ANSI/IEEE X3.215-199x

draft proposed American National Standard
for Information Systems —

Programming Languages —
Forth
(X3J14 dpANS-6 — June 30, 1993)

Secretariat

Computer and Business Equipment Manufacturers Association

American National Standards Institute, Inc.

WARNING This is a draft of the proposed American National Standard. It is distributed solely for
the purpose of review and comment and should not be used as a design document. It is
inappropriate to claim compatibility with this draft standard.

Page ii X3J14 dpANS-6 Document

Disclaimer The X3J14 Technical Committee makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The Technical Committee shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Foreword (This foreword is not a part of American National Standard X3.215-199x)

Forth is a language for direct communication between human beings and machines.
Using natural-language diction and machine-oriented syntax, Forth provides an
economical, productive environment for interactive compilation and execution of
programs. Forth also provides low-level access to computer-controlled hardware, and
the ability to extend the language itself. This extensibility allows the language to be
quickly expanded and adapted to special needs and different hardware systems.

Forth was invented by Mr. Charles Moore to increase programmer productivity without
sacrificing machine efficiency. Forth is a layered environment containing the elements
of a computer language as well as those of an operating system and a machine monitor.
This extensible, layered environment provides for highly interactive program
development and testing.

In the interests of transportability of application software written in Forth,

standardization efforts began in the mid-1970s by an international group of users and
implementors who adopted the name "Forth Standards Team." This effort resulted in
the Forth-77 Standard. As the language continued to evolve, an interim Forth-78
Standard was published by the Forth Standards Team. Following Forth Standards Team
meetings in 1979, the Forth-79 Standard was published in 1980. Major changes were
made by the Forth Standards Team in the Forth-83 Standard, which was published in
1983.

The first meeting of the Technical Committee on Forth Programming Systems was
convened by the Organizing Committee of the X3J14 Forth Technical Committee on
August 3, 1987, and has met subsequently on November 11-12, 1987, February 10-12,
1988, May 25-28, 1988, August 10-13, 1988, October 26-29, 1988, January 25-28,
1989, May 3-6, 1989, July 26-29, 1989, October 25-28, 1989, January 24-27, 1990, May
22-26, 1990, August 21-25, 1990, November 6-10,1990, January 29-February 2, 1991,
May 3-4, 1991, June 16-19, 1991, July 30-August 3, 1991, March 17-21, 1992, October
13-17, 1992, January 26-30, 1993, and June 28-30, 1993.

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page iii

Membership At the time it approved this draft of the proposed American National Standard, the
Technical Committee X3J14 on the Forth Programming Language had the following

members:

Elizabeth Rather, Chair

Mitch Bradley, acting Vice-Chair

Don Colburn, Secretary

John Rible, Technical Editor

Len Zettel, Vocabulary Representative
Greg Bailey, Technical Subcommittee Chair

Organization Represented Name of Representative

ATHENA Programming, INC.coooiviiiiiiiiiiiiiieiieeeeee e Greg Bailey
Howe Fong (Alt.)
Bradley Forthware, INC.oooooiiiiiiiii e Mitch Bradley
Creative Solutions, INC. ..o Don Colburn
Ford Motor COMPANYeveveviiiiiiiiiiiieeeee e Leonard F. Zettel, Jr.
(@] = I = TR 1 Lo T Elizabeth Rather
Dennis Ruffer (Alt.)
Institute for Applied Forth Research..............ccccccvvvviinnn. Lawrence Forsley
Horace Simmons (Alt.)
Johns Hopkins University, Applied Physics Lab. John Hayes
Mephistopheles SYStemS...........uiiiiiiiiiiiiiiiee e Dave Harralson
NASA/Goddard Space Flight Center...........cccccvvvviiiiiininnnnnnn. James Rash
NOMAdIC SOfWArE.......ccoviiiiiiiiiii John K. Stevenson
UNISYN, INC. oot a e Gary Betts
Stephen Egbert (Alt.)
Up and RUNNINGcoooiiiiiiiii Martin Tracy
Vesta TEChNOIOGY.......cccuvuiiiiiiiiiiiiieen e Jack Woehr
Individual MEMDBETS.............uuuuii s Loring Craymer
John Rible

J. E. (Jet) Thomas

XBLIASONS ... Clyde R. Camp
Kathleen McMillan

The following organizations and individuals have also participated in this project as
Technical Committee members, alternates, or observers. The Technical Committee
recognizes and respects their contributions.

