
Isotone Optimization in R: Pool-Adjacent-Violators

Algorithm (PAVA) and Active Set Methods

Jan de Leeuw
University of California,

Los Angeles

Kurt Hornik
WU Wirtschafts-
universität Wien

Patrick Mair
WU Wirtschafts-
universität Wien

Abstract

This introduction to the R package isotone is a (slightly) modified version of de˜Leeuw
et˜al. (2009), published in the Journal of Statistical Software.

In this paper we give a general framework for isotone optimization. First we discuss a
generalized version of the pool-adjacent-violators algorithm (PAVA) to minimize a separa-
ble convex function with simple chain constraints. Besides of general convex functions we
extend existing PAVA implementations in terms of observation weights, approaches for tie
handling, and responses from repeated measurement designs. Since isotone optimization
problems can be formulated as convex programming problems with linear constraints we
then develop a primal active set method to solve such problem. This methodology is
applied on specific loss functions relevant in statistics. Both approaches are implemented
in the R package isotone.

Keywords:˜isotone optimization, PAVA, monotone regression, active set, R.

1. Introduction: History of monotone regression

In monotone (or isotone) regression we fit an increasing or decreasing function to a set of
points in the plane. This generalization of linear regression has a fairly complicated history,
which we now discuss.

On June 4, 1958, Constance van Eeden defended her dissertation at the University of Ams-
terdam. The dissertation Testing and Estimating Ordered Parameters of Probability Distri-
butions (van Eeden 1958) summarized and extended four articles published in 1956–1957 in
Indagationes Mathematicae. Van Eeden’s promotor Van Dantzig said in his speech at the
promotion

As often happens, just before you were able to obtain a final version of your
result, a publication of an American professor appeared, which treated the same
problem, while in a second publication by him, joint with four co-authors, the
special case of a complete order was investigated in more detail.

He referred to Brunk (1955) and Ayer et˜al. (1955), which both appeared in the Annals of
Mathematical Statistics. To complicate the situation, there were also the papers by Miles
(1959) and Bartholomew (1959a,b), which can be thought of as yet another independent
discovery. Some of the interconnectivity, and some of the early history, is reviewed in the

2 PAVA and Active Set Methods in R

excellent book by the four B’s˜(Barlow et˜al. 1972).

Of the classical treatments of monotone regression, Van Eeden’s is the most general one.
Moreover she very clearly separates the optimization problem, treated in full detail in Chap-
ter˜1 of her dissertation, from the statistical applications. Of course we must realize that
this work predates the advent of convex analysis by about 15 years, while it was done at
the time that statisticians started showing interest in the (Karush-)Kuhn-Tucker conditions
and in quadratic programming. In Van Eeden’s setup, the problem is to minimize a strictly
unimodal function f(x1, . . . , xn) under the bound constraints αi ≤ xi ≤ βi and the partial
order constraints σij(xi − xj) ≥ 0. Here the σij are either zero or ±1, and we suppose the
system of inequalities defined by the bound and order constraints is consistent. By careful
classical analysis, Van Eeden derives her algorithms, and shows how they specialize if the
objective function is separable and/or a sum of squares, and if the order constraints define a
complete order.

The next major contributions were by Robertson and Dykstra, summarized in the book
by˜Robertson et˜al. (1988). At the same time, starting with˜Barlow and Brunk (1972)
and˜Dykstra (1981), the isotonic regression problem was embedded more and more in quadratic
and convex programming frameworks by, among others,˜Best and Chakravarti (1990) and˜Best
et˜al. (2000). Recent major contributions, relying heavily on mathematical programming re-
sults, are˜Strömberg (1991), Ahuja and Orlin (2001), and˜Hansohm (2007). Extensions to
particular partial orders defined by the variables of a multiple regression are in˜Dykstra and
Robertson (1982) and˜Burdakov et˜al. (2004).

In this paper we present the R (R Development Core Team 2009) package isotone which
implements PAVA and active set algorithms for solving monotone regression and more general
isotone optimization problems. The package is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=isotone.

2. A general isotone optimization framework

2.1. Basics of monotone regression

In simple regression we assume a linear relationship between a predictor z = (z1, . . . , zi, . . . zn)
and a response y = (y1, . . . , yi, . . . yn). Note that for the predictors we use z instead of
the common notation x since later on we embed this algorithm into a convex programming
problem where the target variables are typically denoted by x. However, the loss function to
be minimized is a least squares problem of the form

f(α, β) =

n∑
i=1

wi (yi − α− βzi)2 → min! (1)

where α and β are the regression parameters and wi some optional observation weights. Ex-
tensions can be formulated in terms of polynomial or other nonlinear parametric regression
specifications. In many situations the researcher has no information regarding the mathemat-
ical specification of the true regression function. Rather, she can assume a particular shape
which can be characterized by certain order restrictions. Typically, this involves that the
yi’s increase with the ordered zi’s. Such a situation is called isotonic regression; the decreas-

http://CRAN.R-project.org/package=isotone

Jan de Leeuw, Kurt Hornik, Patrick Mair 3

ing case antitonic regression. The corresponding umbrella term for both cases is monotonic
regression (for a compact description, see de Leeuw 2005).

Suppose that Z is the finite set {z1, z2, . . . , zn} of the ordered predictors with no ties, i.e.,
z1 < z2 < · · · < zn. Let y be again the observed response vector and x = (x1, . . . , xi, . . . xn)
the unknown response values to be fitted. The least squares problem in monotonic regression
can be stated as

f(x) =
n∑
i=1

wi (yi − xi)2 → min! (2)

which has to be minimized over x under the inequality restrictions x1 ≤ x2 ≤ · · · ≤ xn for
isotonic regression and x1 ≥ x2 ≥ · · · ≥ xn for the antitonic case. These restrictions avoid
that we always get perfect fit. The basic theorem the isotonic solution of (2) is based on, is
that if yi ≥ yi+1, then the fitted values x̂i+1 := x̂i. Correspondingly, the antitonic solution
requires yi ≤ yi+1.

For a non-strict partial order of the predictors, i.e., z1 ≤ z2 ≤ · · · ≤ zn, several algorithms
for the treatment of ties can be considered (Kruskal 1964; de Leeuw 1977). The primary
approach partitions the index set {1, 2, . . . , n} into a number of tie blocks I1, I2, . . . , Ik with
k ≤ n. In case of a tie zi = zi′ this approach implies that xi does not necessarily equal xi′ .
It forces only that the following monotonicity condition holds for the tied observations i and
i′: If yi ≤ yi′ then xi ≤ xi′ . In practical applications this approach is mostly used. The
secondary approach is more restrictive and requires xi = xi′ for the tie i and i′, regardless
which y-values were observed. The tertiary approach defined in de Leeuw (1977) abandons
the monotonicity condition from the primary approach. For each tie block I1, I2, . . . , Ik the
unit of analysis are the weighted means xI1 , xI2 , . . . , xIK . The tertiary approach requires only
that these means are monotonic across tie blocks.

