
Crash Course

by Alexander Walz

What is Agena ?

� Agena is an interpreted procedural programming language.

� It can be used in scientific, scripting, and many other applications.

� Its syntax looks like very simplified Algol 68 with elements taken from
Maple, Lua and SQL, and some other languages.

� Binaries are available for Solaris, Mac OS X, Windows, OS/2 –
eComStation, Linux, Raspberry Pi, and DOS.

� Agena is OpenSource, thus it is free.

� The implementation is based on the ANSI C sources of Lua 5.1.

� Sources and binaries are available at:

http://agena.sourceforge.net

2

Contents, 1

� Installing Agena

� Running Agena

� First Steps

� Names & Assignment

� Data Types
� Integral & Rational Numbers
� Complex Numbers
� Arithmetic
� Strings

3

Contents, 2

� Data Types, cont.
� Boolean Expressions & Relations
� Tables
� Arrays
� Dictionaries
� Sets
� Sequences & Registers
� Pairs

� Control Statements
� if Statements & if Operator
� case Statements
� onsuccess Clause

4

Contents, 3

� Loops
� for Loops
� while Loops
� do .. as, do .. until, and do .. od Loops
� Combined for/while Loops
� for/as and for/until Loops
� Loop Control

� Procedures
� Procedures
� Local Variables
� Variable Number of Arguments
� Options

5

Contents, 4

� Procedures, cont.
� Error Handling & Error Traps
� Type Checking
� Predefined Results
� Efficient Recursion
� State Tables
� Functions as Binary Operators
� Short-cut Procedures
� Object-Oriented Programming
� with and Related Statements
� Syntactic Sugar

6

Contents, 5

� Did you know ?

� Miscellaneous
� Precedence
� Mathematical Constants

7

Getting Started

Installing Agena

� In Solaris, OS/2 – eComStation, Linux, Windows, and Mac OS X, the
respective installer automatically installs and sets up Agena.
You do not have to add further settings yourself after installing the
binaries.

� Information on how to install the DOS and Windows portable version is
included in the manual or the respective read.me files.

9

Running Agena

� In Windows and OS/2 - eComStation, simply click the icon in the
programme group to start the interpreter.

� In Solaris, Linux, Mac and DOS, type agena in a shell.

� Statements can be entered right after the '> ' prompt.

10

AgenaEdit, 1

� AgenaEdit is an editor providing syntax-highlighting and a runtime
environment for Solaris, Mac, Linux, and Windows. It can be started by
entering agenaedit in a shell.

11

AgenaEdit, 2

� Type your programme in the editor window and press F5 to run it.

� Mark consecutive lines in your programme with a mouse or the keyboard
and press F6 to execute only these lines.

� During computation, press the `break` button to interrupt the current
computation.

� Press the `restart` button to clear all variables.

� Save or open your programmes using the `File` menu in the editor
window.

� Just browse through the menu items for the other features.

12

First Steps, 1

� Any valid Agena code can be entered at the console with or without a
trailing colon or semicolon:
� If an expression is finished with a colon, it is evaluated and its value

is printed at the console. (This is not supported in AgenaEdit, use the
print function instead.)

� If the expression ends with a semicolon or neither with a colon nor a
semicolon, it is evaluated, but nothing is printed.

� You may optionally insert one or more white spaces between operands
in your statements.

� Assume you would like to add the numbers 1 and 2 and show the result.
Just type:

13

> 1 + 2:
3

First Steps, 2

� If you want to store a value to a variable, type:

� Now the value 25 is stored to the name c, and you can refer to this
number through the name c in subsequent calculations.

� Suppose that c is 25°Celsius. If you want to conver t it to Fahrenheit,
enter:

� The cls statement clears the screen, restart clears all values, and bye
quits the interpreter.

14

> c := 25;

> 1.8*c + 32:
77

Names & Assignment

� A name always begins with an upper-case or lower-case letter or an
underscore, followed by one or more upper-case or lower-case letters,
underscores or numbers in any order.

