bentlerParameters {nFactors}R Documentation

Bentler and Yuan's Computation of the LRT Index and the Linear Trend Coefficients

Description

This function computes the Bentler and Yuan's (1996, 1998) LRT index for the linear trend in eigenvalues of a covariance matrix. The related chi^2 and p-value are also computed. This function is generally called from the nBentler function. But it could be of interest to use it for graphing the linear trend function to minimize and so to study it's behavior.

Usage

 bentlerParameters(x, N, nFactors, log=TRUE, cor=TRUE,
                   minPar=c(min(lambda) - abs(min(lambda)) + .001,
                            0.001),
                   maxPar=c(max(lambda),
                            lm(lambda~I(length(lambda):1))$coef[2]),
                   resParx=c(0.01, 2), resPary=c(0.01, 2),
                   graphic=TRUE, resolution=30,
                   typePlot="wireframe", ...)
 

Arguments

x numeric: a vector of eigenvalues, a matrix of correlations or of covariances or a data.frame of data
N numeric: number of subjects.
nFactors numeric: number of components to test.
log logical: if TRUE the minimization is applied on the log values.
cor logical: if TRUE computes eigenvalues from a correlation matrix, else from a covariance matrix
minPar numeric: minimums for the coefficient of the linear trend to minimize.
maxPar numeric: maximums for the coefficient of the linear trend to minimize.
resParx numeric: restriction on the α coefficient (x) to graph the function to minimize.
resPary numeric: restriction on the β coefficient (y) to graph the function to minimize.
graphic logical: if TRUE plot the minimized function "wireframe", "contourplot" or "levelplot".
resolution numeric: resolution of the 3D graph (number of points from α and from β).
typePlot character: plot the minimized function according to a 3D plot: "wireframe", "contourplot" or "levelplot".
... variable: additionnal parameters from the "wireframe", "contourplot" or "levelplot" lattice functions. Also additionnal parameters for the eigenFrom function.

Details

The implemented Bentler and Yuan's procedure must be used with care because the minimized function is not always stable. Bentler and Yan (1996, 1998) already note it. Constraints must be applied to obtain a solution in many cases. The actual implementation did it, but the user can modify these constraints.

The hypothesis tested (Bentler and Yuan, 1996, equation 10) is:

(1) qquad qquad H_k: λ_{k+i} = α + β x_i, (i = 1, ..., q)

The solution of the following simultaneous equations is needed to find (α, β) in

(2) qquad qquad f(x) = sum_{i=1}^q frac{ [ λ_{k+j} - N α + β x_j ] x_j}{(α + β x_j)^2} = 0

and qquad qquad g(x) = sum_{i=1}^q frac{ λ_{k+j} - N α + β x_j x_j}{(α + β x_j)^2} = 0

The solution to this system of equations was implemented by minimizing the following equation:

(3) qquad qquad (α, β) in inf{[h(x)]} = inf{log{[f(x)^2 + g(x)^2}}]

The likelihood ratio test LRT proposed by Bentler and Yuan (1996, equation 7) follows a chi^2 probability distribution with q-2 degrees of freedom and is equal to:

(4) qquad qquad LRT = N(k - p)<=ft{ {ln ( {{n over N}} ) + 1} right} - Nsumlimits_{j = k + 1}^p {ln <=ft{ {{{λ _j } over {α + β x_j }}} right}} + nsumlimits_{j = k + 1}^p {<=ft{ {{{λ _j } over {α + β x_j }}} right}}

With p beeing the number of eigenvalues, k the number of eigenvalues to test, q the p-k remaining eigenvalues, N the sample size, and n = N-1. Note that there is an error in the Bentler and Yuan equation, the variables N and n beeing inverted in the preceeding equation 4.

A better strategy proposed by Bentler an Yuan (1998) is to use a minimized chi^2 solution. This strategy will be implemented in a future version of the nFactors package.

Value

nFactors numeric: vector of the number of factors retained by the Bentler and Yuan's procedure.
details numeric: matrix of the details of the computation.

Author(s)

Gilles Raiche
Centre sur les Applications des Modeles de Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca, http://www.er.uqam.ca/nobel/r17165/

David Magis
Research Group of Quantitative Psychology and Individual Differences
Katholieke Universiteit Leuven
David.Magis@psy.kuleuven.be, http://ppw.kuleuven.be/okp/home/

References

Bentler, P. M. and Yuan, K.-H. (1996). Test of linear trend in eigenvalues of a covariance matrix with application to data analysis. British Journal of Mathematical and Statistical Psychology, 49, 299-312.

Bentler, P. M. and Yuan, K.-H. (1998). Test of linear trend in the smallest eigenvalues of the correlation matrix. Psychometrika, 63(2), 131-144.

See Also

nBartlett, nBentler

Examples

## ................................................
## SIMPLE EXAMPLE OF THE BENTLER AND YUAN PROCEDURE

# Bentler (1996, p. 309) Table 2 - Example 2 .............
n=649
bentler2<-c(5.785, 3.088, 1.505, 0.582, 0.424, 0.386, 0.360, 0.337, 0.303,
            0.281, 0.246, 0.238, 0.200, 0.160, 0.130)

results  <- nBentler(x=bentler2, N=n,  details=TRUE)
results

# Two different figures to verify the convergence problem identified with
# the 2th component
bentlerParameters(x=bentler2, N=n, nFactors= 2, graphic=TRUE,
                  typePlot="contourplot",
                  resParx=c(0,9), resPary=c(0,9), cor=FALSE)
                  
bentlerParameters(x=bentler2, N=n, nFactors= 4, graphic=TRUE, drape=TRUE,
                  resParx=c(0,9), resPary=c(0,9),
                  scales = list(arrows = FALSE) )

plotuScree(x=bentler2, model="components",
  main=paste(results$nFactors,
  " factors retained by the Bentler and Yuan's procedure (1996, p. 309)",
  sep=""))
# ........................................................

# Bentler (1998, p. 140) Table 3 - Example 1 .............
n        <- 145
example1 <- c(8.135, 2.096, 1.693, 1.502, 1.025, 0.943, 0.901, 0.816,
              0.790,0.707, 0.639, 0.543,0.533, 0.509, 0.478, 0.390,
              0.382, 0.340, 0.334, 0.316, 0.297,0.268, 0.190, 0.173)
              
results  <- nBentler(x=example1, N=n,  details=TRUE)
results

# Two different figures to verify the convergence problem identified with
# the 10th component
bentlerParameters(x=example1, N=n, nFactors= 10, graphic=TRUE,
                  typePlot="contourplot",
                  resParx=c(0,0.4), resPary=c(0,0.4))

bentlerParameters(x=example1, N=n, nFactors= 10, graphic=TRUE, drape=TRUE,
                  resParx=c(0,0.4), resPary=c(0,0.4),
                  scales = list(arrows = FALSE) )
                  
plotuScree(x=example1, model="components",
   main=paste(results$nFactors,
   " factors retained by the Bentler and Yuan's procedure (1998, p. 140)",
   sep=""))
# ........................................................
 

[Package nFactors version 2.3.1 Index]