2.2. Generalization to `p and multiple measurements

Now we extend this classical isotonic regression problem in terms of non-least squares loss
functions and repeated observations. We establish the optimization problem P0 which includes
a convex function of the form

hi(yij , xi) = |yij − xi|p. (3)

The building blocks of P0 are a (possibly infinite) open real interval I, and n real-valued
convex functions fi defined on I. Problem P0 is to minimize the separable function of n
variables of the form

f(x) =

n∑
i=1

mi∑
j=1

wijhi (yij , xi)→ min! (4)

subject to x1 ≤ x2 ≤ · · · ≤ xn. (5)

over all non-decreasing x, i.e., all x ∈ In. The response vectors of length mi for each obser-
vation i we denote as yi which can be caused, e.g., by repeated observations yij .

Common special cases of (3) are p = 2 and p = 1:

hi(yij , xi) = (yij − xi)2, (6a)

hi(yij , xi) = |yij − xi|. (6b)

4 PAVA and Active Set Methods in R

Least-squares estimation for the first problem results in estimates that approximate the con-
ditional mean of the response given predictor value zi. If weights wi are involved, we get the
weighted mean. If we estimate the second equation within a quantile regression framework
(see Koenker 2005), the estimates approximate the (weighted) median. The general quantile
regression specification is

hi(yij , xi) = amax(yij − xi, 0) + bmax(xi − yij , 0). (7)

with a, b > 0. The corresponding proportions are a/(a + b) and b/(a + b). Note that for
a = b Equation˜7 reduces again to the weighted median. Let us refer to the expression for the
conditional (weighted) mean and (weighted) quantiles as solver s(xi). This function plays a
central role for the parameter updates in PAVA described in the next section. Note that in
our general framework the user can specify other convex functions and their corresponding
solvers. As we will see in Section˜5.1 the gpava() function takes a (user-defined) solver as
argument which is sufficient for defining the PAVA optimization problem.

2.3. Isotone optimization as a convex programming problem

The whole theory in this section is based on the fact that isotone optimization can be for-
mulated as convex programming problem with inequality constraints. For instance, the least
squares problem in Equation˜1 is one particular example of such a convex program. The iso-
tonicity condition is contained in the side constraints. These inequalities defining isotonicity
can be written in matrix form as Ax ≥ 0 with x ∈ Rn as the target variable to be optimized.
A is a m × n matrix in which each row corresponds with an index pair i, j such that i � j.
Such a row of length n has element i equal to +1, element j equal to −1, and the rest of
the elements equal to zero. Formally, such isotone optimization problems, written as convex
programming problem with linear inequality constraints look as follows:

f(x)→ min!

subject to Ax ≥ 0 (8)

The constraints in isotone regression are a total order. We now consider the more general
case of partial orders. In order to eliminate redundancies we include a row in A for a pair
(i, j) iff i covers j, which means that i � j and there is no k 6= i, j such that i � k � j. This
specification allows us to specify isotonicity patterns in a flexible manner. Some examples are
given in Figure˜1 by means of Hasse diagrams (also known as cover graphs).

The Lagrangian associated with problem˜8 is

L(x, λ) = f(x)− λ>Ax (9)

with λ as the Lagrange multiplier vector. The associated Lagrange dual function can be
expressed as

g(λ) = inf
x
L(x, λ) = inf

x

(
f(x)− λ>Ax

)
. (10)

and the corresponding dual optimization problem is

g(λ)→ max!

subject to λl ≥ 0. (11)

Jan de Leeuw, Kurt Hornik, Patrick Mair 5

1

3

2

4

5

6

7

8

9

(a) Total
order

1

2 3

4 5 6 7 8

9

(b) Tree order

1

3

2

4 5

6

7 8

9

(c) Loop order

1 32

11 14 65

87 9

(d) Block order

Figure 1: Hasse diagrams for different types of orders.

6 PAVA and Active Set Methods in R

The Lagrange dual can be reformulated using the convex conjugate. Let x? ∈ Rn. The
conjugate function of f(x) denoted by f?(x?) is the maximum gap between the linear function
〈x?, x〉 and the target function f(x) and can be expressed as

f?(x?) = sup
x

(〈x?, x〉 − f(x)) . (12)

It can be shown (see Boyd and Vandenberghe 2004, p.˜221) that

g(λ) = −f?(A>λ) (13)

In other words: The Lagrange dual is determined by the convex conjugate with A>λ. This
relates the convex primal and the dual optimization problem in the following manner:

min {f(x) : Ax ≥ 0} ↔ min
{
f?(A>λ) : λ ≥ 0

}
As necessary conditions for the minimum we give the Karush-Kuhn-Tucker (KKT) conditions
for this problem. The convex function f is minimized on a convex set {x | Ax ≥ 0} at x̂ iff
there exists a vector of Lagrange multipliers λ̂ (i.e., the KKT vector) such that˜(see Rockafellar
1970, Chapter˜28)

A>λ̂ ∈ ∂f(x), Ax̂ ≥ 0, λ̂ ≥ 0, λ̂>Ax̂ = 0.

Here ∂f(x̂) is the subdifferential of f at x̂. In general, the subdifferential at x is the set of all
subgradients of f at x, where y is a subgradient at x if

f(z) ≥ f(x) + (z − x)>y ∀z. (14)

The subdifferential is a convex compact set. If f is differentiable at x, there is a unique
subgradient, the gradient ∇f(x). Thus, the necessary and sufficient conditions for a x̂ to be
a minimizer in the differentiable case are the existence of a KKT vector λ̂ such that

∇f(x̂) = A>λ̂, Ax̂ ≥ 0, λ̂ ≥ 0, λ̂>Ax̂ = 0.

These conditions are referred to as stationarity, primal feasibility, dual feasibility, and com-
plementary slackness.

2.4. Active set method for convex programming problems

Basically, there are two classes of algorithms to solve convex optimization problems: The first
class are interior point methods aiming for complementary slackness while maintaining primal
and dual feasibility. The second class are active set strategies where we distinguish between
two variants:

Primal active set methods: They aim for dual feasibility while maintaining primal feasi-
bility and complementary slackness.

Dual active set methods: They aim for primal feasibility while maintaining dual feasibility
and complementary slackness.

Jan de Leeuw, Kurt Hornik, Patrick Mair 7

Active set methods in general are approaches for solving linear, quadratic, and convex pro-
gramming problems with inequality constraints and are the most effective for solving small-
to medium-scaled problem. In our implementation, by means of the function activeSet(),
we provide a primal active set strategy which Zangwill (1969, Chapter˜8) denotes as manifold
suboptimization.