� Use the assignment operator := to store a value to a name.

� Delete a value by assigning it to null or use clear:

15

> a := 1;

> var1 := 'hello world';

> a := null;

> clear var1;

Assignment, 2

� Compound assignment is supported in three fashions:

16

> a := 1;

> inc a;

> a:
2

> a := 1;

> a +:= 1;

> a:
2

mod

div

mul

dec

inc

StatementFunction Compound

Addition +:=

Subtraction -:=

Multiplication *:=

Division /:=

Modulo %:=

> a := 1;

> inc a, 2;

> a:
3

> a := 1;

> a +:= 2;

> a:
3

> c := 1;

> a := c++;

> a, c:
1 2

> a := c--;

> a, c:
2 1

Data Types

Integral & Rational Numbers

� Numbers can be represented like in the following examples.

� Integers:

� More than one value can also be printed at one line:

� Rational numbers:

� Scientific notation:

18

> -1:
-1

> 0, 1, 1.0, 1, 1.0:
0 1 1 1 1

> 3.141592654, -1.0:
3.141592654 -1

> 10e-3, -1e3, 2.3e3:
0.01 -1000 2300

Complex Numbers

� There are two notations to represent complex numbers.

� The ! operator:

� The I operand:

� Real part:

� Imaginary part:

19

> 1!2, -1.1!-2, 3!0:
1+2*I -1.1-2*I 3

> 1+2*I, -1.1-2*I, 3+0*I:
1+2*I -1.1-2*I 3

> real(1+2*I):
1

> imag(1+2*I):
2

Arithmetic, 1

� Agena allows to mix rational and complex numbers in calculations.

� Addition, subtraction, multiplication, division, and integer division:

� Examples:

20

rational complex/mixed
2 + 3 2+3*I + 1!2

2 – 3 2 - 3+1*I

2 * 3 2!2 * 3-I

2 / 3 2!0 / 3!1

2 \ 3 2!0 \ 3!1

> 2+3, 2!0/3!1, 2 + 3!1:
5 0.6-0.2*I 5+I

Arithmetic, 2

� Modulus (for rational numbers only):

� Exponentation with rational or integer power:

� Exponentation with integer power only (faster):

21

> 2 % 3:
2

> 2 ^ 3.1, 2 ^ 3:
8.5741877002903 8

> 2 ** 3:
8

Strings, 1

� Strings can be enclosed in single or double quotes. There is no
difference in meaning.

� Concatenation of two or more strings:

22

> 'this is a text':
this is a text

> "this is a text":
this is a text

> 'Hello ' & 'world':
Hello world

> a := ’Hello ’;

> a &:= ’World’;

a:
Hello World

Strings, 2

� Substrings:

23

> str := 'abcd';

> str[2]:
b

> str[2 to 3]:
bc

> str[2 to -1]: # from 2 nd two last character
bcd

> str[-1]: # last character
d

> str[-2 to -1]: # last two characters
cd

Boolean Expressions & Relations, 1

� Agena supports the logical values true and false, also called `booleans`.
A third Boolean constant named fail indicates an error.

� Any condition, e.g. a < b, results to one of these logical values.

� Relational operators are:

24

Relation Operator

less than <

greater than >

less or equal <=

greater or equal >=

equality =

inequality <>

Boolean Expressions & Relations, 2

� Logical operators are:

25

Relation Operator

Boolean and and

Boolean or or

Boolean complement not

> 1 < 2:
true

> 1 < 2 and 1 = 0:
false

> true xor false:
true

norBoolean nor

Relation Operator

Boolean nand nand

Boolean exclusive-or xor

Tables, 1

� Tables are used to represent more complex data structures. Tables
consist of zero, one or more key-value pairs: the key referencing to the
position of the value in the table, and the value the data itself.

