| sn {elliptic} | R Documentation |
ss(u,m, ...) sc(u,m, ...) sn(u,m, ...) sd(u,m, ...) cs(u,m, ...) cc(u,m, ...) cn(u,m, ...) cd(u,m, ...) ns(u,m, ...) nc(u,m, ...) nn(u,m, ...) nd(u,m, ...) ds(u,m, ...) dc(u,m, ...) dn(u,m, ...) dd(u,m, ...)
u |
Complex argument |
m |
Parameter |
... |
Extra arguments, such as maxiter, passed to
theta.?() |
All sixteen Jacobi elliptic functions.
Robin K. S. Hankin
AMS-55
#Example 1, p579:
nc(1.9965,m=0.64)
# (some problem here)
# Example 2, p579:
dn(0.20,0.19)
# Example 3, p579:
dn(0.2,0.81)
# Example 4, p580:
cn(0.2,0.81)
# Example 5, p580:
dc(0.672,0.36)
# Example 6, p580:
Theta(0.6,m=0.36)
# Example 7, p581:
cs(0.53601,0.09)
# Example 8, p581:
sn(0.61802,0.5)
#Example 9, p581:
sn(0.61802,m=0.5)
#Example 11, p581:
cs(0.99391,m=0.5)
# (should be 0.75 exactly)
#and now a pretty picture:
n <- 300
K <- K.fun(1/2)
f <- function(z){1i*log((z-1.7+3i)*(z-1.7-3i)/(z+1-0.3i)/(z+1+0.3i))}
# f <- function(z){log((z-1.7+3i)/(z+1.7+3i)*(z+1-0.3i)/(z-1-0.3i))}
x <- seq(from=-K,to=K,len=n)
y <- seq(from=0,to=K,len=n)
z <- outer(x,1i*y,"+")
view(x,y,(f(sn(z,m=1/2))),nlevels=44,imag.contour=TRUE,real.cont=TRUE,code=1,drawlabels=FALSE,main="Potential flow in a rectangle",axes=FALSE,xlab="",ylab="")
rect(-K,0,K,K,lwd=3)