Recall problem P given in Equation˜8 where the aim is to minimize f(x) over Ax ≥ 0. The
minimum is f̂(x) and the corresponding minimizer is x̂. Write I for subsets of the index set
I = 1, 2, · · · ,m for the constraints. Then AI is the corresponding card(I)× n submatrix of
A, and AI is the (m − card(I)) × n complementary submatrix. The active constraints at
x, which we write as A , are the indices i for which a>i x = 0. That is, at a given point x a
constraint is called

active if a>i x = 0, i ∈ A , and

inactive if a>i x > 0, i /∈ A .

Each iteration in the active set algorithm attempts to locate the solution to an equality
problem in which only the active constraints occur. There are more ways to state the active
set optimization problem for our general convex case with linearity restrictions. Let us first
elaborate an auxiliary problem denoted by P+

I

f(x)→ min! (15)

subject to AIx = 0

AIx > 0

which partitions the constraints set into equality and strict inequality restrictions. Note that
this partitions the constraint set x | Ax ≥ 0 into 2m faces, some of which may be empty.
Solution x̂+

I is optimal for P+
I iff there exists a KKT vector λ̂+

I such that

A>I λ̂
+
I ∈ ∂f(x̂+

I), AI x̂
+
I = 0, AI x̂

+
I > 0.

The crucial condition that x̂+
I is the optimum also for P is the dual feasibility condition

λ̂+
I ≥ 0. If this holds then x̂+

I is optimal for P. Conversely, if A ? are the indices of the active
constraints at the solution x̂ of P, then x̂ solves P+ as well.

A second way to give an active set formulation for our setting is problem PI that includes
equality restrictions only:

f(x)→ min! (16)

subject to AIx = 0

Solution x̂I is optimal for iff there exists a KKT vector λ̂I such that

A>I λ̂I ∈ ∂f(x̂I), AI x̂I = 0.

To ensure that x̂I is optimal for P as well we have to check whether the primal feasibility
AI x̂I ≥ 0 and, again, the dual feasibility λ̂I ≥ 0 holds. Conversely, x̂ with the corresponding
active constraints A ? solves P. Thus, if we knew A ? we could solve P by solving PI .

8 PAVA and Active Set Methods in R

In order to achieve this we discuss an equivalent formulation of PI . Basically, the equality
constraints AIx = 0 define a relation ≈I on 1, 2, · · · , n, with i ≈I k if there is a row j of AI
in which both aji and ajk are non-zero. The reflexive and transitive closure ≈I of ≈I is an
equivalence relation, which can be coded as an indicator matrix GI , i.e., a binary matrix in
which all n rows have exactly one element equal to one.

In the package we compute GI from AI in two steps. We first make the adjacency matrix
of ≈I and add the identity to make it reflexive. We then apply Warshall’s Algorithm (War-
shall 1962) to replace the adjacency matrix by that of the transitive closure ≈I , which is an
equivalence relation. Thus the transitive adjacency matrix has blocks of ones for the equiv-
alence classes. We then select the unique rows of the transitive adjacency matrix (using the
unique() function), and transpose to get GI .

Note that GI is of full column-rank, even if AI is singular. We write rI for the number of
equivalence classes of ≈I . Thus GI is an n × rI matrix satisfying AIGI = 0, in fact GI is a

basis for the null space of AI . Moreover DI
∆
=G>I GI is diagonal and indicates the number of

elements in each of the equivalence classes.

Finally, problem PI can be rewritten as unconstrained convex optimization problem

f(GIξI)→ min! (17)

with ξI ∈ RrI . The vector ξ̂I is a solution iff 0 ∈ G>I ∂f(GI ξ̂I). Then x̂I = GI ξ̂I solves PI . If

0 ∈ G>I ∂f(GI ξ̂I) it follows that there is a non-empty intersection of the subgradient ∂f(GI ξ̂I)

and the row-space of AI , i.e., there is a KKT vector A>I λ̂I ∈ ∂f(GI ξ̂I).

In R we can simply use the optim() function—e.g., with Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton—to minimize f(GIξ) over ξ, and then set x̂ = GI ξ̂. This guarantees
(if the optimum is found with sufficient precision) that the gradient at x̂ is orthogonal to
the indicator matrix GI , and consequently that Lagrange multipliers can be computed. By
making sure that AI has full row-rank, the Kuhn-Tucker vector is actually unique.

To conclude, in this section we elaborated auxiliary formulations of the active set problem.
In the algorithmic implementation described in the next section we tackle optimization of
problem P by defining and solving iteratively subproblems PI (including the indicator matrix
GI).

3. PAVA and active set algorithm

3.1. A generalized PAVA approach

Barlow et˜al. (1972) present a graphical interpretation of monotonic regression in terms of
the greatest convex minorant (GCM) and the method of successive approximation to the
GCM can be described algebraically as PAVA (see e.g. Robertson et˜al. 1988, p.˜9–10). In
this paper we focus on the algorithmical description of our PAVA implementation following
Barlow et˜al. (1972, p.˜15).

PAVA is a very simple iterative algorithm for solving monotonic regression problems. The
computation of a non-decreasing sequence of values xi such that the problem P0 is optimized.
In the simple isotonic regression case we have the measurement pairs (zi, yi). Let us assume
that these pairs are ordered with respect to the predictors. The initial solution at iteration

Jan de Leeuw, Kurt Hornik, Patrick Mair 9

l = 0 is x
(0)
i := yi. The index for the blocks is r = 1, . . . , B where at step 0 B := n, i.e., each

observation x
(0)
r forms a block.

1. Merge x(l)-values into blocks if x
(l)
r+1 < x

(l)
r (adjacent pooling).

2. Solve f(x) each block r, i.e., compute the update based on the solver which gives

x
(l+1)
r := s(x

(l)
r).

3. If x
(l)
r+1 ≤ x

(l)
r increase l := l + 1 an go back to step 1.

The algorithm stops when the x-blocks are increasing, i.e., x
(l)
r+1 ≥ x

(l)
r for all r. Finally the

block values are expanded with respect to the observations i = 1, . . . , n such that the final
result is the vector x of length n with elements x̂i of increasing order. In the case of repeated

measurements as described in Section˜2.2 the starting values are x
(0)
i := s(yij). Then we

proceed as described above.

A final notes considers the relation between the generalized PAVA and the active set strategy.
Robertson et˜al. (1988, Chapter˜6) provide a chapter about duality in monotone regression.
For the simple least squares case Best and Chakravarti (1990) show that PAVA can be con-
sidered as a dual active set method. In a subsequent paper, Best et˜al. (2000) they extend
this relation to the general `p case. Therefore it can be concluded that PAVA for general `p
cases belong to the family of dual active set methods.

