![[R logo]](../../../doc/html/logo.jpg)
| RTisean-package | The RTisean package |
| av_d2 | Smoothing correlation sum data |
| boxcount | Renyi entropy estimate |
| c1 | Fixed mass estimation of information dimension |
| c2d | Local slopes from correlation sums. |
| c2g | Gaussian kernel correlation integral |
| c2t | Maximum likelihood estimator from correlation sums |
| d2 | Dimension and entropy estimation |
| endtoend | End-to-end mismatch of a time series |
| ghkss | Noise reduction |
| henon | Henon Model |
| lazy | Nonlinear noise reduction |
| lfo-ar | Modeling data through a local linear ansatz |
| lfo.ar | Modeling data through a local linear ansatz |
| lfo.run | Modeling data through a local linear ansatz |
| lfo.test | Local linear ansatz |
| ll_ar | Modeling data through a local linear ansatz |
| logistic | Logistic model |
| low121 | Low pass filter |
| lyap_r | Largest Lyapunov exponent |
| lzo.test | Modeling data trough a zeroth order ansatz |
| notch | Notch filter |
| nrlazy | Nonlinear noise reduction |
| nstep | Modeling data through a local linear ansatz |
| onestep | Local linear ansatz |
| pc | Embed using principal components |
| poincare | Poincare section |
| polyback | Backward elimination for a given polynomial |
| polynom | Modeling data trough a polynomial ansatz |
| polynomp | Modeling data trough a polynomial ansatz |
| polypar | Polynomial parameter matrix |
| project | Projective nonlinear noise reduction |
| rbf | Modeling data using a radial basis function ansatz |
| RTisean | The RTisean package |
| RT_delay | Embed using delay coordinates |
| RT_pca | PCA |
| RT_predict | Simple nonlinear prediction |
| RT_svd | PCA |
| sav_gol | Savitzky-Golay filter |
| surrogates | Making surrogate data |
| timerev | Time reversal asymmetry statistic |
| wiener1 | Wiener filter |
| wiener2 | Wiener filter |
| xcor | Cross correlations |
| xzero | Zeroth order model |
| zeroth | Modeling data trough a zeroth order ansatz |