| betaII {VGAM} | R Documentation |
Maximum likelihood estimation of the 3-parameter beta II distribution.
betaII(link.scale = "loge", link.p = "loge", link.q = "loge",
earg.scale=list(), earg.p=list(), earg.q=list(),
init.scale = NULL, init.p = 1, init.q = 1, zero = NULL)
link.scale, link.p, link.q |
Parameter link functions applied to the
(positive) parameters scale, p and q.
See Links for more choices.
|
earg.scale, earg.p, earg.q |
List. Extra argument for each of the links.
See earg in Links for general information.
|
init.scale, init.p, init.q |
Optional initial values for scale, p and q.
|
zero |
An integer-valued vector specifying which
linear/additive predictors are modelled as intercepts only.
Here, the values must be from the set {1,2,3} which correspond to
scale, p, q, respectively.
|
The 3-parameter beta II is the 4-parameter generalized beta II distribution with shape parameter a=1. It is also known as the Pearson VI distribution. Other distributions which are special cases of the 3-parameter beta II include the Lomax (p=1) and inverse Lomax (q=1). More details can be found in Kleiber and Kotz (2003).
The beta II distribution has density
f(y) = y^(p-1) / [b^p B(p,q) (1 + y/b)^(p+q)]
for b > 0, p > 0, q > 0, y > 0.
Here, b is the scale parameter scale,
and the others are shape parameters.
The mean is
E(Y) = b gamma(p + 1) gamma(q - 1) / ( gamma(p) gamma(q))
provided q > 1.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm,
and vgam.
If the self-starting initial values fail, try experimenting with
the initial value arguments, especially those whose default value
is not NULL.
T. W. Yee
Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ: Wiley-Interscience.
betaff,
genbetaII,
dagum,
sinmad,
fisk,
invlomax,
lomax,
paralogistic,
invparalogistic.
y = rsinmad(n=2000, a=1, 6, 2) # Not genuine data! fit = vglm(y ~ 1, betaII, trace=TRUE) fit = vglm(y ~ 1, betaII(init.p=0.7, init.q=0.7), trace=TRUE, crit="c") coef(fit, mat=TRUE) Coef(fit) summary(fit)