Organizations

British Columbia Inst. of Tech.
Computer Cowboys
Computer Sciences Corp.
Computer Strategies, Inc.
Digalog Corp.

Embedded Sys. Programming Mag.
Forth Interest Group (FIG)
H.B. Pascal & Co., Inc.

Harris Semiconductor

IBM Corporation

IEEE

Kelly Enterprises

Laboratory Microsystems, Inc.

Maxtor Corp.

Individuals

David J. Angel Ray Duncan

Wil Baden Douglas Fishman
Robert Berkey Tom Hand

Ron Braithwaite Gregory llg

Jack Brown Charles Keane
Chris Colburn Guy M. Kelly

Ted Dickens Andrew Kobziar

John Dorband Martin Lascelles

MCI Telecommunications Corp.
Micromotion

MicroProcessor Engineering Ltd.
National Inst. of Standards & Technology
NCR Medical Systems Group
Performance Packages, Inc.
Purdue University

Robert Berkey Services

Shaw Laboratories

Social Security Administration
Software Engineering

Texas Instruments

The Dickens Company

Charles Moore
Mike Nemeth
Harry Pascal
Stephen Pelc
Dean Perrine
David C. Petty
Bill Ragsdale
Dennis Ruffer

James Ryland
Dean Sanderson
George Shaw
Gerald Shifrin
Robert Smith
Tyler Sperry
Tom Zimmer

Page iv X3J14 dpANS-6 Document

Contents
I oo To {3 od 1 o] o NPT 1
A U oo L =PRI 1
S Tolo] o= TSP TPTPPTT 1
L1.2.1 INCIUSIONS ..ttt ettt e e et e e 1
1.2.2 EXCIUSIONS ... ettt e e e e e e eeeees 1
1.3 DOCUMENT OFQANIZALION ...ttt e ettt 1
L1.3.1 WO SIS ..ttt 1
L1.3.2 ANNEXES oottt e 2
1.4 FULUIE QIFECTIONS .ottt e e e e e e e e e e 2
1.4.1 NeW teChNOIOQY.....ccouiiiiiiiiii e 2
1.4.2 ODS0IeSCeNt fEAIULES.... ...t 2
2. Terms and NOTALIONooee ettt e e e et e e e e e e e 3
2.1 DefinitioNS Of TEIMS. . ..ottt 3
2.2 NOTALION .. e e e e et e e e e e 5
2.2.1 NUMEIIC NOLALION. ...cceiiiiiieeeieete it e e e 5
2.2.2 STACK NOALION ..evvtiiiiisi ettt 5
2.2.3 Parsed-text NOTALION.........ccvueiiiiiiiiiiie e 5
2.2.4 GloSsary NOALION........cceeeieeeeeiieee e s 6
I U LT Vo [N (= To (U1 (=10 =T o] £ 8
TR R BT 1= W A o[T PP UPPPTRPPN 8
3.1.1 Data-type relationships.........cccuvviiiiiiiiiiiiiiiiiiiiiiii s 9
N I O s F= 1= Tt (= g 1 =T TSP 9
3.1.3 SINGIE-COIl tYPES....coveeiiiiiiiii e 10
3. 1.4 Cell-Pair LY PES cuveeiieiiiiiieie it 11
.15 SYSIEM LY POS. e 11
3.2 The implementation eNVIrONMENT.........ccooeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeaaeaeees 12
B.2.1 NUMDEIS ..ttt et e e e e e e e e e e e e e 12
3.2.2 AMENMELIC ettt 12
3123 STACKS. ..ttt ettt e e e e e 13
3.2.4 Operator terMINAL........coiiiiiiee e 14
3.2.5 MEASS SIOMAQGE. ... uceiti ettt ettt ettt e e e e e aea e 14
3.2.6 ENvIronmental QUENIES.uuuuuieiiiiiiiiie et 14
IR T I [0 o) 1 e T 1o F= Y 15
3.3.1 NAIME SPACE ... ettt ettt et e et e e et e e e e e e e eeas 15
I B O To [IR o T- o] SO SUPUPPPRRR 15
3.3.3 DAlA SPACE ietieiiei e e 15
3.4 The FOrth teXt INErPreter.......cciviiiiiiieieeeetiti e e e e e e e e e e e e e ee e e e e eeeeeaeees 17
I T - V= o SRR 17
3.4.2 Finding definition NAmMES.......uuueiiiiiiiiiee e 18
3.4.3 SEMANTICS ...ttt e e et a e e e e e e 18
3.4.4 Possible actions on an ambiguous conditiQn............cccceeeveeeenneennn.. 19
3.4.5 COMPIIALION .o 19
4. Documentation reqQUIFEIMENTS.........ciiiiiiiiiiieiiiiiiiiiiiiiris s s s e e e e e e eeeaaaeeeeeeeeeeeeeeeennees 21
4.1 System dOCUMENTALION.cciiiiiiiiiiiiiiiie et e e e e e e ae s 21
4.1.1 Implementation-defined OptionS ... 21
4.1.2 Ambiguous CONAItIONS.........uuuuiiiiiieeiiiiiiiiiieee e 22
4.1.3 Other system documMeENtation.........ccooevviiiiiiiiiieeeeeeeee 23
4.2 Program dOCUMENTALIONuuuueiiiiiiiiieeeee e e ie et e e e e e e e as 23
4.2.1 Environmental dependencCiesuuvvviviriiiiiiiiiiiiiiiiiiiiiiiiin 23
4.2.2 Other program dOCUMENTALIONuuueiiiiiiieie e e e e e 23
5. Compliance and 1aheliNg.........ooeiiiiiiiiiiiiie e 24
5.1 ANS FOIh SYStEMIS.. ..o i e iiiiiieiiiiiiie s 24
5.1.1 System COMPHANCE..........uiiiiiieiiiiiieie e 24