3.2. Algorithmic implementation of the active set formulation

Active set descriptions for convex (quadratic) programming problems can be found in Fletcher
(1987, Section 10.3) and Nocedal and Wright (1999, Section 16.4). In general, based on a
feasibile starting point, the active set strategy works as follows:

1. Solve the equality problem defined by the active set A.

2. Compute the Lagrange multipliers λ for A.

3. Remove a subset of constraints with λ < 0.

4. Search for infeasible constraints and return to step 1.

These steps are repeated until we find a solution that is “optimal enough”. In practice (and
in our package), the zero-boundaries for the constraints and the dual feasibility checking are
relaxed in favor of a small value ε which leads to Ax ≥ −ε, and λ ≥ −ε.
Again, our goal is to solve problem P given in (15). Based on the elaborations above, in our
active set approach we solve a finite sequence of subproblems PI , that minimize f(x) over
x satisfying AIx. After solving each of the problems we change the active set A , either by
adding or by dropping a constraint. The algorithm can be expected be efficient if minimizing
f(x) under simple equality constraints, or equivalently minimizing f(GIξI) over ξI , can be
done quickly and reliably. Starting with a feasible point x(0) which defines the index sets

I(0) = A (0) and I
(0)

= I − I(0). For each iteration l

10 PAVA and Active Set Methods in R

1. Suppose x̃(l) is a solution of PI(l) . Then x̃(l) can be either feasible or infeasible for P,
depending on if A

I
(l) x̃(l) ≥ 0 or not.

2. If x̃(l) is infeasible we choose x(l+1) on the line between x(l) and x̃(l), where it crosses
the boundary of the feasible region (see Equation˜18 below). This defines a new and
larger set of active constraints A (l+1). Go back to step 1.

3. If x̃(l) is feasible we determine the corresponding Lagrange multipliers λ
(l)
I for PI(l) . If

λ(l) ≥ 0 we have solved P and the algorithm stops. If minλ
(l)
I < 0, we find the most

negative Lagrange multiplier and drop the corresponding equality constraint from A (l)

to define a new and smaller set of active constraints A (l+1) and go back to step 1.

In step 2 we solve

maxα x
(l) + α(x̃(l) − x(l)) (18)

over mini∈A
I
(l)
a>i x

(l) + α(a>i x̃
(l) − a>i x(l)) ≥ 0

Finding the smallest Lagrange multiplier in step 3 is straightforward to implement in the
differentiable case. We have to solve A>

I(l)
λI = ∇f(x̃(l)). This is achieved by using the

formulation given in (17). Because G>
I(l)
∇f(x̃(l)) = 0 and AI(l) is of full row-rank, there is a

unique solution λI(s) .

4. Special cases for active set optimization

In the convex non-differentiable case, matters are more complicated. We have to deal with the
fact that in general ∂f(x) may not be a singleton. It is possible to develop a general theory for
active set methods in this case (Panier 1987), but we will just look at two important special
cases.

4.1. The weighted Chebyshev norm

The first case we consider is the `∞ or Chebyshev norm. We have to minimize

f(ξ) = ‖h(ξ)‖∞ =
n

max
i=1
|wihi(ξ)| (19)

where h(ξ) = y −Gξ are the residuals based on the observed response values y. We assume,
without loss of generality, that wi > 0 for all i. The minimization can be done for each of
the r columns of the indicator matrix G with elements gij separately. The solution ξ̂j is the
corresponding weighted mid-range. More specifically, let Ij = {i | gij = 1}. Then

fj(ξ̂j) = min
ξj

max
i∈Ij
|yi − ξj | = max

i,k∈Ij

wiwk
wi + wk

|yi − yk|. (20)

If the (not necessarily unique) maximum over (i, k) ∈ Ij is attained at (ij , kj), then the
minimum of f over ξ is attained at

ξ̂j =
wijyij + wkjykj
wij + wkj

, (21)

Jan de Leeuw, Kurt Hornik, Patrick Mair 11

where we choose the order within the pair (ij , kj) such that yij ≤ ξ̂j ≤ ykj . Now

min
ξ
f(ξ) =

r
max
j=1

fj(ξ̂j). (22)

These results also apply if Ij is a singleton {i}, in which case ξ̂j = yi and fj(ξ̂j) = 0. Set

x̂ = Gξ̂.

Next we must compute a subgradient in ∂f(x̂) orthogonal to G. Suppose that ei is a unit
weight vectors, i.e., a vector with all elements equal to zero, except element i which is equal
to either plus or minus wi. Consider the set E of the 2n unit weight vectors. Then f(ξ) =
maxei∈E e

>
i h(ξ). Let E(ξ) = {ei | e>i h(ξ) = f(ξ)}. Then, by the formula for the subdifferential

of the pointwise maximum of a finite number of convex functions (also known as Danskin’s
Theorem; see Danskin 1966), we have ∂f(ξ) = conv(E(ξ)) with conv() as the convex hull.

Choose any j for which fj(ξ̂j) is maximal. Such a j may not be unique in general. The index
pair (ij , kj) corresponds with the two unit weight vectors with non-zero elements −wi(j) and
+wk(j). The subgradient we choose is the convex combination which has element −1 at
position ij and element +1 at position k(j). It is orthogonal to G, and thus we can find a
corresponding Kuhn-Tucker vector.

In the isotone package the Chebyshev norm is provided by the solver function mSolver().

4.2. The weighted absolute value norm

For the `1 or weighted absolute value norm

f(ξ) = ‖h(ξ)‖ =
n∑
i=1

|wihi(ξ)| (23)

we find the optimum ξ̂ by computing weighted medians instead of weighted mid-ranges.
Uniqueness problems, and the subdifferentials, will generally be smaller than in the case
of `∞.

For `1 we define E to be the set of 2n vectors (±w1,±w2, · · · ,±wn). The subdifferential
is the convex hull of the vectors e ∈ E for which e>i h(ξ) = minξ f(ξ). If hi(ξ) 6= 0 then
ei = sign(hi(ξ))wi, but if hi(ξ) = 0 element ei can be any number in [−wi,+wi]. Thus the
subdifferential is a multidimensional rectangle. If the medians are not equal to the obser-
vations the loss function is differentiable. If hi(ξ) = 0 for some i in Ij then we select the
corresponding element in the subgradient in such a way that they add up to zero over all
i ∈ Ij .
In the package the dSolver() function implements the weighted absolute value norm.

4.3. Some additional solvers

The isotone package provides some pre-specified loss functions but allows also the user to de-
fine his own functions. The corresponding argument in the function activeSet() is mySolver.
This can be either the function name or the equivalent string expression given in brackets
below. Each solver has extra arguments which we describe in this section.

A user-defined specification of a convex differentiable function can be achieved by setting
mySolver = fSolver. The target function itself is passed to the function by means of the

12 PAVA and Active Set Methods in R

fobj argument and the corresponding gradient using gobj. Note that it is not at all necessary
that the problems are of the regression or projection type, i.e., minimize some norm ‖y− x‖.
In fact, the driver can be easily modified to deal with general convex optimization problems
with linear inequality constraints which are not necessarily of the isotone type. We give
examples in the next section.

