| vis.res {minet} | R Documentation |
A group of functions to plot precision-recall and ROC curves and to compute f-scores from the
data frame returned by the validate function.
pr(table) rates(table) fscores(table, beta=1) show.pr(table,device=-1,...) show.roc(table,device=-1,...)
table |
This is a (steps x 5) matrix where steps is the number of thresholds used in the
validation process and where columns contain TP,FP,TN,FN values (confusion matrix) as well as the threshold
value used - see validate. |
beta |
This is the weight of the recall in the f-score formula. Default: 1 (meaning precision as important as recall). |
device |
The device to be used. This parameter allows the user to plot the results of various inferences on the same plotting window - see examples. |
... |
arguments passed to plot |
The functions show.roc (show.pr) plots the ROC-curve (PR-curve) and returns the device used for the plot.
The function pr returns a (steps x 2) matrix where steps is the number of thresholds used
in the validation process. The first column contains precisions and the second recalls.
The function rates also returns a (steps x 2) matrix where the first column contains true
positive rates and the second column false positive rates.
The function fscores returns steps fscores according to the steps confusion matrices
contained in the 'table' argument.
Patrick E. Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007.
data(syn.data) data(syn.net) # Inference mr <- minet( syn.data, method="mrnet", estimator="empirical" ) ar <- minet( syn.data, method="aracne", estimator="empirical" ) clr<- minet( syn.data, method="clr", estimator="empirical" ) # Validation mr.tbl <- validate(mr,syn.net) ar.tbl <- validate(ar,syn.net) clr.tbl<- validate(clr,syn.net) # Plot PR-Curves max(fscores(mr.tbl)) dev <- show.pr(mr.tbl, col="green", type="b") dev <- show.pr(ar.tbl, device=dev, col="blue", type="b") show.pr(clr.tbl, device=dev, col="red",type="b")