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page v
5.1.2 SysStem labeliNg........coiiiiiiiiiiiiiii e 24
5.2 ANS FOrth programs ... 24
5.2.1 Program COMPIANCE.........uuuuueiiiiiiieie e 24
5.2.2 Program [aDelingcooiiiiiiiiiiii e 24
8. GlOSSAIY.... ettt ettt a e e e e e e e e e eeen e 25
B.1 COMB WOIGS.ottt ettt e e e e e e e e ettt e bbb e e e e e e e eeeeeeeeees 25
6.2 Core exXteNSION WOIUS.......ccoiiiiiiiiiitiiiie et e e e e e e e 51
7. The optional BIOCK WOId SEL.........uuiuiiiiiiiie e 61
8. The optional Double-Number Word Set.............uuueiiiiiiieiiiiiiie e 67
9. The optional EXception Word Setooooiiiiiiiiiiiiiii s (2
10. The optional Facility WOrd SBL..........cooiiiiiiiiiiiii e 76
11. The optional File-ACCeSS WOId SEL........couuiiiuiiiiiiieee e 79
12. The optional Floating-Point Word Set..........cccccoviiiiiiiiiii 89
13. The optional LOCAIS WOId SEL.........cuuuuuiiiiiiiieeeiiiiiieeeii e 105
14. The optional Memory-Allocation Word SEeL............eiiiiiiieiiiiiiiiiii e 110
15. The optional Programming-TooIS WOrd Set............coeeiiiiiiiiiie 113
16. The optional Search-Order WOrd SEtuuuuuueiuiiiii e 120
17. The optional StrNG WOId STuuuiiiiiiiiii e 125
A. Rationale (iNfOrmative @nNEX)ceevermiiiiiiiiiiiiiiiiiiiiiiiriie s 128
B. Bibliography (informative annexX)............ccoiiiiiiiiiiiii e 181
C. Perspective (informative anneX)..........cooiiiieimiiueiimiiene e 183
C.1 Features of FOIh ... 183
C.2 HiStOry Of FOIth.......ccooiiii e 184
C.3 Hardware implementations of FOIrth..............coeviiiiiiiiiiiiiiiieeeeeeee 184
C.4 Standardization effOrtS.........ooo oo 184
C.5 Programming in FOrth ... 185
C.6 Multiprogrammed SYSIEMIS.ccoviiiiiiiiiiiiiie ettt e e e e e e e e aaeaeens 191
C.7 Design and management cONSIAErationsoevvvvevvevvevuveeeeeereeeereennnnnnnn 191
(O3 S I 0o [od U 17T o TR 192
D. Compatibility analysis of ANS Forth (informative annex).................ccevvvvnnnn. 193
D.1 FIG FOrth (Circa 1978)cceviiiieiiiiiiiiiiiiiiiee s e e e e e e e e e e e e e e e e eeeeeeeeeeeeeanennee 193
D.2 FOMN 79 e e e e e e e e e e e e e 193
D.3 RO B3 et e e e et e e e e e e e 193
D.4 ReCeNt deVEIOPIMENIS. . uuuuiii i ittt e e et r e e e e e e e eeaeeanes 194
D.5 ANS FOrth approach........ccooooi i 194
D.6 Differences from FOrth 83.......ccoiiiiiiiiiiiii e 195
D.6.1 StaCK Witth....uuueeiiiii e 195
D.6.2 Number representationccoovviiiiiiiiiiiiiieeeeeeeeeee e 195
D.6.3 AdAreSS UNITS...ciiieeeieiiiiiiiieeiii et e e e e e e e 196
D.6.4 Address increment for a cell is no longer two..............cccvvvv e 196
D.6.5 Address alignment...........eiiiiiiiiiiieee e 197
D.6.6 Division/modulus rounding direCtion.............cceevvvveviiiiiiiiiiiiiiiiiiinnnnnn, 198
D.6.7 IMMEAIACY.......ciitiiiiiiiiiii e e e 198
D.6.8 INpUt Character SEt........cooeiiiiiiiiiiie e 200
D.6.9 Shifting With UM/MOD...........cccutiiiiiiiiiiiiiiiiiiiiiiiieiiieniieennennnimmnnes 200
D.6.10 Vocabularies / WOrdliStS.........ooeeiiiiiiiiiiiiiiiiie e 201
D.6.11 Multiprogramming iMPact...........cooviiiiiiiiiiiiiiiiiiiiiiiinn e ee e e e 201
D.6.12 Words not provided in executable form...............cccoveieiiiiiiiinnns 202
E. ANS Forth portability guide (informative annex)cccceevvveeeeeiiiievnnceeeennnn. 203
|0 [o1 { o To [¥ o 1o T o PSRRI 203
E.2 Hardware peCUliAriti®Scccvvuiuiiii e e e 203