� Tables can contain other tables, as well.

� To get the data with key 1, input:

26

> tbl := [
> 1 ~ ['a', 7.71],
> 2 ~ ['b', 7.70],
> 3 ~ ['c', 7.59]
>];

> tbl[1]:
[a, 7.71]

Tables, 2

� To get the second entry in the subtable, enter:

� There are two forms to create empty tables.

� Tables can even be nested:

� The size operator returns the size of a table or any other structure.

27

> tbl[1, 2]:
7.71

> tbl := [];

> create table tbl;

> [1, [2, [3]]]:
[1, [2, [3]]]

Arrays

� Tables with positive integral keys are called arrays.

� Values can be inserted into arrays in two ways:

� Values can be deleted like this:

28

> tbl := [10, 11, 12];

> tbl[4] := 'a'; tbl[5] := 'b';

> insert 'a', 'b' into tbl;

> tbl[1] := null;

> delete 'a', 'b' from tbl;

Dictionaries

� Another form of a table is the dictionary which indices can be any kind of
data - not only positive integers. Key-value pairs are entered with quoted
keys and tildes, or with unquotes names and =.

� As with arrays, indexed names are used to access the corresponding
values stored to dictionaries.

� If a table key is a string, you can also use the notation:

29

> dic := ['donald' ~ 'duck', mickey = 'mouse'];

> dic['donald']:
duck

> dic.donald:
duck

Sets, 1

� Sets are collections of unique items: numbers, strings, and any other
data except null. Any item is stored only once.

� If you want to check whether 'donald' is part of the set s, just index it as
follows:

30

> s := {'donald', 'mickey', 'donald'}:
{donald, mickey}

> s['donald']:
true

> s['daisy']:
false

Sets, 2

� If you want to add or delete items to or from a set, use the insert and
delete statements.

� The in operator also checks whether an item is part of a set.

� Sets consume around 40 % less memory than tables.

31

> insert 'daisy' into s;

> delete 'daisy' from s;

> 'donald' in s:
true

> 'daisy' in s:
false

Sequences, 1

� Sequences can hold any number of items except null.

� You can access the items the usual way:

� Values can be added as with tables.

32

> s := seq(1, 1, 'donald', true):
seq(1, 1, donald, true)

> s[2]:
donald

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

Sequences, 2

� Items can be deleted by setting their index position to null, or by applying
delete.

� The in operator checks whether a sequence contains a given item.

� Sequences are twice as fast when adding values than tables.

33

> s[4] := null;

> delete [1, 2, 2] from s;

> 'donald' in s:
donald

Registers, 1

� Registers are fixed-size arrays that also can store nulls.

� You can access the items the usual way:

� If a value is deleted, the size of the register does not change:

34

> r := reg(null, 1, 'donald', true):
reg(null, 1, donald, true)

> r[3]:
donald

> r[2] := null;

> r:
reg(null, null, donald, true)

Registers, 2

� Registers have a pointer to the top of a register that can be changed so
that data above the value of the top pointer can be hidden:

� Registers can be created with a predefined number of elements:

� The size of a register can be changed with the registers.reduce and
registers.extend functions.

35

> registers.settop(r, 3); print(r, registers.gettop (r));
reg(null, null, donald) 3

> create register r(8);

> r:
reg(null, null, null, null, null, null, null, null)

Pairs

� Pairs hold exactly two values of any type (including null and other pairs).

� The left and right operators provide read access to its left and right
operands; the standard indexing method using integers is supported, as
well:

� The left and right operand of a pair can be changed as follows:

36

> p := 10:11;

> left(p), right(p), p[1], p[2]:
10 11 10 11

> p[1] := -10;

Control Statements

if Statement

� Conditions can be checked with the if statement. The elif and else
clauses are optional. The closing fi is obligatory.

