| card.set.func-class {kappalab} | R Documentation |
Class representing a cardinal set function, i.e. whose values depend only on the cardinality of subsets.
Objects can be created by calls to the function card.set.func.
n:numeric of length 1 equal
to the number of elements of the set on which the cardinal set
function is defined.data:numeric of length
n+1 containing the coefficients of the cardinal set function.
Class superclass.set.func, directly.
signature(object = "card.set.func")signature(object = "card.set.func")signature(object = "card.set.func") signature(object =
"card.set.func") signature(object = "card.set.func")signature(object = "card.set.func")signature(object =
"card.set.func")signature(object = "card.set.func")signature(object = "card.set.func", k =
"numeric")signature(object = "card.set.func")signature(object = "card.set.func")signature(object = "card.set.func")signature(object = "card.set.func")
set.func-class,
card.set.func,
as.card.game-methods,
as.card.capacity-methods,
as.set.func-methods,
as.Mobius.set.func-methods,
as.Mobius.card.set.func-methods,
conjugate-methods,
interaction.indices-methods,
is.cardinal-methods,
is.kadditive-methods,
is.monotone-methods,
Mobius-methods,
Shapley.value-methods,
to.data.frame-methods.
## a cardinal set function mu <- card.set.func(-3:2) # the attributes of the object mu@n mu@data ## some conversions that cannot work ## Not run: as.card.game(mu) ## Not run: as.card.capacityfunc(mu) ## the following should work as.set.func(mu) ## some tests is.cardinal(mu) is.kadditive(mu,2) is.monotone(mu) ## some transformations conjugate(mu) Mobius(mu) ## let us check ... zeta(Mobius(mu)) ## summary Shapley.value(mu) interaction.indices(mu) # the same summary(mu) ## save the set function to a file d <- to.data.frame(mu) write.table(d,"my.card.set.func.csv",sep="\t") # finally, some other conversions that should work mu <- card.set.func(0:5) as.card.game(mu) as.card.capacity(mu)