E.2.1 Data/memory abstractioncceeiiiiiiiiiiiiii e 203

Page vi X3J14 dpANS-6 Document

E.2.2 DefiNitiONSccoiiiiiiiiiiiiiiee e 203
E.2.3 Addressing Memorycoooeiiiiiiiiiiiiiiiieeeeeeeeeeee e e e 204
E.2.4 Alignment problems ... 204
E.3 NUMDEr repreSeNtatioN. et 205
E.3.1 Bigendian vs. little endian............ccooeiiiiiiii 205
E.3.2 ALU OrganizZationuuueueemmniiieieee ettt 205
E.4 Forth system implementation ... e 206
E.4.1 DefiNitiONS.....ccoiiiiiiiiiiiiiiiee e 206
E.4.2 STACKS ..ot 206
E.5 ROMed application disciplines and conventionsccccuvvvuiineenns 207
E.B SUMMEANY ..ottt e eerenas 207
F. Alphabetic list of words (informative annex).............ccoeevrrieiiiiiiiiiiinineeeeeeeeeeeens 208

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 1

1. Introduction

1.1 Purpose

The purpose of this Standard is to promote the portability of Forth programs for use on a wide variety of
computing systems, to facilitate the communication of programs, programming techniques, and ideas
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.

1.2 Scope

This Standard specifies an interface between a Forth System and a Forth Program by defining the words
provided by a Standard System.

1.2.1 Inclusions
This Standard specifies:

— the forms that a program written in the Forth language may take;
— the rules for interpreting the meaning of a program and its data.

1.2.2 Exclusions
This Standard does not specify:

— the mechanism by which programs are transformed for use on computing systems;
— the operations required for setup and control of the use of programs on computing systems;
— the method of transcription of programs or their input or output data to or from a storage medium;

— the program and Forth system behavior when the rules of this Standard fail to establish an
interpretation;

— the size or complexity of a program and its data that will exceed the capacity of any specific computing
system or the capability of a particular Forth system;

— the physical properties of input/output records, files, and units;
— the physical properties and implementation of storage.

1.3 Document organization

1.3.1 Word sets

This Standard groups Forth words and capabilitiesvirial setsunder a name indicating some shared
aspect, typically their common functional area. Each word set may have an extension, containing words
that offer additional functionality. These words are not required in an implementation of the word set.