� A short form is also available if only one statement shall be executed
and no else clause is needed:

38

> if 1 < 2 then
> print('valid')
> elif 1 = 2 then
> print('invalid')
> else
> print('invalid, too')
> fi;
valid

> 1 < 2 ? print('valid')
valid

if Operator, I

� The if operator checks a condition and returns the result:

� An optional preceding with clause allows to define one or more auxiliary
variables that are local to this operator only:

39

> result := if 1 < 2 then 'valid' else 'invalid' fi ;

> result:
valid

> x := Pi;

> a := with n := 2*x -> if x < 0 then n else 2*n fi ;

> b := with m, n := x, 2*x -> if x < 0 then m else n fi;

if Operator, II

� The extended version of the if operator is similar to the if statement. Note
the sequence `if is` and the obligatory return expressions in the bodies;
elif’s and else’s are optional, as are the statements in the bodies.

40

> a := 10;

> sgn := if is a < 0 then # determines sign of `a'
> print('I am negative');
> [further statements ...]
> return -1
> elif a = 0 then
> print('I am zero'); # just one statemen t
> return 0
> else # no statement
> return 1
> fi;

> sgn:
1

case Statements, 1

� The case statement facilitates comparing values and executing
corresponding statements.

41

> c := 10;

> case c
> of -1 then # one value to be compared
> print('negative')
> of 0, 1 then # multiple values to be comp ared
> print('non-negative')
> of 2 to infinity # a range
> print('non-negative, too')
> else
> print('negative, too')
> esac;
non-negative, too

case Statements, 2

� A variant works like the if statement and may improve readability of
code.

42

> x := 10;

> case
> of x < 0 then return -1
> of x = 0 then return 0
> else return 1
> esac
1

onsuccess Clause

� Both if and case statements support an optional onsuccess clause. If at
least one of the conditions evaluated to true, then the statements in the
onsuccess clause are also executed.

43

> c := 'agena'; flag := false;

> case c
> of 'agena' then
> print('Agena !')
> of 'lua' then
> print('Lua !')
> onsuccess
> flag := true
> else
> print('Another programming language !')
> esac;
Agena !

> flag:
true

Loops

for Loops, 1

� A for loop iterates over one or more statements.

� A numeric for loop begins with an initial numeric value (from clause), and
proceeds up to and including a given numeric value (to clause). The step
size can also be given (step clause). The od keyword indicates the end
of the loop body.

� The current iteration value is stored to a control variable (i in this
example) which can be used in the loop body.

45

> for i from 1 to 3 by 1 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

for Loops, 2

� The from and step clauses are optional.

� If the from clause is omitted, the loop starts with the initial value 1.

� If the step clause is omitted, the step size is 1.

46

> for i to 3 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

for Loops, 3

� The value of the control variable can be accessed outside the loop.

� Since after the last iteration, the control variable is internally increased
by the step size a very last time, its contents is:

47

> for i to 3 do
> result := i^2
> od;

> i:
4

for Loops, 4

� A for/in loop iterates over all values in a table, set, and sequence. With
strings, it iterates over each character from the left to the right.

48

> for i in ['Agena', 'programming', 'language'] do
> print(i)
> od
Agena
programming
language

> for i in 'Agena' do print(i) od
A
g
e
n
a

for Loops, 5

� You can also iterate only over the keys of a table (or sequence) or both
keys and values:

49

> for keys i in ['donald' ~ 'duck', 'daisy' ~ 'duck '] do
> print(i)
> od;
daisy
donald

> for i, j in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do
> print(i, j)
> od;
daisy duck
donald duck

while Loops

� A while loop first checks a condition and if this condition is true or any
other value except false, fail, or null, it iterates the loop body again and
again as long as the condition remains true.

� The following statements calculate the largest Fibonacci number less
than 1000.

50

> a := 0; b := 1;

> while b < 1000 do
> c := b; b := a + b; a := c
> od;

> c:
987

do .. as & do .. until Loops

� Variations of while are the do .. as and do .. until loops which check a
condition at the end of the iteration.

