| LOGNORM {nsRFA} | R Documentation |
LOGNORM provides the link between L-moments of a sample and the three parameter
log-normal distribution.
f.lognorm (x, xi, alfa, k) F.lognorm (x, xi, alfa, k) invF.lognorm (F, xi, alfa, k) Lmom.lognorm (xi, alfa, k) par.lognorm (lambda1, lambda2, tau3) rand.lognorm (numerosita, xi, alfa, k)
x |
vector of quantiles |
xi |
vector of lognorm location parameters |
alfa |
vector of lognorm scale parameters |
k |
vector of lognorm shape parameters |
F |
vector of probabilities |
lambda1 |
vector of sample means |
lambda2 |
vector of L-variances |
tau3 |
vector of L-CA (or L-skewness) |
numerosita |
numeric value indicating the length of the vector to be generated |
See http://en.wikipedia.org/wiki/Log-normal_distribution for an introduction to the lognormal distribution.
Definition
Parameters (3): xi (location), α (scale), k (shape).
Range of x: -infty < x <= xi + α / k if k>0; -infty < x < infty if k=0; xi + α / k <= x < infty if k<0.
Probability density function:
f(x) = frac{e^{ky-y^2/2}}{α sqrt{2π}}
where y = -k^{-1}log{1 - k(x - xi)/α} if k ne 0, y = (x-xi)/α if k=0.
Cumulative distribution function:
F(x) = Phi(x)
where Phi(x)=int_{-infty}^x phi(t)dt.
Quantile function: x(F) has no explicit analytical form.
k=0 is the Normal distribution with parameters xi and alpha.
L-moments
L-moments are defined for all values of k.
λ_1 = xi + α(1 - e^{k^2/2})/k
λ_2 = α/k e^{k^2/2} [1 - 2 Phi(-k/sqrt{2})]
There are no simple expressions for the L-moment ratios tau_r with r >= 3. Here we use the rational-function approximation given in Hosking and Wallis (1997, p. 199).
Parameters
The shape parameter k is a function of tau_3 alone. No explicit solution is possible. Here we use the approximation given in Hosking and Wallis (1997, p. 199).
Given k, the other parameters are given by
α = frac{λ_2 k e^{-k^2/2}}{1-2 Phi(-k/sqrt{2})}
xi = λ_1 - frac{α}{k} (1 - e^{k^2/2})
f.lognorm gives the density f, F.lognorm gives the distribution function F, invFlognorm gives the quantile function x, Lmom.lognorm gives the L-moments (λ_1, λ_2, tau_3, tau_4), par.lognorm gives the parameters (xi, alfa, k), and rand.lognorm generates random deviates.
Lmom.lognorm and par.lognorm accept input as vectors of equal length. In f.lognorm, F.lognorm, invF.lognorm and rand.lognorm parameters (xi, alfa, k) must be atomic.
Alberto Viglione, e-mail: alviglio@tiscali.it.
Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK.
rnorm, runif, EXP, GENLOGIS, GENPAR, GEV, GUMBEL, KAPPA, P3; DISTPLOTS, GOFmontecarlo, Lmoments.
data(hydroSIMN) annualflows summary(annualflows) x <- annualflows["dato"][,] fac <- factor(annualflows["cod"][,]) split(x,fac) camp <- split(x,fac)$"45" ll <- Lmoments(camp) parameters <- par.lognorm(ll[1],ll[2],ll[4]) f.lognorm(1800,parameters$xi,parameters$alfa,parameters$k) F.lognorm(1800,parameters$xi,parameters$alfa,parameters$k) invF.lognorm(0.7529877,parameters$xi,parameters$alfa,parameters$k) Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k) rand.lognorm(100,parameters$xi,parameters$alfa,parameters$k) Rll <- regionalLmoments(x,fac); Rll parameters <- par.lognorm(Rll[1],Rll[2],Rll[4]) Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k)