* using log directory 'd:/Rcompile/CRANpkg/local/2.13/psgp.Rcheck' * using R version 2.13.2 (2011-09-30) * using platform: i386-pc-mingw32 (32-bit) * using session charset: ISO8859-1 * checking for file 'psgp/DESCRIPTION' ... OK * this is package 'psgp' version '0.3-0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking whether package 'psgp' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking for portable file names ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking for unstated dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking for portable compilation flags in Makevars ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking sizes of PDF files under inst/doc ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in tests ... OK * checking tests ... ** running tests for arch 'i386' OK Running 'meuse_psgp.R' Comparing 'meuse_psgp.Rout' to 'meuse_psgp.Rout.save' ...1,42d0 < < < > library(psgp) < < Attaching package: 'zoo' < < The following object(s) are masked from 'package:base': < < as.Date, as.Date.numeric < < Geospatial Data Abstraction Library extensions to R successfully loaded < Loaded GDAL runtime: GDAL 1.8.1, released 2011/07/09 < Path to GDAL shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/gdal < Loaded PROJ.4 runtime: Rel. 4.7.1, 23 September 2009, [PJ_VERSION: 470] < Path to PROJ.4 shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/proj < < Attaching package: 'lattice' < < The following object(s) are masked from 'package:evd': < < qq < < > set.seed(100) < > # set up data: < > data(meuse) < > coordinates(meuse) = ~x+y < > meuse$value = log(meuse$zinc) < > data(meuse.grid) < > gridded(meuse.grid) = ~x+y < > proj4string(meuse) = CRS("+init=epsg:28992") < > proj4string(meuse.grid) = CRS("+init=epsg:28992") < > < > # set up intamap object: < > psgpObject = createIntamapObject( < + observations = meuse, < + formulaString=as.formula(value~1), < + predictionLocations = meuse.grid, < + class = "psgp" < + ) < > < > # run test: < > checkSetup(psgpObject) 44,46d1 < > < > # do interpolation steps: < > psgpObject = estimateParameters(psgpObject) 396,398d350 < > < > # make prediction < > psgpObject = spatialPredict(psgpObject) 723c675 < Range (P0) :844.492790 --- > Range (P0) :844.492816 727c679 < Length scale (P0) :1752.485472 --- > Length scale (P0) :1752.485482 732,736d683 < > < > # Plot prediction < > # plotIntamap(psgpObject) < > # plotIntamap(meuse, pch=1, cex=sqrt(meuse$value)/20, add=TRUE) < > Running 'psgp.R' Comparing 'psgp.Rout' to 'psgp.Rout.save' ...1,40d0 < < < > library(psgp) # requires intamap < < Attaching package: 'zoo' < < The following object(s) are masked from 'package:base': < < as.Date, as.Date.numeric < < Geospatial Data Abstraction Library extensions to R successfully loaded < Loaded GDAL runtime: GDAL 1.8.1, released 2011/07/09 < Path to GDAL shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/gdal < Loaded PROJ.4 runtime: Rel. 4.7.1, 23 September 2009, [PJ_VERSION: 470] < Path to PROJ.4 shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/proj < < Attaching package: 'lattice' < < The following object(s) are masked from 'package:evd': < < qq < < > < > data(meuse) < > observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc)) < > coordinates(observations) = ~x+y < > set.seed(13531) < > predictionLocations = spsample(observations, 50, "regular") < > < > krigingObject = createIntamapObject( < + observations = observations, < + predictionLocations = predictionLocations, < + formulaString = as.formula(value~1), < + params = list(doAnisotropy = TRUE, thresh = quantile(observations$value,0.9)), < + outputWhat = list(mean=TRUE, variance=TRUE, excprob = 5.9, cumdistr = 5.9, < + quantile = .1) < + ) < > class(krigingObject) = c("psgp") < > < > checkSetup(krigingObject) 42,43d1 < > krigingObject = preProcess(krigingObject) < > krigingObject = estimateParameters(krigingObject) 393d350 < > krigingObject = spatialPredict(krigingObject) 712c669 < Range (P0) :844.492798 --- > Range (P0) :844.492802 716c673 < Length scale (P0) :1752.485476 --- > Length scale (P0) :1752.485475 721,751d677 < > krigingObject = postProcess(krigingObject) < > < > # Send predictions back to Java. Not sure how to deal with this spatial object though...? < > summary(krigingObject$outputTable) < x y mean variance < Min. :179019 Min. :330013 Min. :4.762 Min. :0.03764 < 1st Qu.:179485 1st Qu.:330829 1st Qu.:5.314 1st Qu.:0.07613 < Median :180183 Median :331644 Median :5.874 Median :0.25617 < Mean :180183 Mean :331644 Mean :6.234 Mean :0.45727 < 3rd Qu.:180882 3rd Qu.:332459 3rd Qu.:7.409 3rd Qu.:0.64260 < Max. :181348 Max. :333275 Max. :8.013 Max. :1.81668 < excprob5.9 cumdistr5.9 quantile0.1 < Min. :0.0000153 Min. :1.622e-09 Min. :4.048 < 1st Qu.:0.0561157 1st Qu.:2.101e-02 1st Qu.:4.646 < Median :0.4837435 Median :5.163e-01 Median :5.177 < Mean :0.5164719 Mean :4.835e-01 Mean :5.478 < 3rd Qu.:0.9789940 3rd Qu.:9.439e-01 3rd Qu.:6.461 < Max. :1.0000000 Max. :1.000e+00 Max. :7.228 < > summary(krigingObject$observations) < Object of class SpatialPointsDataFrame < Coordinates: < min max < x 178605 181390 < y 329714 333611 < Is projected: NA < proj4string : [NA] < Number of points: 155 < Data attributes: < Min. 1st Qu. Median Mean 3rd Qu. Max. < 4.727 5.288 5.787 5.886 6.514 7.517 < > summary(autoKrige(value~1,krigingObject$observations,predictionLocations)$krige_output) 753,773d678 < Object of class SpatialPointsDataFrame < Coordinates: < min max < x1 179018.6 181348.1 < x2 330013.4 333274.7 < Is projected: NA < proj4string : [NA] < Number of points: 48 < Data attributes: < var1.pred var1.var var1.stdev < Min. :4.929 Min. :0.1153 Min. :0.3395 < 1st Qu.:5.518 1st Qu.:0.1615 1st Qu.:0.4018 < Median :6.047 Median :0.3582 Median :0.5963 < Mean :5.978 Mean :0.3827 Mean :0.5909 < 3rd Qu.:6.337 3rd Qu.:0.6026 3rd Qu.:0.7762 < Max. :7.472 Max. :0.6752 Max. :0.8217 < > autofitVariogram(value~1,krigingObject$observations)$var_model < model psill range < 1 Nug 0.04847876 0.0000 < 2 Sph 0.58754476 889.8912 < > ** running tests for arch 'x64' OK Running 'meuse_psgp.R' Comparing 'meuse_psgp.Rout' to 'meuse_psgp.Rout.save' ...1,42d0 < < < > library(psgp) < < Attaching package: 'zoo' < < The following object(s) are masked from 'package:base': < < as.Date, as.Date.numeric < < Geospatial Data Abstraction Library extensions to R successfully loaded < Loaded GDAL runtime: GDAL 1.8.1, released 2011/07/09 < Path to GDAL shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/gdal < Loaded PROJ.4 runtime: Rel. 4.7.1, 23 September 2009, [PJ_VERSION: 470] < Path to PROJ.4 shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/proj < < Attaching package: 'lattice' < < The following object(s) are masked from 'package:evd': < < qq < < > set.seed(100) < > # set up data: < > data(meuse) < > coordinates(meuse) = ~x+y < > meuse$value = log(meuse$zinc) < > data(meuse.grid) < > gridded(meuse.grid) = ~x+y < > proj4string(meuse) = CRS("+init=epsg:28992") < > proj4string(meuse.grid) = CRS("+init=epsg:28992") < > < > # set up intamap object: < > psgpObject = createIntamapObject( < + observations = meuse, < + formulaString=as.formula(value~1), < + predictionLocations = meuse.grid, < + class = "psgp" < + ) < > < > # run test: < > checkSetup(psgpObject) 44,46d1 < > < > # do interpolation steps: < > psgpObject = estimateParameters(psgpObject) 396,398d350 < > < > # make prediction < > psgpObject = spatialPredict(psgpObject) 723c675 < Range (P0) :844.492401 --- > Range (P0) :844.492816 727c679 < Length scale (P0) :1752.485270 --- > Length scale (P0) :1752.485482 732,736d683 < > < > # Plot