� Thus – contrary to while loops - the loop body will always be executed at
least once.

51

> c := 0; c := 0

> do > do
> inc c > inc c
> as c < 10; > until i = 10;

> c: > c:
10 10

do .. od Loops

� Infinite loops are supported by do .. od loops, a syntactic sugar for `while
true do .. od`.

� See the `Loop Control` sheet on how to exit these loops.

52

> c := 0;

> do
> inc c;
> if c > 9 then break fi
> od;

> c:
10

Combined for/while Loops

� All flavours of for loops can be combined with a while condition. As long
as the while condition is satisfied, i.e. is true, the for loop iterates.

� Likewise, the until condition quits the loop:

53

> for x to 10 while ln(x) <= 1 do
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

> for x to 10 until ln(x) > 1 do
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

for/until and for/as Loops

� for loops can also be combined with a closing until or as condition.

54

> for x to 10 do
> print(x)
> as x < 3;
1
2
3

> for x to 10 do
> print(x)
> until x = 3;
1
2
3

Loop Control, 1

� Agena features three statements to control loop execution. The following
two are applicable to all loop types.
� The skip statement causes another iteration of the loop to begin at

once, thus skipping all of the following loop statements after the skip
keyword for the current iteration.

� The break statement quits the execution of the loop entirely and
proceeds with the next statement right after the end of the loop.

55

> for i to 5 do
> if i = 3 then skip fi;
> print(i);
> if i = 4 then break fi
> od;
1
2
4

Loop Control, 2

� skip and break can also be combined with the when condition:

56

> for i to 5 do
> skip when i = 3;
> print(i);
> break when i = 4
> od;
1
2
4

Loop Control, 3

� The redo statement restarts the current iteration of a for/to or for/in loop
from its beginning, without incrementing the loop control variable or
processing the next item in a structure.

57

> flag := true;

> for i to 3 do
> print(i);
> if flag and i = 2 then
> flag := false;
> redo
> fi
> od;
1
2
2
3

Loop Control, 4

� The relaunch statement, however, restarts a for/to or for/in loop
completely.

58

> flag := true;

> for i to 3 do
> print(i);
> if flag and i = 2 then
> flag := false;
> relaunch
> fi
> od;
1
2
1
2
3

Procedures

Procedures

� Let us write a procedure to compute the factorial of an integer.

� A procedure can call itself to generate the final result.

� The return statement passes the result of a computation.

� The procname keyword is substituted by the name with which the
procedure was invoked.

60

> factorial := proc(n) is # factorial of an intege r
> if n < 0 then return fail
> elif n = 0 then return 1
> else return procname(n-1)*n
> fi
> end;

> factorial(4):
24

Local Variables

� A local variable is known only to the respective procedure and the block
where it has been declared.

� It cannot be used in other procedures, the interactive Agena level, or
outside the block where it has been declared.

61

> factorial := proc(n) is
> local result;
> result := 1;
> for i from 1 to n do result := result * i od;
> return result
> end;

> factorial(10):
3628800

Variable Number of Arguments

� If you want to pass a variable number of arguments, use the ? keyword
in the parameter list.

� The varargs system table contains all variable arguments passed with
the ? facility. Values can be accessed like with any other table.

� The system variable nargs contains the number of arguments passed
(both with the ? facility and without).

62

> f := proc(?) is
> return nargs, varargs, varargs[1]
> end;

> f('Beowulf', 'Grendel'):
2 [Beowulf, Grendel] Beowulf

Options, 1

� A function does not have to be called with exactly the number of
parameters given at procedure definition.

� You may optionally pass less or more values at run-time. If no value is
passed for a parameter, then this parameter is automatically set to null
at function call.

� If you pass more arguments than there are actual parameters, excess
arguments are ignored.

