| exchmvn {mprobit} | R Documentation |
Rectangle probability and derivatives of positive exchangeable multivariate normal
exchmvn(lb, ub, rh, mu=0, scale=1, eps = 1.e-06) exchmvn.deriv.margin(lb, ub, rh, k, ksign, eps = 1.e-06) exchmvn.deriv.rho(lb, ub, rh, eps = 1.e-06)
lb |
vector of lower limits of integral/probability |
ub |
vector of upper limits of integral/probability |
rh |
correlation, rho |
mu |
mean vector |
scale |
standard deviation |
eps |
tolerance for numerical integration |
k |
margin for which derivative is to be taken, that is, deriv of exchmvn(lb,ub,rh) with respect to lb[k] or ub[k]; use exchmvn.deriv.rh for deriv of exchmvn(lb,ub,rh) with respect to rho |
ksign |
=-1 for deriv of exchmvn(lb,ub,rh) with respect to lb[k] =+1 for deriv of exchmvn(lb,ub,rh) with respect to ub[k] |
value{ rectangle probability or a derivative }
rectangle probability or a derivative
H. Joe, Statistics Department, UBC
Kotz S and Johnson NL (1972). Continuous Multivariate Distributions. Wiley, New York, page 48.
# The tests here show clearly what the function parameters are.
# step size for numerical derivatives (accuracy of exchmvn etc about 1.e-6)
heps = 1.e-4
cat("case 1: m=3\n")
m=3
a=c(-1,-1,-1)
b=c(2,1.5,1)
rh=.6
pr=exchmvn(a,b,rh)
cat("pr=exchmvn(avec,bvec,rh)=",pr,"\n")
cat("derivative wrt rho\n")
rh2=rh+heps
pr2=exchmvn(a,b,rh2)
drh.numerical= (pr2-pr)/heps
drh.analytic= exchmvn.deriv.rho(a,b,rh)
cat(" numerical: ", drh.numerical, ", analytic: ", drh.analytic,"\n")
cat("derivative wrt a_k,b_k, k=1,...,",m,"\n")
for(k in 1:m)
{ cat(" k=", k, " lower\n")
a2=a
a2[k]=a[k]+heps
pr2=exchmvn(a2,b,rh)
da.numerical = (pr2-pr)/heps
da.analytic= exchmvn.deriv.margin(a,b,rh,k,-1)
cat(" numerical: ", da.numerical, ", analytic: ", da.analytic,"\n")
cat(" k=", k, " upper\n")
b2=b
b2[k]=b[k]+heps
pr2=exchmvn(a,b2,rh)
db.numerical = (pr2-pr)/heps
db.analytic= exchmvn.deriv.margin(a,b,rh,k,1)
cat(" numerical: ", db.numerical, ", analytic: ", db.analytic,"\n")
}
cat("\ncase 2: m=5\n")
m=5
a=rep(-1,m)
b=c(2,1.5,1,1.5,2)
rh=.6
pr=exchmvn(a,b,rh)
cat("pr=exchmvn(avec,bvec,rh)=",pr,"\n")
cat("derivative wrt rho\n")
rh2=rh+heps
pr2=exchmvn(a,b,rh2)
drh.numerical= (pr2-pr)/heps
drh.analytic= exchmvn.deriv.rho(a,b,rh)
cat(" numerical: ", drh.numerical, ", analytic: ", drh.analytic,"\n")
cat("derivative wrt a_k,b_k, k=1,...,",m,"\n")
for(k in 1:m)
{ cat(" k=", k, " lower\n")
a2=a
a2[k]=a[k]+heps
pr2=exchmvn(a2,b,rh)
da.numerical = (pr2-pr)/heps
da.analytic= exchmvn.deriv.margin(a,b,rh,k,-1)
cat(" numerical: ", da.numerical, ", analytic: ", da.analytic,"\n")
cat(" k=", k, " upper\n")
b2=b
b2[k]=b[k]+heps
pr2=exchmvn(a,b2,rh)
db.numerical = (pr2-pr)/heps
db.analytic= exchmvn.deriv.margin(a,b,rh,k,1)
cat(" numerical: ", db.numerical, ", analytic: ", db.analytic,"\n")
}