| linp {limSolve} | R Documentation |
Solves a linear programming problem,
min(sum {Cost_i.x_i})
subject to
Ex=f
Gx>=h
x_i>=0
(optional)
This function is simply a wrapper around lp (see note) from package lpSolve, written to be consistent with the
other functions lsei, and ldei.
linp(E=NULL, F=NULL, G=NULL, H=NULL, Cost,
ispos = TRUE, int.vec=NULL, verbose=TRUE, ...)
E |
numeric matrix containing the coefficients of the equality constraints Ex=F; if the columns of E have a names attribute, they will be used to label the output |
F |
numeric vector containing the right-hand side of the equality constraints |
G |
numeric matrix containing the coefficients of the inequality constraints Gx>=H; if the columns of G have a names attribute, and the columns of E do not, they will be used to label the output |
H |
numeric vector containing the right-hand side of the inequality constraints |
Cost |
numeric vector containing the coefficients of the cost function; if the Cost a names attribute, and neither the columns of E nor G have a name, they will be used to label the output |
ispos |
logical, when TRUE then unknowns must be positive (this is the original linear programming problem) |
int.vec |
|
verbose |
logical to print error messages |
... |
extra arguments passed to R-function lp |
a list containing:
X |
vector containing the solution of the linear programming problem. |
residualNorm |
scalar, the sum of absolute values of residuals of equalities and violated inequalities. Should be very small or zero for a feasible linear programming problem |
solutionNorm |
scalar, the value of the minimised Cost function, i.e. the value of sum {Cost_i.x_i} |
IsError |
logical, TRUE if an error occurred |
type |
the string "linp", such that how the solution was obtained can be traced |
If the requirement of nonnegativity are relaxed, then strictly speaking the problem is not a linear programming problem.
The function lp may fail and terminate R for very small problems that are repeated frequently...
Also note that sometimes multiple solutions exist for the same problem.
Karline Soetaert <k.soetaert@nioo.knaw.nl>
Michel Berkelaar and others (2007). lpSolve: Interface to Lpsolve v. 5.5 to solve linear or integer programs. R package version 5.5.8.
ldei, lsei,
lp the original function from package lpSolve
Blending, a linear programming problem
#--------------------------------------------
# Linear programming problem 1, not feasible
#--------------------------------------------
# maximise x1 + 3*x2
# subject to
#-x1 -x2 < -3
#-x1 + x2 <-1
# x1 + 2*x2 < 2
# xi>0
G <- matrix(nrow=3,data=c(-1,-1,1, -1,1,2))
H <- c(3,-1,2)
Cost <- c(-1,-3)
(L<-linp(E=NULL,F=NULL,Cost=Cost,G=G,H=H))
L$residualNorm
#--------------------------------------------
# Linear programming problem 2, feasible
#--------------------------------------------
# minimise x12 + 8*x13 + 9*x14 + 2*x23 + 7*x24 + 3*x34
# subject to:
#-x12 + x23 + x24 = 0
# - x13 - x23 + x34 = 0
# x12 + x13 + x14 > 1
# x14 + x24 + x34 < 1
# xi>0
A <- matrix(nrow=2,byrow=TRUE,data=c(-1,0,0,1,1,0,
0,-1,0,-1,0,1))
B <- c(0,0)
G <- matrix(nrow=2,byrow=TRUE,data=c(1,1,1,0,0,0,
0,0,-1,0,-1,-1))
H <- c(1,-1)
Cost <- c(1,8,9,2,7,3)
(L<-linp(E=A,F=B,Cost=Cost,G=G,H=H))
L$residualNorm
#---------------------------------------------
# Linear programming problem 3, no positivity
#---------------------------------------------
# minimise x1 + 2x2 -x3 +4 x4
# subject to:
# 3x1 + 2x2 + x3 + x4 = 2
# x1 + x2 + x3 + x4 = 2
E <- matrix(ncol=4, byrow=TRUE,
data=c(3,2,1,4,1,1,1,1))
F <- c(2,2)
G <-matrix(ncol=4,byrow=TRUE,
data=c(2,1,1,1,-1,3,2,1,-1,0,1,0))
H <- c(-1, 2, 1)
Cost <- c(1,2,-1,4)
linp(E=E,F=F,G=G,H=H,Cost,ispos=FALSE)