prediction < > # plotIntamap(psgpObject) < > # plotIntamap(meuse, pch=1, cex=sqrt(meuse$value)/20, add=TRUE) < > Running 'psgp.R' Comparing 'psgp.Rout' to 'psgp.Rout.save' ...1,40d0 < < < > library(psgp) # requires intamap < < Attaching package: 'zoo' < < The following object(s) are masked from 'package:base': < < as.Date, as.Date.numeric < < Geospatial Data Abstraction Library extensions to R successfully loaded < Loaded GDAL runtime: GDAL 1.8.1, released 2011/07/09 < Path to GDAL shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/gdal < Loaded PROJ.4 runtime: Rel. 4.7.1, 23 September 2009, [PJ_VERSION: 470] < Path to PROJ.4 shared files: d:/RCompile/CRANpkg/lib/2.13/rgdal/proj < < Attaching package: 'lattice' < < The following object(s) are masked from 'package:evd': < < qq < < > < > data(meuse) < > observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc)) < > coordinates(observations) = ~x+y < > set.seed(13531) < > predictionLocations = spsample(observations, 50, "regular") < > < > krigingObject = createIntamapObject( < + observations = observations, < + predictionLocations = predictionLocations, < + formulaString = as.formula(value~1), < + params = list(doAnisotropy = TRUE, thresh = quantile(observations$value,0.9)), < + outputWhat = list(mean=TRUE, variance=TRUE, excprob = 5.9, cumdistr = 5.9, < + quantile = .1) < + ) < > class(krigingObject) = c("psgp") < > < > checkSetup(krigingObject) 42,43d1 < > krigingObject = preProcess(krigingObject) < > krigingObject = estimateParameters(krigingObject) 393d350 < > krigingObject = spatialPredict(krigingObject) 712c669 < Range (P0) :844.492711 --- > Range (P0) :844.492802 716c673 < Length scale (P0) :1752.485435 --- > Length scale (P0) :1752.485475 721,751d677 < > krigingObject = postProcess(krigingObject) < > < > # Send predictions back to Java. Not sure how to deal with this spatial object though...? < > summary(krigingObject$outputTable) < x y mean variance < Min. :179019 Min. :330013 Min. :4.762 Min. :0.03763 < 1st Qu.:179485 1st Qu.:330829 1st Qu.:5.314 1st Qu.:0.07613 < Median :180183 Median :331644 Median :5.875 Median :0.25617 < Mean :180183 Mean :331644 Mean :6.235 Mean :0.45727 < 3rd Qu.:180882 3rd Qu.:332459 3rd Qu.:7.411 3rd Qu.:0.64259 < Max. :181348 Max. :333275 Max. :8.015 Max. :1.81668 < excprob5.9 cumdistr5.9 quantile0.1 < Min. :0.0000153 Min. :2.238e-09 Min. :4.048 < 1st Qu.:0.0561275 1st Qu.:2.100e-02 1st Qu.:4.646 < Median :0.4838715 Median :5.161e-01 Median :5.176 < Mean :0.5164961 Mean :4.835e-01 Mean :5.479 < 3rd Qu.:0.9790043 3rd Qu.:9.439e-01 3rd Qu.:6.461 < Max. :1.0000000 Max. :1.000e+00 Max. :7.228 < > summary(krigingObject$observations) < Object of class SpatialPointsDataFrame < Coordinates: < min max < x 178605 181390 < y 329714 333611 < Is projected: NA < proj4string : [NA] < Number of points: 155 < Data attributes: < Min. 1st Qu. Median Mean 3rd Qu. Max. < 4.727 5.288 5.787 5.886 6.514 7.517 < > summary(autoKrige(value~1,krigingObject$observations,predictionLocations)$krige_output) 753,773d678 < Object of class SpatialPointsDataFrame < Coordinates: < min max < x1 179018.6 181348.1 < x2 330013.4 333274.7 < Is projected: NA < proj4string : [NA] < Number of points: 48 < Data attributes: < var1.pred var1.var var1.stdev < Min. :4.929 Min. :0.1153 Min. :0.3395 < 1st Qu.:5.518 1st Qu.:0.1615 1st Qu.:0.4018 < Median :6.047 Median :0.3582 Median :0.5963 < Mean :5.978 Mean :0.3827 Mean :0.5909 < 3rd Qu.:6.337 3rd Qu.:0.6026 3rd Qu.:0.7762 < Max. :7.472 Max. :0.6752 Max. :0.8217 < > autofitVariogram(value~1,krigingObject$observations)$var_model < model psill range < 1 Nug 0.04847876 0.0000 < 2 Sph 0.58754476 889.8912 < > * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... OK * checking re-building of vignettes ... OK * checking PDF version of manual ... OK