63

> f := proc(a, b, c) is
> return a, b, c
> end;

> f(1):
1 null null

Options, 2

� Let us build an extended square root function that either computes in the
real or complex domain. By default, i.e. if only one argument is given, the
real domain is taken, otherwise you may explicitly set the domain using a
pair as a second argument.

64

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode = 'domain':'real' then
> return sqrt(x)
> elif mode = 'domain':'complex' then
> return sqrt(x + 0*I)
> else
> return fail
> fi
> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain':'real'):
undefined

Options, 3

� If the left-hand value of the pair in a function call shall denote a string,
you can spare the single quotes put between the string by using the =
token which converts the left-hand name to a string.

65

> xsqrt(-2, domain = 'complex'):
1.4142135623731*I

Error Handling & Error Traps

� The error function issues an error:

� The try/catch statement catches errors:

� Alternatively, the protect function traps errors, as well.

66

> success, s := true, null;

> try
> print(s[1]) # provoke an error by indexing nu ll
> catch msg then
> success := false
> yrt;

> success:
false

> if 1 = 1 then error('Oops !') fi
Oops !

Stack traceback: in `error`
stdin, at line 1 in `(null)` in `(null)`

Type Checking, 1

� You can check the type of arguments passed in two ways:

� Query the type with the :: or :- (the negation) operators:

� State the expected type in the parameter list:

67

> f := proc(x) is
> if x :- number then error('no number argument') fi;
> return x
> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):
wrong type of argument

> f := proc(x :: number) is
> return x
> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):
Error in stdin:

invalid type for argument #1: expected number, got string.

Type Checking, 2

� Up to five types may be given when putting them in curly brackets:

� Besides checking the arguments, the return can also be validated:

68

> f := proc(x :: number) :: number is
> return tostring(x)
> end

> f(1)
Error in stdin, at line 2:

`return` value must be of type number, got string.

> f := proc(x :: {number, complex}) is
> return tostring(x)
> end

> f(1!2)
1 2

Type Checking, 3

� Numbers can be scrutinised further with the keywords

� integer (any integral number),

� posint (positive integer),

� nonnegint (nonnegative integer),

� positive (positive floats and integers),

� nonnegative (nonnegative floats and integers).

69

> f := proc(x :: integer) is
> return x
> end

> f(Pi)
Error in stdin:

type integer expected for argument #1, got number.

Type Checking, 4

� Function arguments can be checked further with the pre clause …

� … and the result with the post clause:

70

> f := proc(x :: number) is
> return post x > 0 with x
> end

> f(0)
In stdin at line 2:

Error in post-condition: invalid return.

> f := proc(x :: number) is
> pre x > 0 is
> return x
> end

> f(0):
In stdin at line 2:

Error in pre-condition: posture not satisfied.

Predefined Results

� Predefined results can be set with the rtable.defaults function by entering
them into a remember table.

� Agena returns the given predefined result if it exists and does not
compute it by executing the procedure body, so there is also an increase
in speed.

71

> rtable.defaults(fact, [# defaults for fact(0) . . fact(3)
> -1~undefined, 0~1, 1~1, 2~2, 3~6
>]);

> fact(-1):
undefined

> rtable.defaults(fact):
[[2] ~ [2], [1] ~ [1], [0] ~ [1], [3] ~ [6], [-1] ~ [undefined]]

Efficient Recursion

� Agena remembers procedure results if the rtable.remember function is
invoked. An optional table of predefined results can also be given. This
speeds up recursive procedures significantly.

� For the differences between defaults and remember, check the manual
(Chapter 7.23). Chapter 6.18.1 describes the feature reminisce shortcut.

72

> fib := proc(n) is
> assume(n >= 0);
> return fib(n-2) + fib(n-1)
> end;

> rtable.remember(fib, [0~1, 1~1]);

> fib(50):
20365011074

State Tables

� A table can be assigned to a function with the storage feature. This
internal table will remain active during a whole session and you can read
or write values to it in subsequent calls to the function.

