| NestedCohort-package {NestedCohort} | R Documentation |
NestedCohort fits Kaplan-Meier and Cox Models to estimate standardized survival and attributable risks for studies where covariates of interest are observed on only a sample of the cohort. Missingness can be either by happenstance or by design (for example, the case-cohort and case-control within cohort designs).
| Package: | NestedCohort |
| Type: | Package |
| Version: | 1.0-1 |
| Date: | 2007-09-01 |
| License: | Unlimited |
To fit Kaplan-Meier, use nested.km(). If you only want hazard ratios from a Cox model, used nested.coxph(). If you want standardized survival and attributable risk estimates, used nested.stdsurv().
Author: Hormuzd A. Katki
Maintainer: Hormuzd A. Katki <katkih@mail.nih.gov>
Mark, S.D. and Katki, H.A. Specifying and Implementing Nonparametric and Semiparametric Survival Estimators in Two-Stage (sampled) Cohort Studies with Missing Case Data. Journal of the American Statistical Association, 2006, 101, 460-471.
~~ survival ~~
# Get zinc dataset
data(zinc)
# Fit and plot Kaplan-Meier
mod <- nested.km(survfitformula="Surv(futime01,ec01==1)~znquartiles",
samplingmod="ec01*basehist",data=zinc)
plot(mod,ymin=.6,xlab="Time (Days)",ylab="Survival",main="Survival by Quartile of Zinc",
legend.text=c("Q1","Q2","Q3","Q4"),lty=1:4,legend.pos=c(2000,.7))
# Fit Cox model, get hazard ratios
coxmod <- nested.coxph(coxformula="Surv(futime01,ec01==1)~
sex+agepill+smoke+drink+mildysp+moddysp+sevdysp+anyhist+zncent",
samplingmod="ec01*basehist",data=zinc)
summary(coxmod)
# Fit Cox model, get standardized survivals and attributable risks
mod <- nested.stdsurv(outcome="Surv(futime01,ec01==1)",
exposures="znquartiles",
confounders="sex+agestr+smoke+drink+mildysp+moddysp+sevdysp+anyhist",
samplingmod="ec01*basehist",exposureofinterest="Q4",plot=TRUE,
main="Time to Esophageal Cancer by Quartiles of Zinc",data=zinc)