Now let us describe some functions pre-specified in the package. We start with the cases
which solve the equivalent formulation of problem PI given in (17), that is, the one which
minimizes over ξ. Because of the structure of these problems it is more efficient to use this
formulation. The solvers passed to the mySolver argument are

lsSolver ("LS"): Solves the least squares `2 norm given in (2).

dSolver ("L1"): Minimizes the weighted absolute value `1 norm as given in (23).

mSolver ("chebyshev"): Solves the Chebyshev `∞ norm given in (19).

pSolver ("quantile"): Solves the quantile regression problem as given in (7).

lfSolver ("GLS"): Tackles a general least squares problem of the form f(x) =
(y − x)>W (y − x) where W is a not necessarily positive definite matrix of order n.

The extra arguments for all these solvers are y for the observed response vector and weights

for optional observation weights. The functions return a list containing x as the fitted values,
lbd as the Lagrange vector, f as the value of the target function, and gx as the gradient at
point x.

Furthermore, we provide some hybrids which are just wrapper functions and call fSolver()
internally. It is not needed that fobj and gobj are provided by the user.

sSolver ("poisson"): Solves the negative Poisson log-likelihood with loss function f(x) =∑n
i=1 xi − yi log(xi).

oSolver ("Lp"): Minimizes the `p norm as given in (4) with mi = 1 ∀i.

aSolver ("asyLS"): Efron (1991) gives an asymmetric least squares formulation based on˜(2).
The weights bw for (yi − xi) ≤ 0 (extra argument bw) and aw for (yi − xi) > 0 (extra
argument aw) are introduced. Consequently, hi(yi, xi) = (yi − xi)2bw for (yi − xi) ≤ 0
and hi(xi, yi) = (yi − xi)2aw for (yi − xi) > 0.

eSolver ("L1eps"): Minimizes the `1 approximation for f(x) =
∑n

i=1wi
√

(yi − xi)2 + ε.
Correspondingly, the additional extra argument is eps.

hSolver ("huber"): Solves the Huber loss-function (Huber 1981) with extra argument eps.

hi(yi, xi) =

{
(yi − xi)2/4ε |yi − xi| > 2
|yi − xi| − ε otherwise

iSolver ("SILF"): Minimizes the soft insensitive loss function (SILF) defined in Chu et˜al.
(2004) with the two extra parameters ε (argument eps) and β (argument beta). We

Jan de Leeuw, Kurt Hornik, Patrick Mair 13

have to distinguish as follows:

hi(yi, xi) =


−|yi − xi| − ε |yi − xi| ∈ (−∞,−(1 + β)ε)
(|yi − xi|+ (1− β)ε)2/4βε |yi − xi| ∈ [−(1 + β)ε,−(1− β)ε]
0 |yi − xi| ∈ (−(1− β)ε, (1− β)ε)
(|yi − xi| − (1− β)ε)2/4βε |yi − xi| ∈ [(1− β)ε, (1 + β)ε]
|yi − xi| − ε |yi − xi| ∈ ((1 + β)ε,∞)

With a little extra effort various other fashionable support vector machines (SVM) and lasso
isotone regressions could be added.

5. Package description and examples

The isotone package consists of two main components: The PAVA component with its main
function gpava() and the active set component with its main function activeSet(). In the
following sections we describe their basic functionalities and give corresponding examples.

Package Function Location Description Language

stats (R Development
Core Team 2009)

isoreg() external isotonic regression C

monreg (Pilz and Titoff
2009)

monreg() external monotonic regres-
sion

C

fdrtool (Strimmer 2008) monoreg() external monotonic regres-
sion, weights

C

Cir (Oron 2008) pava(),
cir.pava()

external isotonic regression,
weights

R

Iso (Turner 2009) pava() external isotonic regression,
weights

Fortran

clue (Hornik 2005) pava() internal isotonic regression
(mean/median)

R

logcondens (Rufibach
and Duembgen 2009)

isoMean() external isotonic regression,
weights

R

sandwich (Zeileis 2004) pava.blocks() internal isotonic regression,
weights

R

intcox (Henschel et˜al.
2009)

intcox.pavaC() internal isotonic regression,
weights

C

SAGx (Broberg 2009) pava.fdr() external false discovery rate
using isotonic re-
gression

R

smacof (de Leeuw and
Mair 2009)

pavasmacof() internal nonmetric multidi-
mensional scaling,
ties

R

Table 1: Existing PAVA implementations in R.

14 PAVA and Active Set Methods in R

5.1. The PAVA component

Table˜1 gives an overview of available PAVA implementations in R. It quotes the package
name, the corresponding function, whether this function is externally accessible, a brief de-
scription, and in which programming language the core computations are implemented. The
functions that use C or Fortran can be expected to be faster for large observation vectors.

None of the functions in Table˜1 allows for the specifications of general convex functions,
repeated measurements and the handling of ties for such structures. Our package which
is available on CRAN, allows for the computation of rather general target functions with
additional options in terms of repeated measurements, tie handling, and weights.

The main function for this generalized PAVA computation is gpava(). The argument solver
takes the solver function which can be weighted.mean, weighted.median, weighted.fractile
or a user-specified function. S3 methods such as print() and plot() are provided and in
the following subsections we present simple two examples.

5.2. Monotone regression with ties for pituitary data

The first example is based on a dataset from Pothoff and Roy (1964) which is also analyzed in
Robertson et˜al. (1988). The Dental School at the University of North Carolina measured the
size of the pituitary fissue (in millimeters) on 11 subjects from 8 to 14 years. The predictor
is age and it can be expected that the size of the fissure increases with age. The data are of
the following structure:

R> require("isotone")

R> data("pituitary")

R> head(pituitary)

age size

1 8 21.0

2 8 23.5

3 8 23.0

4 10 24.0

5 10 21.0

6 10 25.0

As we see we have a several ties on the predictors. By means of this example we present
different results caused by different approaches for handling ties (i.e., primary, secondary,
tertiary). We compute the isotonic regression using the function gpava():

R> res1 <- with(pituitary, gpava(age, size, ties = "primary"))

R> res2 <- with(pituitary, gpava(age, size, ties = "secondary"))

R> res3 <- with(pituitary, gpava(age, size, ties = "tertiary"))

R> layout(matrix(c(1, 1, 2, 2, 0, 3, 3, 0), 2, 4, byrow = TRUE))

R> plot(res1, main = "PAVA plot (primary)")

R> plot(res2, main = "PAVA plot (secondary)")

R> plot(res3, main = "PAVA plot (tertiary)")

Jan de Leeuw, Kurt Hornik, Patrick Mair 15

●

●

●

●

●

●

●

●

●

●

●

8 9 10 11 12 13 14

19
20

21
22

23
24

25

PAVA plot (primary)

Predictor

R
es

po
ns

e

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 9 10 11 12 13 14

19
20

21
22

23
24

25

PAVA plot (secondary)

Predictor
R

es
po

ns
e

● ●

●

●

●

●

●

●

●

●

●

●

●

●

8 9 10 11 12 13 14

19
20

21
22

23
24

25

PAVA plot (tertiary)

Predictor

R
es

po
ns

e

●●

●

●
●

●

●

●

●

●

●

Figure 2: Different tie approaches for pituitary data.