73

> f := proc() is
> feature storage
> storage[1] := Pi
> storage.entry := E
> return storage, storage[1], storage.entry
> end;

> f():
[1 ~ 3.1415926535898, entry ~ 2.718281828459] 3.1 415926535898
2.718281828459

Functions as Binary Operators

� An ordinary function of two arguments can be called just like a binary
operator.

� When using a function this way, it has always the highest prece-dence.

74

> plus := proc(x, y) is return x + y end;

> 1 plus 2:
3

Short-cut Procedures, 1

� If your procedure consists of exactly one expression, then you may use
an abridged syntax if the procedure does not include statements such as
if, for, insert, etc.

� Let us define a simple factorial function with one argument.

� A function with two arguments:

75

> factorial := << (x) -> exp(lngamma(x+1)) >>;

> factorial(4):
24

> sum := << (x, y) -> x + y >>;

> sum(1, 2):
3

Short-cut Procedures, 2

� The `with` clause allows to define local variables.

76

> fact := << (x :: number)
> with n := 1
> -> exp(lngamma(x + n)) >>;

> fact := << (x :: number)
> with m, n := 0, 1
> -> exp(lngamma(x + n)) + m >>;

Object-Oriented Programming, 1

� Methods for tables can be implemented OOP-style using the @@
syntax:

77

> account := ['balance' ~ 0];

> proc account@@deposit(x) is
> inc self.balance, x;
> end;

> account@@deposit(100)

> account.balance:
100

> proc account@@withdraw(x) is
> dec self.balance, x
> end;

Object-Oriented Programming, 2

� A constructor that created new accounts:

78

> proc account@@new(o) is
> setmetatable(o, self);
> self.__index := self;
> return o
> end;

> a := account@@new(['balance' ~ 0]);

> a.balance:
0

Object-Oriented Programming, 3

� Inheritance: here we define a new account class based on the one
defined above that does not allow overdrafts.

� For more information, please check Chapter 6.24 of the Primer and
Reference.

79

> creditaccount := account@@new();

> proc creditaccount@@withdraw(x) is
> if x > self.balance then error('Error, not enou gh credit.') fi;
> dec self.balance, x;
> return self.balance
> end;

> b := creditaccount@@new();

> b@@withdraw(1000):
Error, not enough credit.

with and Related Statements, 1

� The with statement unpacks values from a dictionary, declares them
local and can access them in a block. The new names are variables on
their own and do not refer to the indexed values in the table. The in
assignment spares some typing.

80

> zips := [duedo = 40210, bonn = 53111, cologne = 506 67];

> with duedo, bonn in zips do
> print(duedo, bonn, cologne);
> duedo := null # zips.duedo is not changed
> od;
40210 53111 null

> zips.duedo:
40210

> duedo, bonn in zips; # equals duedo, bonn := zips.d uedo, zips.bonn

> duedo, bonn:
40210 5311

with and Related Statements, 2

� A flavour of the with statement allows to reference an entry by just an
underscore. It also allows to actively change values in the table.

81

> zips := [duedo = 4000, bonn = 5300]

> with zips do
> print(_.bonn);
> _.bonn := 53111
> od
5300

> zips:
[bonn ~ 53111, duedo ~ 4000]

with and Related Statements, 3

� Yet another variant allows to easily define local variables to be used in a
block or as part of the if operator:

82

> with a, b := 1, 2 do
> c := a + b;
> od;
5300

> print(a, b, c):
null null 3

> with n := 10 -> if n > 0 then n else 2*n fi:
10

Syntactic Sugar

� Just an overview of some syntactic sugar available:

83

> break when x <> 0;
> if x <> 0 then break fi;

> skip when x <> 0;
> if x <> 0 then skip fi;

> return when x <> 0;
> if x <> 0 then return fi;

> return when x <> 0 with y;
> if x <> 0 then return y fi;

Did you know ?

