| sandcov {haplo.ccs} | R Documentation |
'sandcov' computes sandwich variance-covariance estimates for the coefficients of a fitted model. These estimates may be used to calculate robust standard error estimates.
sandcov(model, id)
model |
a fitted model of class '"lm"' or '"glm"'. |
id |
the numeric vector used to identify subjects, expanded for each subject by the number of observations for that subject. |
For a model of class '"haplo.ccs"', the sandwich variance-covariance matrix is automatically provided as the object 'covariance'. The matrix may also be obtained by 'vcov'. See examples below.
A named matrix for the covariance of the regression coefficients specified in 'model', calculated using the sandwich method.
Benjamin French and Thomas Lumley
Department of Biostatistics
University of Washington
data(Renin)
## Fit a model for covariate effects.
m1 <- glm(case ~ age + factor(race) + gender, family = binomial(link = logit))
## Obtain sandwich variance-covariance matrix.
id <- 1:length(case)
v1 <- sandcov(m1, id)
## Calculate robust standard error estimates.
se1 <- sqrt(diag(v1))
## Fit a model for haplotype and covariate effects.
m2 <- haplo.ccs(case ~ gender + age + factor(race) + haplo(geno[,1:12], mode = "additive"),
control = haplo.em.control(min.posterior=1e-4), referent = "223144")
## Obtain sandwich variance-covariance matrix by one of two methods.
v2 <- m2$covariance
v2 <- vcov(m2)
## Calculate robust standard error estimates.
se2 <- sqrt(diag(v2))