of this distribution (scale and shape),
declared at its instantiation r:"function": generates random numbers (calls function rgamma)d:"function": density function (calls function dgamma)p:"function": cumulative function (calls function pgamma)q:"function": inverse of the cumulative function (calls function qgamma)
Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".
signature(.Object = "Gammad"): initialize method signature(object = "Gammad"): returns the slot scale of the parameter of the distribution signature(object = "Gammad"): modifies the slot scale of the parameter of the distribution signature(object = "Gammad"): returns the slot shape of the parameter of the distribution signature(object = "Gammad"): modifies the slot shape of the parameter of the distribution
Thomas Stabla Thomas.Stabla@uni-bayreuth.de,
Florian Camphausen Florian.Camphausen@uni-bayreuth.de,
Peter Ruckdeschel Peter.Ruckdeschel@uni-bayreuth.de,
Matthias Kohl Matthias.Kohl@stamats.de
GammaParameter-class
AbscontDistribution-class
Reals-class
rgamma
G=Gammad(scale=1,shape=1) # G is a gamma distribution with scale=1 and shape=1. r(G)(1) # one random number generated from this distribution, e.g. 0.1304441 d(G)(1) # Density of this distribution is 0.3678794 for x=1. p(G)(1) # Probability that x<1 is 0.6321206. q(G)(.1) # Probability that x<0.1053605 is 0.1. scale(G) # scale of this distribution is 1. scale(G)=2 # scale of this distribution is now 2.