| gsBound {gsDesign} | R Documentation |
gsBound() and gsBound1() are lower-level functions used to find boundaries for a group sequential design.
They are not recommended (especially gsBound1()) for casual users.
These functions do not adjust sample size as gsDesign() does to ensure appropriate power for a design.
gsBound() computes upper and lower bounds given boundary crossing probabilities assuming a mean of 0, the usual null hypothesis.
gsBound1() computes the upper bound given a lower boundary, upper boundary crossing probabilities and an arbitrary mean (theta).
gsBound(I, trueneg, falsepos, tol=0.000001, r=18) gsBound1(theta, I, a, probhi, tol=0.000001, r=18, printerr=0)
Note that all vector arguments should have the same length which will be denoted here as k.
theta |
Scalar containing mean (drift) per unit of statistical information. |
I |
Vector containing statistical information planned at each analysis. |
a |
Vector containing lower bound that is fixed for use in gsBound1. |
trueneg |
Vector of desired probabilities for crossing upper bound assuming mean of 0. |
falsepos |
Vector of desired probabilities for crossing lower bound assuming mean of 0. |
probhi |
Vector of desired probabilities for crossing upper bound assuming mean of theta. |
tol |
Tolerance for error (scalar; default is 0.000001). Normally this will not be changed by the user. This does not translate directly to number of digits of accuracy, so use extra decimal places. |
r |
Single integer value controlling grid for numerical integration as in Jennison and Turnbull (2000);
default is 18, range is 1 to 80.
Larger values provide larger number of grid points and greater accuracy.
Normally r will not be changed by the user. |
printerr |
If this scalar argument set to 1, this will print messages from underlying C program.
Mainly intended to notify user when an output solution does not match input specifications.
This is not intended to stop execution as this often occurs when deriving a design in gsDesign
that uses beta-spending. |
The function gsBound1() requires special attention to detail and knowledge of behavior when a design corresponding to the input parameters does not exist.
Both routines return a list. Common items returned by the two routines are:
k |
The length of vectors input; a scalar. |
theta |
As input in gsBound1(); 0 for gsBound(). |
I |
As input. |
a |
For gsbound1, this is as input. For gsbound this is the derived lower boundary required to yield the input boundary crossing probabilities under the null hypothesis. |
b |
The derived upper boundary required to yield the input boundary crossing probabilities under the null hypothesis. |
tol |
As input. |
r |
As input. |
error |
Error code. 0 if no error; greater than 0 otherwise. |
rates |
a list containing two items: |
falsepos |
vector of upper boundary crossing probabilities as input. |
trueneg |
vector of lower boundary crossing probabilities as input. |
problo |
vector of lower boundary crossing probabilities; computed using input lower bound and derived upper bound. |
probhi |
vector of upper boundary crossing probabilities as input. |
The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf in the directory where R is installed.
Keaven Anderson keaven_anderson@merck.
Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical Trials. Boca Raton: Chapman and Hall.
gsDesign package overview, gsDesign, gsProbability
# set boundaries so that probability is .01 of first crossing
# each upper boundary and .02 of crossing each lower boundary
# under the null hypothesis
x <- gsBound(I=c(1, 2, 3)/3, trueneg=array(.02, 3),
falsepos=array(.01, 3))
x
# use gsBound1 to set up boundary for a 1-sided test
x <- gsBound1(theta= 0, I=c(1, 2, 3) / 3, a=array(-20, 3),
probhi=c(.001, .009, .015))
x$b
# check boundary crossing probabilities with gsProbability
y <- gsProbability(k=3, theta=0, n.I=x$I, a=x$a, b=x$b)$upper$prob
# Note that gsBound1 only computes upper bound
# To get a lower bound under a parameter value theta:
# use minus the upper bound as a lower bound
# replace theta with -theta
# set probhi as desired lower boundary crossing probabilities
# Here we let set lower boundary crossing at 0.05 at each analysis
# assuming theta=2.2
y <- gsBound1(theta=-2.2, I=c(1, 2, 3)/3, a= -x$b,
probhi=array(.05, 3))
y$b
# Now use gsProbability to look at design
# Note that lower boundary crossing probabilities are as
# specified for theta=2.2, but for theta=0 the upper boundary
# crossing probabilities are smaller than originally specified
# above after first interim analysis
gsProbability(k=length(x$b), theta=c(0, 2.2), n.I=x$I, b=x$b, a= -y$b)