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a
Standard System. The other word sets, defined in sections 7 through 17, are optional, making it possible
to provide Standard Systems with tailored levels of functionality.

1.3.1.1 Text sections

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces
terms and notation used throughout the Standard. There are no requirements in these sections.

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems
and Programs, while section 5 specifies their labeling.

Page 2 X3J14 dpANS-6 Document

1.3.1.2 Glossary sections

Section 6 of each word set specifies the required behavior of the definitions in the word set and the
extensions word set.

1.3.2 Annexes
The annexes do not contain any required material.

Annex A provides some of the rationale behind the committee’s decisions in creating this Standard, as
well as implementation examples. It has the same section numbering as the body of the Standard to make
it easy to relate each requirements section to its rationale section.

Annex B is a short bibliography on Forth.
Annex C provides an introduction to Forth.

Annex D discusses the compatibility of ANS Forth with earlier Forths, emphasizing the differences from
Forth 83.

Annex E presents some techniques for writing portable programs in ANS Forth.

Annex F includes the words from all word sets in a single list, and serves as an index of ANS Forth words.

1.4 Future directions

1.4.1 New technology

This Standard adopts certain words and practices that are increasingly found in common practice. New
words have also been adopted to ease creation of portable programs.

1.4.2 Obsolescent features

This Standard adopts certain words and practices that cause some previously used words to become
obsolescent. Although retained here because of their widespread use, their use in new implementations or
new programs is discouraged, because they may be withdrawn from future revisions of the Standard.

This Standard designates the following words as obsolescent:

6.2.0060#T1B 15.6.2.1580FORGET 6.2.2240SPAN
6.2.0970CONVERT 6.2.2040QUERY 6.2.2290TIB
6.2.1390EXPECT

Collating Sequence: ! "#3$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 3

2. Terms and notation

The phrase “See:” is used throughout this Standard to direct the reader to other sections of the Standard
that have a direct bearing on the current section.

In this Standard, “shall” states a requirement on a system or program; conversely, “shall not” is a
prohibition; “need not” means “is not required to”; “should” describes a recommendation of the Standard,;
and “may”, depending on context, means “is allowed to” or “might happen”.

Throughout the Standard, typefaces are used in the following manner:

— This proportional serif typeface is used for text, wtélic used for symbols and the first appearance of
new terms;

— A bold proportional sans-serif typeface is usedéadings ;
— A bold monospaced serif typeface is used-twth-language text.

2.1 Definitions of terms

Terms defined in this section are used generally throughout this Standard. Additional terms specific to
individual word sets are defined in those word sets. Other terms are defined at their first appearance,
indicated by italic type. Terms not defined in this Standard are to be construed according to the
Dictionary for InformationSystemsANSI X3.172-1990.

address unit: depending on context, either 1) the units into which a Forth address space is divided for the
purposes of locating data objects such as characters and variables; 2) the physical memory storage
elements corresponding to those units; 3) the contents of such a memory storage element; or 4) the units in
which the length of a region of memory is expressed.

aligned address: the address of a memory location at which a character, cell, cell pair, or double-cell
integer can be accessed.

ambiguous condition: a circumstance for which this Standard does not prescribe a specific behavior for
Forth systems and programs.

Ambiguous conditions include such things as the absence of a needed delimiter while parsing, attempted
access to a nonexistent file, or attempted use of a nonexistent word. An ambiguous condition also exists
when a Standard word is passed values that are improper or out of range.

cell: the primary unit of information in the architecture of a Forth system.
cell pair: two cells that are treated as a single unit.

character: depending on context, either 1) a storage unit capable of holding a character; or 2) a member
of a character set.

character-aligned address: the address of a memory location at which a character can be accessed.

character string: data space that is associated with a sequence of consecutive character-aligned
addresses. Character strings usually contain text. Unless otherwise indicated, the term “string” means
“character string.”

code space:the logical area of the dictionary in which word semantics are implemented.
compile: to transform source code into dictionary definitions.

compilation semantics: the behavior of a Forth definition when its name is encountered by the text
interpreter in compilation state.

counted string: a data structure consisting of one character containing a length followed by zero or more
contiguous data characters. Normally, counted strings contain text.