For the primary method we can have different (monotonic) fitted values within tied observa-
tions, for the secondary the fitted values are the same within ties, and the tertiary approach
only requires monotonicity on the means. This can be examined by doing

R> tapply(res3$x, res3$z, mean)

8 10 12 14

22.22222 22.22222 22.22222 24.25000

Using the tertiary approach the fitted values within ties can even decrease (see, e.g., within

16 PAVA and Active Set Methods in R

10 year old children). The plots in Figure˜2 show the fitted step functions for each of the
approaches.

5.3. Repeated measures using posturographic data

To demonstrate PAVA on longitudinal data we use a subset of the data collected in Leitner
et˜al. (2009). The sample consists of 50 subjects (healthy controls and patients chronical low
back pain). The subjects’ task on a sensory organization test (SOT) was to keep the balance
on a dynamic 18 × 18 inches dual force plate. Measurements on various testing conditions
were collected and the SOT equilibrium scores computed. They were based on the maximum
anterior posterior sway angle during the SOT trials and reflected the overall coordination of
visual, proprioceptive and vestibular components of balance to maintain standing posture.
These equilibrium scores represent the angular difference between the subject’s calculated
anterior/posterior center of gravity displacements and the theoretical maximum of 12.5◦. A
score of 100 theoretically indicates no anterior/posterior excursion. A score of 0 indicates a
fall of the subject. Thus, the higher the score, the more able a person is to maintain the
balance.

The subset we select for this example is based on the condition where both proprioceptive
and visual stimuli are altered by moving a surrounding visual screen and the platform with
the subject’s anterior/posterior body sway. We examine the relationship between body height
and three repeated SOT scores.

R> data("posturo")

R> head(posturo)

height SOT.1 SOT.2 SOT.3

1 1.64 91 95 91

2 1.80 84 90 90

3 1.63 64 80 82

6 1.59 65 83 83

10 1.75 87 90 86

11 1.69 77 88 84

PAVA is performed on the weighted median target function and using the secondary approach
for ties.

R> res.mean <- with(posturo, gpava(height, cbind(SOT.1, SOT.2, SOT.3),

+ solver = weighted.mean, ties = "secondary"))

R> res.median <- with(posturo, gpava(height, cbind(SOT.1, SOT.2, SOT.3),

+ solver = weighted.median, ties = "secondary"))

R> plot(res.mean)

R> plot(res.median)

The fitted step functions for the two different target functions are given in Figure˜3.

Jan de Leeuw, Kurt Hornik, Patrick Mair 17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

1.55 1.60 1.65 1.70 1.75 1.80 1.85

60
70

80
90

PAVA Plot

Predictor

R
es

po
ns

e

● ●

● ●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

1.55 1.60 1.65 1.70 1.75 1.80 1.85
60

70
80

90

PAVA Plot

Predictor

R
es

po
ns

e

●●

●

● ●

●

●
●

●

●

Figure 3: Step function for posturographic data.

5.4. The active set component

As mentioned above a primal active set implementation according to the elaborations in
Section˜2.4 is provided by the function activeSet() which has the following arguments:

isomat: Matrix with 2 columns that contains isotonicity conditions (see examples).

mySolver: Either a user-specified solver function or one of the pre-specified solvers as de-
scribed in Section˜4.3.

x0: Optional vector containing starting values. The response values y are passed to the solver
function (see below).

ups: Upper boundary ε for KKT feasibility checking.

check: If TRUE, a final KKT feasibility check is performed.

For the solvers described in Section˜4.3, each one requires various extra arguments (see cor-
responding package help files for detailed description). Each of the solvers needs to have the
response vector y as argument.

Now we use some small artificial examples to show the application of different solver routines.
The data are

R> set.seed(12345)

R> y <- rnorm(9)

R> w1 <- rep(1, 9)

R> Atot <- cbind(1:8, 2:9)

18 PAVA and Active Set Methods in R

The variable Atot defines the pairwise isotonicity matrix which needs to have 2 columns and
as many rows as unique isotonicity constraints.

R> Atot

[,1] [,2]

[1,] 1 2

[2,] 2 3

[3,] 3 4

[4,] 4 5

[5,] 5 6

[6,] 6 7

[7,] 7 8

[8,] 8 9

We see that this matrix defines a total order. The specification is always as follows: element
column 2 � element column 1, e.g., the first row states x2 ≥ x1.

Let us start with a simple least squares model using the lsSolver() and the equivalent user-
specification of the `2 norm using fSolver() with corresponding target function fobj and its
gradient gobj.

R> fit.ls1 <- activeSet(Atot, "LS", y = y, weights = w1)

R> fit.ls2 <- activeSet(Atot, fSolver, y = y, weights = w1,

+ fobj = function(x) sum(w1 * (x - y)^2),

+ gobj = function(x) 2 * drop(w1 * (x - y)))

This model has unit weights. We will refit this model with a different weight vector and, sub-
sequently, its generalization using a non-diagonal weight matrix by means of the lfsolver().

R> set.seed(12345)

R> wvec <- 1:9

R> wmat <- crossprod(matrix(rnorm(81), 9, 9))/9

R> fit.wls <- activeSet(Atot, "LS", y = y, weights = wvec)

R> fit.gls <- activeSet(Atot, "GLS", y = y, weights = wmat)

Quantile regression can be performed by means of the pSolver():

R> fit.qua <- activeSet(Atot, "quantile", y = y, weights = wvec,

+ aw = 0.3, bw = 0.7)

Now let us generalize the LS problems in terms of other norms using again unit weights. Let
us start with the `1 provided by dSolver().

R> fit.abs <- activeSet(Atot, "L1", y = y, weights = w1)

This exact absolute value norm can be approximated with either eSolver() which requires
ε or oSolver() which requires the power p.

Jan de Leeuw, Kurt Hornik, Patrick Mair 19

R> fit.eps <- activeSet(Atot, "L1eps", y = y, weights = w1, eps = 1e-04)

R> fit.pow <- activeSet(Atot, "Lp", y = y, weights = w1, p = 1.2)

Furthermore, the Chebyshev `∞ norm can be calculated using mSolver().

R> fit.che <- activeSet(Atot, "chebyshev", y = y, weights = w1)

Efron’s asymmetric LS problem can be solved by means of aSolver() with the extra argu-
ments aw for the yi > xi case and bw for the yi ≤ xi case:

R> fit.asy <- activeSet(Atot, "asyLS", y = y, weights = w1, aw = 2,

+ bw = 1)

The Huber loss function with the ε parameter and the SILF SVM extension with additionally
β as parameter can be computed as follows:

R> fit.hub <- activeSet(Atot, "huber", y = y, weights = w1, eps = 1)

R> fit.svm <- activeSet(Atot, "SILF", y = y, weights = w1, beta = 0.8,

+ eps = 0.2)

As a final norm let us consider the negative Poisson log-likelihood specified in sSolver()

using Poisson distribution random numbers with parameter λ = 5.

