| pc.estK {ecespa} | R Documentation |
Fits the Poisson Cluster point process to a point pattern dataset by the Method of Minimum Contrast.
pc.estK(Kobs, r, sigma2 = NULL, rho = NULL) Kclust(r, sigma2, rho)
Kobs |
Empirical K-function. |
r |
Sequence of distances at which function K has been estimated. |
sigma2 |
Starting value for the parameter sigma2 of the Poisson Cluster process. |
rho |
Starting value for the parameter rho of the Poisson Cluster process. |
The algorithm fits the Poisson cluster point process to a point pattern, by finding the parameters of the Poisson cluster model
which give the closest match between the theoretical K function of the Poisson cluster process and the observed
K function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast.
The Poisson cluster processes are defined by the following postulates (Diggle 2003):
| PCP1 | Parent events form a Poisson process with intensity rho. | |
| PCP2 | Each parent produces a random number of offspring, accordingto a probability distribution p[s]: s = 0, 1, 2, ... | |
| PCP3 | The positions of the offspring relative to their parents are distributed according to a bivariate pdf h. |
This implementation asumes that the probability distribution p[s] of offspring per parent is a Poisson distribution and that the position of each offspring relative to its parent follows a radially symetric Gaussian distribution with pdf
h(x, y) = (2*pi*sigma^2)^-1 exp{-(x^2+y^2)/2*sigma^2}
The theoretical K-function of this Poisson cluster process is :
pi*r^2 + rho^-1 *{1- exp(-r^2/4*sigma^2)}
The command Kclust computes the theoretical K-function of this Poisson cluster process and
can be used to find some initial estimates of rho and sigma^2. In any case, the optimization usually finds the
correct parameters even without starting values for these parameters.
This Poisson cluster process can be simulated with sim.poissonc.
sigma2 |
Parameter sigma^2. |
rho |
Parameter rho. |
The exponents p and q of the contrast criterion (see mincontrast) are fixed
respectively to p = 2 and q = 1/4. The rmin and rmax limits of integration of the
contrast criterion are set up by the sequence of values of r and Kobs passed to pc.estK.
Marcelino de la Cruz Rot marcelino.delacruz@upm.es, inspired by some code of Philip M. Dixon http://www.public.iastate.edu/~pdixon/
Diggle, P.J. 2003. Statistical analysis of spatial point patterns. Arnold, London.
mincontrast for a more general implementation of the method of mimimum contrast in
spatstat; matclust.estK and lgcp.estK fit other appropriate processes for clustered patterns.
## Not run:
require(spatstat)
data(gypsophylous)
## Estimate K function ("Kobs").
gyps.env <- envelope(gypsophylous, Kest, correction="iso")
plot(gyps.env, sqrt(./pi)-r~r)
## Fit Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to 0 and 60, respectively.
cosa.pc <- pc.estK(Kobs = gyps.env$obs[gyps.env$r<=60],
r = gyps.env$r[gyps.env$r<=60])
## Add fitted Kclust function to the plot.
lines(gyps.env$r,sqrt(Kclust(gyps.env$r, cosa.pc$sigma2,cosa.pc$rho)/pi)-gyps.env$r,
lty=2, lwd=3, col="purple")
## A kind of pointwise test of the pattern gypsophilous been a realisation
## of the fitted model, simulating with sim.poissonc and using function J (Jest).
gyps.env.sim = envelope(gypsophylous, Jest,
simulate=expression(sim.poissonc(gypsophylous,
sigma=sqrt(cosa.pc$sigma2), rho=cosa.pc$rho)))
plot(gyps.env.sim, main="")
## End(Not run)