Did you know, 1 ?

� If you do not like the default prompt, just enter something like:
_PROMPT := '% '

� You can load your own programmes into an Agena session by using the
run function (e.g. run 'progname.agn') or starting Agena from the
shell with agena –i progname.agn .

� If you want your self-written procedures, constants, etc. to be available
every time you invoke the interpreter, just put them into an agena.ini file
residing in your home directory.

� Data you compute in a session can be stored to a file using the save
function, to be read into subsequent session later by read.

� You can send and receive data on the TCP level across the Internet and
LANs with the net package.

85

Did you know, 2 ?

� Data stored in CSV and XML files can be imported with the utils.readcsv
and utils.readxml functions. See xml package, too.

� The way Agena outputs tables, sets, sequences, complex numbers, and
pairs can be changed by modifying the environ.aux.print* procedures in
the library.agn file located in the lib directory of your Agena installation.

86

Miscellaneous

Precedence

� Operator precedence follows the table below, from lowest to highest.

88

Prio Operators

10 or xor nor xnor

9 and nand

8 < > <= >= = == <> ~= ~<> :: :- |

7 in subset xsubset union minus intersect atendof |-

6 & : @ $

5 + - || ^^ split

4 * / % \ <<< >>> <<<< >>>> && *% /% +% -% %% symmod

3 not - ++ --

2 ^ **

1 ! ~~ and all other unary operators

Packages, 1

� Agena features various packages that can be invoked with the import
statement, e.g. import calc alias .

89

Bits and bytes twiddlingbytes

Package Function

ads Database specialised on storing and retrieving strings

bags Multisets, Cantor sets that count occurrences

astro Astronomical time and date functions

binio Functions for processing binary files

calc Undergraduate Calculus package

clock Functions to process hours, minutes, and seconds

cordic CORDIC numeric functions

div Fractions

Packages, 2

90

Dual numbersdual

Access to the Agena environmentenviron

Numeric approximationsfastmath

Package Function

fractals Various fractals & plotting routines, some FRACTINT support

gdi Graphics

gzip Read and Write UNIX gzip compressed files

hashes String hashes

io Input/output functions for console and files

linalg Undergraduate Linear Algebra

llist Linked lists

mapm Mathematical arbitrary precision library for the real domain

Packages, 3

91

Additional mathematical functionsmath

IPv4-based exchange of data over the Internet or LANs net

Numeric C arraysnumarray

Administration of remember tablesrtable

Unique integer IDssema

Package Function

os Functions to operate with the underlying operating system

registers Functions for register administration

registry Functions to access the registry

skycrane Utils and easy-to-use wrappers to some functions

stats Statistical functions

strings Various string handling functions

Packages, 4

92

Functions specialised on table processingtables

Functions to list, read, and extract UNIX tar archivestar

Utility functions, e.g. CSV import and exportutils

Package Function

xbase xBase file support (i.e. dBASE (tm) III+)

xml XML decoding (LuaExpat port)

zx Sinclair ZX Spectrum numeric functions

Mathematical Constants

� Agena features the following numeric constants:

� See also Chapters A3 & A9 of the Primer and Reference.

93

Constant Meaning
Eps Equals 1.4901161193847656e-08
degrees Factor 1/Pi*180 to convert radians to degrees
Exp Constant e = exp(1) = 2.71828182845904523536
I Imaginary unit
infinity Infinity
undefined An expression stating that it is undefined, e.g. a singularity
Pi Equals 3.14159265358979323846
radians Factor Pi/180 to convert degrees to radians

Any Questions ?

� For further information, please consult

� the Primer and Reference,
a manual explaining Agena on 750+ pages

� the Quick Reference,
an overview of all the functions available

� Both are available at

http://agena.sourceforge.net/documentation.html

� Forum:

http://sourceforge.net/projects/agena/forum

94