R> set.seed(12345)

R> yp <- rpois(9, 5)

R> x0 <- 1:9

R> fit.poi <- activeSet(Atot, "poisson", x0 = x0, y = yp)

So far we focused on total orders only. Now we back to the LS case and specify different types
or orders according to the Hasse diagrams in Figure˜1. The tree order in Figure˜1(b) can be
defined as follows:

R> Atree <- matrix(c(1, 1, 2, 2, 2, 3, 3, 8, 2, 3, 4, 5, 6, 7, 8, 9), 8, 2)

R> Atree

[,1] [,2]

[1,] 1 2

[2,] 1 3

[3,] 2 4

[4,] 2 5

[5,] 2 6

[6,] 3 7

[7,] 3 8

[8,] 8 9

R> fit.tree <- activeSet(Atree, "LS", y = y, weights = w1)

20 PAVA and Active Set Methods in R

The loop order given in Figure˜1(c) and the corresponding LS-fit are

R> Aloop <- matrix(c(1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 3, 3, 4, 5, 6, 6,

+ 7, 8, 9, 9), 10, 2)

R> Aloop

[,1] [,2]

[1,] 1 3

[2,] 2 3

[3,] 3 4

[4,] 3 5

[5,] 4 6

[6,] 5 6

[7,] 6 7

[8,] 6 8

[9,] 7 9

[10,] 8 9

R> fit.loop <- activeSet(Aloop, "LS", y = y, weights = w1)

Finally, using the same data we fit the block order given in Figure˜1(d).

R> Ablock <- cbind(c(rep(1, 3), rep(2, 3), rep(3, 3), rep(4, 3), rep(5, 3),

+ rep(6, 3)), c(rep(c(4, 5, 6), 3), rep(c(7, 8, 9), 3)))

R> Ablock

[,1] [,2]

[1,] 1 4

[2,] 1 5

[3,] 1 6

[4,] 2 4

[5,] 2 5

[6,] 2 6

[7,] 3 4

[8,] 3 5

[9,] 3 6

[10,] 4 7

[11,] 4 8

[12,] 4 9

[13,] 5 7

[14,] 5 8

[15,] 5 9

[16,] 6 7

[17,] 6 8

[18,] 6 9

R> fit.block <- activeSet(Ablock, "LS", y = y, weights = w1)

Jan de Leeuw, Kurt Hornik, Patrick Mair 21

Other types of orders can be defined easily by a proper specification of the constraints matrix.

5.5. PAVA computation using active set

In Section˜3.1 we mentioned that PAVA can be considered as a dual active set method. Using
the simulated data again, we show that LS PAVA and LS active set lead to the same results.
Consequently, the mean squared error becomes almost 0.

R> pava.fitted <- gpava(1:9, y)$x

R> aset.fitted <- activeSet(Atot, "LS", weights = w1, y = y)$x

R> mse <- mean((pava.fitted - aset.fitted)^2)

R> mse

[1] 1.283953e-34

Obviously, the active set approach is somewhat more general than PAVA in terms of loss
functions and different types of orders. But, pertaining to the way we have implemented
both functions, in cases in which it applies gpava() is more convenient and efficient than
activeSet(). In the gpava() function we provide an easy way to handle multiple measure-
ments. Basically, users can do this in activeSet() as well by a corresponding solver specifi-
cation. Furthermore, gpava() offers different approaches to handle ties whereas activeSet()
does not. Finally, for large data problems, PAVA is computationally more efficient than active
set.

6. Discussion

After a historical outline we presented the theory and the algorithmical descriptions of ap-
proaches for solving isotone optimization problems: PAVA and active set. We started with the
classical representation of the monotone LS regression problem with simple chain constraints
and extended it to general convex programming problems with linear inequality constraints.
This leads to a general isotone optimization framework that is implemented in the R package
isotone. Applications on real and simulated data sets were shown.

One option for the extension of the PAVA algorithm is to allow for multiple predictors. This
approach is elaborated in Burdakov et˜al. (2004).

Of course, the field of convex analysis is rather extensive and our activeSet() function
covers only a certain fraction (cf. Boyd and Vandenberghe 2004). Since we use optim()

in the fSolver() function this may cause troubles for non-differentiable convex functions.
Therefore, a replacement of this optimizer would facilitate the optimization of such non-
differentiable problems. In addition, for a target f(x) we allow for one particular type of
solver s(x) only, that is, the target function is separable but the components must be of the
same type. This could be extended in terms of different solvers for one particular optimization
problem.

22 PAVA and Active Set Methods in R

References

Ahuja RK, Orlin JB (2001). “A Fast Scaling Algorithm for Minimizing Separable Convex
Functions Subject to Chain Constraints.” Operations Research, 49, 784–789.

Ayer M, Brunk HD, Ewing GM, Reid WT, Silverman E (1955). “An Empirical Distribu-
tion Function for Sampling with Incomplete Information.” The Annals of Mathematical
Statistics, 26, 641–647.

Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972). Statistical Inference Under
Order Restrictions. John Wiley & Sons, New York.

Barlow RE, Brunk HD (1972). “The Isotonic Regression Problem and Its Dual.” Journal of
the American Statistical Association, 67, 140–147.

Bartholomew DJ (1959a). “A Test of Homogeneity for Ordered Alternatives.” Biometrika,
46, 36–48.

Bartholomew DJ (1959b). “A Test of Homogeneity for Ordered Alternatives II.” Biometrika,
46, 328–335.

Best MJ, Chakravarti N (1990). “Active Set Algorithms for Isotonic Regression: A Unifying
Framework.” Mathematical Programming, 47, 425–439.

Best MJ, Chakravarti N, Ubhaya VA (2000). “Minimizing Separable Convex Functions Subject
to Simple Chain Constraints.” SIAM Journal on Optimization, 10, 658–672.

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press, Cam-
bridge, MA.

Broberg P (2009). SAGx: Statistical Analysis of the GeneChip. R˜package version˜1.18.0,
URL http://www.bioconductor.org/packages/2.4/bioc/html/SAGx.html.

Brunk HB (1955). “Maximum Likelihood Estimates of Monotone Parameters.” The Annals
of Mathematical Statistics, 26, 607–616.

Burdakov O, Grimvall A, Hussian M (2004). “A Generalised PAV Algorithm for Monotonic
Regression in Several Variables.” In J˜Antoch (ed.), “COMPSTAT, Proceedings of the 16th
Symposium in Computational Statistics,” pp. 761–767. Springer-Verlag, New York.

Chu W, Keerthi SS, Ong CJ (2004). “Bayesian Support Vector Regression Using a Unified
Loss Function.” IEEE Transactions on Neural Networks, 15, 29–44.

