| stat_summary {ggplot2} | R Documentation |
Summarise y values at every unique x
stat_summary(mapping=NULL, data=NULL, geom="pointrange", position="identity", ...)
mapping |
mapping between variables and aesthetics generated by aes |
data |
dataset used in this layer, if not specified uses plot dataset |
geom |
geometric used by this layer |
position |
position adjustment used by this layer |
... |
other arguments |
stat_summary allows for tremendous flexibilty in the specification of summary functions. The summary function can either operate on a data frame (with argument name data) or on a vector. A simple vector function is easiest to work with as you can return a single number, but is somewhat less flexible. If your summary function operates on a data.frame it should return a data frame with variables that the geom can use.
This page describes stat_summary, see layer and qplot for how to create a complete plot from individual components.
A layer
The following aesthetics can be used with stat_summary. Aesthetics are mapped to variables in the data with the aes function: stat\_summary(\code{aes}(x = var))
x: x position (required)
y: y position (required)
Hadley Wickham, http://had.co.nz/
geom_errorbar: error bars
geom_pointrange: range indicated by straight line, with point in the middle
geom_linerange: range indicated by straight line
geom_crossbar: hollow bar with middle indicated by horizontal line
stat_smooth: for continuous analog
## Not run:
# Basic operation on a small dataset
c <- qplot(cyl, mpg, data=mtcars)
c + stat_summary(fun.data = "mean_cl_boot", colour = "red")
p <- qplot(cyl, mpg, data = mtcars, stat="summary", fun.y = "mean")
p
# Don't use ylim to zoom into a summary plot - this throws the
# data away
p + ylim(15, 30)
# Instead use coord_cartesian
p + coord_cartesian(ylim = c(15, 30))
# You can supply individual functions to summarise the value at
# each x:
stat_sum_single <- function(fun, geom="point", ...) {
stat_summary(fun.y=fun, colour="red", geom=geom, size = 3, ...)
}
c + stat_sum_single(mean)
c + stat_sum_single(mean, geom="line")
c + stat_sum_single(median)
c + stat_sum_single(sd)
c + stat_summary(fun.y = mean, fun.ymin = min, fun.ymax = max,
colour = "red")
c + aes(colour = factor(vs)) + stat_summary(fun.y = mean, geom="line")
# Alternatively, you can supply a function that operates on a data.frame.
# A set of useful summary functions is provided from the Hmisc package:
stat_sum_df <- function(fun, geom="crossbar", ...) {
stat_summary(fun.data=fun, colour="red", geom=geom, width=0.2, ...)
}
c + stat_sum_df("mean_cl_boot")
c + stat_sum_df("mean_sdl")
c + stat_sum_df("mean_sdl", mult=1)
c + stat_sum_df("median_hilow")
# There are lots of different geoms you can use to display the summaries
c + stat_sum_df("mean_cl_normal")
c + stat_sum_df("mean_cl_normal", geom = "errorbar")
c + stat_sum_df("mean_cl_normal", geom = "pointrange")
c + stat_sum_df("mean_cl_normal", geom = "smooth")
# Summaries are much more useful with a bigger data set:
m <- ggplot(movies, aes(x=round(rating), y=votes)) + geom_point()
m2 <- m +
stat_summary(fun.data = "mean_cl_boot", geom = "crossbar",
colour = "red", width = 0.3)
m2
# Notice how the overplotting skews off visual perception of the mean
# supplementing the raw data with summary statisitcs is _very_ important
# Next, we'll look at votes on a log scale.
# Transforming the scale performs the transforming before the statistic.
# This means we're calculating the summary on the logged data
m2 + scale_y_log10()
# Transforming the coordinate system performs the transforming after the
# statistic. This means we're calculating the summary on the raw data,
# and stretching the geoms onto the log scale. Compare the widths of the
# standard errors.
m2 + coord_trans(y="log10")
## End(Not run)