Danskin JM (1966). “The Theory of Max-Min with Applications.” SIAM Journal on Applied
Mathematics, 14, 641–664.

de Leeuw J (1977). “Correctness of Kruskal’s Algorithms for Monotone Regression with Ties.”
Psychometrika, 42, 141–144.

de Leeuw J (2005). “Monotonic Regression.” In BS˜Everitt, DC˜Howell (eds.), “Encyclopedia
of Statistics in Behavioral Science (Vol. 3),” pp. 1260–1261. John Wiley & Sons, New York.

http://www.bioconductor.org/packages/2.4/bioc/html/SAGx.html

Jan de Leeuw, Kurt Hornik, Patrick Mair 23

de˜Leeuw J, Hornik K, Mair P (2009). “Isotone Optimization in R: Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods.” Journal of Statistical Software, 32(5), 1–24.
URL http://www.jstatsoft.org/v32/i05/.

de Leeuw J, Mair P (2009). “Multidimensional Scaling Using Majorization: SMACOF in R.”
Journal of Statistical Software, 31(3), 1–30. URL http://www.jstatsoft.org/v31/i03/.

Dykstra RL (1981). “An Isotonic Regression Algorithm.” Journal of Statistical Planning and
Inference, 5, 355–363.

Dykstra RL, Robertson T (1982). “An Algorithm for Isotonic Regression for Two or More
Independent Variables.” The Annals of Statistics, 10, 708–719.

Efron B (1991). “Regression Percentiles Using Asymmetric Squared Error Loss.” Statistica
Sinica, 1, 93–125.

Fletcher R (1987). Practical Optimization. John Wiley & Sons, Chichester.

Hansohm J (2007). “Algorithms and Error Estimations for Monotone Regression on Partially
Preordered Sets.” Journal of Multivariate Analysis, 98, 1043–1050.

Henschel V, Heiss C, Mansmann U (2009). intcox: Iterated Convex Minorant Algorithm for
Interval Censored Event Data. R˜package version˜0.9.2, URL http://CRAN.R-project.

org/package=intcox.

Hornik K (2005). “A CLUE for CLUster Ensembles.” Journal of Statistical Software, 14(12),
1–25. URL http://www.jstatsoft.org/v14/i12/.

Huber P (1981). Robust Statistics. John Wiley & Sons, New York.

Koenker R (2005). Quantile Regression. Cambridge University Press, Cambridge, MA.

Kruskal JB (1964). “Nonmetric Multidimensional Scaling: A Numerical Method.” Psychome-
trika, 29, 115–129.

Leitner C, Mair P, Paul B, Wick F, Mittermaier C, Sycha T, Ebenbichler G (2009). “Reliability
of Posturographic Measurements in the Assessment of Impaired Sensorimotor Function in
Chronic Low Back Pain.” Journal of Electromyography and Kinesiology, 19, 380–390.

Miles RE (1959). “The Complete Almagamation into Blocks, by Weighted Means, of a Finite
Set of Real Numbers.” Biometrika, 46, 317–327.

Nocedal J, Wright SJ (1999). Numerical Optimization. Springer-Verlag, New York.

Oron AP (2008). cir: Nonparametric Estimation of Monotone Functions via Isotonic Re-
gression and Centered Isotonic Regression. R˜package version˜1.0, URL http://CRAN.

R-project.org/package=cir.

Panier ER (1987). “An Active Set Method for Solving Linearly Constrained Nonsmooth
Optimization Problems.” Mathematical Programming, 37, 269–292.

Pilz K, Titoff S (2009). monreg: Nonparametric Monotone Regression. R˜package version
0.1.1, URL http://CRAN.R-project.org/package=monreg.

http://www.jstatsoft.org/v32/i05/
http://www.jstatsoft.org/v31/i03/
http://CRAN.R-project.org/package=intcox
http://CRAN.R-project.org/package=intcox
http://www.jstatsoft.org/v14/i12/
http://CRAN.R-project.org/package=cir
http://CRAN.R-project.org/package=cir
http://CRAN.R-project.org/package=monreg

24 PAVA and Active Set Methods in R

Pothoff RF, Roy SN (1964). “A Generalized Multivariate Analysis of Variance Model Useful
Especially for Growth Curve Problems.” Biometrika, 51, 313–326.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Robertson T, Wright FT, Dykstra RL (1988). Order Restricted Statistical Inference. John
Wiley & Sons, New York.

Rockafellar RT (1970). Convex Analysis. Princeton University Press, Princeton, NJ.

Rufibach K, Duembgen L (2009). logcondens: Estimate a Log-Concave Probability Den-
sity from iid Observations. R package version 1.3.4, URL http://CRAN.R-project.org/

package=logcondens.

Strimmer K (2008). fdrtool: Estimation and Control of (Local) False Discovery Rates.
R˜package version˜1.2.5, URL http://CRAN.R-project.org/package=fdrtool.

Strömberg U (1991). “An Algorithm for Isotonic Regression with Arbitrary Convex Distance
Function.” Computational Statistics & Data Analysis, 11, 205–219.

Turner R (2009). Iso: Functions to Perform Isotonic Regression. R˜package version 0.0-7,
URL http://CRAN.R-project.org/package=Iso.

van Eeden C (1958). Testing and Estimating Ordered Parameters of Probability Distributions.
Ph.D. thesis, University of Amsterdam.

Warshall S (1962). “A Theorem for Boolean Matrices.” Journal of the Association of Computer
Machinery, 9, 11–12.

Zangwill WI (1969). Nonlinear Programming: A Unified Approach. Prentice-Hall, Engelwood
Cliffs, NJ.

Zeileis A (2004). “Econometric Computing with HC and HAC Covariance Matrix Estimators.”
Journal of Statistical Software, 11(10), 1–17. URL http://www.jstatsoft.org/v11/i10/.

Affiliation:

Jan de Leeuw
Department of Statistics University of California, Los Angeles
E-mail: deleeuw@stat.ucla.edu
URL: http://www.stat.ucla.edu/~deleeuw/

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=logcondens
http://CRAN.R-project.org/package=logcondens
http://CRAN.R-project.org/package=fdrtool
http://CRAN.R-project.org/package=Iso
http://www.jstatsoft.org/v11/i10/
mailto:deleeuw@stat.ucla.edu
http://www.stat.ucla.edu/~deleeuw/

	Introduction: History of monotone regression
	A general isotone optimization framework
	Basics of monotone regression
	Generalization to lp and multiple measurements
	Isotone optimization as a convex programming problem
	Active set method for convex programming problems

	PAVA and active set algorithm
	A generalized PAVA approach
	Algorithmic implementation of the active set formulation

	Special cases for active set optimization
	The weighted Chebyshev norm
	The weighted absolute value norm
	Some additional solvers

	Package description and examples
	The PAVA component
	Monotone regression with ties for pituitary data
	Repeated measures using posturographic data
	The active set component
	PAVA computation using active set

	Discussion