Page 4 X3J14 dpANS-6 Document

cross compiler: a system that compiles a program for later execution in an environment that may be
physically and logically different from the compiling environment. In a cross compiler, the term “host”
applies to the compiling environment, and the term “target” applies to the run-time environment.

current definition: the definition whose compilation has been started but not yet ended.
data field: the data space associated with a word defineG@REBATE
data space: the logical area of the dictionary that can be accessed.

data-space pointer: the address of the next available data space location, i.e., the value returned by
HERE

data stack: a stack that may be used for passing parameters between definitions. When there is no
possibility of confusion, the data stack is referred to as “the stack”. Contrasetuith stack.

data type: an identifier for the set of values that a data object may have.

defining word: a Forth word that creates a new definition when executed.

definition: a Forth execution procedure compiled into the dictionary.

dictionary: an extensible structure that contains definitions and associated data space.
display: to send one or more characters to the user output device.

environmental dependencies:a program’s implicit assumptions about a Forth system’s implementation
options or underlying hardware. For example, a program that assumes a cell size greater than 16 bits is
said to have an environmental dependency.

execution semantics:the behavior of a Forth definition when it is executed.

execution token: a value that identifies the execution semantics of a definition.

find: to search the dictionary for a definition name matching a given string.

immediate word: a Forth word whose compilation semantics are to perform its execution semantics.

implementation defined: denotes system behaviors or features that must be provided and documented by
a system but whose further details are not prescribed by this Standard.

implementation dependent: denotes system behaviors or features that must be provided by a system but
whose further details are not prescribed by this Standard.

input buffer: a region of memory containing the sequence of characters from the input source that is
currently accessible to a program.

input source: the device, file, block, or other entity that supplies characters to refill the input buffer.

input source specification: a set of information describing a particular state of the input source, input
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the
nesting of parsing operations on the same or different input sources.

interpretation semantics: the behavior of a Forth definition when its name is encountered by the text
interpreter in interpretation state.

keyboard event: a value received by the system denoting a user action at the user input device. The term
“keyboard” in this document does not exclude other types of user input devices.

line: a sequence of characters followed by an actual or implied line terminator.
name space:the logical area of the dictionary in which definition names are stored.

number: in this Standard, “number” used without other qualification means “integer.” Similarly,
“double number” means “double-cell integer.”

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 5

parse: to select and exclude a character string from the parse area using a specified set of delimiting
characters, called delimiters.

parse area: the portion of the input buffer that has not yet been parsed, and is thus available to the
system for subsequent processing by the text interpreter and other parsing operations.

pictured-numeric output: a number display format in which the number is converted using Forth words
that resemble a symbolic “picture” of the desired output.

program: a complete specification of execution to achieve a specific function (application task) expressed
in Forth source code form.

receive: to obtain characters from the user input device.

return stack: a stack that may be used for program execution nesting, do-loop execution, temporary
storage, and other purposes.

standard word: a named Forth procedure, formally specified in this Standard.

user input device: the input device currently selected as the source of received data, typically a keyboard.
user output device: the output device currently selected as the destination of display data.

variable: a named region of data space located and accessed by its memory address.

word: depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-
space characters, which could be the name of a Forth definition.

word list: a list of associated Forth definition names that may be examined during a dictionary search.

word set: a set of Forth definitions grouped together in this Standard under a name indicating some
shared aspect, typically their common functional area.

2.2 Notation

221

222

2.2.3

Numeric notation

Unless otherwise stated, all references to numbers apply to signed single-cell integers. The inclusive
range of values is shown afsdm...to}. The allowable range for the contents of an address is shown in
double braces, particularly for the contents of variables, RASE{{2...36}}.

Stack notation
Stack parameters input to and output from a definition are described using the notation:

(stack-id before-- after)

wherestack-idspecifies which stack is being describleeforerepresents the stack-parameter data types
before execution of the definition aafter represents them after execution. The symbols useefane
andafter are shown in table 3.2.

The control-flow-staclstack-idis “C:”, the data-stacktack-idis “S:”, and the return-stadtack-idis
“R:". When there is no confusion, the data-stsidck-idmay be omitted.

When there are alternaadter representations, they are described dfyet, | after,”. The top of the stack
is stack is to the right. Only those stack items required for or provided by execution of the definition are
shown.

Parsed-text notation

If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation
from table 2.1 shown surrounded by double-quotes and placed betwéefoteparameters and the “--”
separator in the first stack described, e.g.,

Page 6 X3J14 dpANS-6 Document

(S:before”parsed-text-abbreviatidn- after).

Table 2.1 — Parsed text abbreviations

Abbreviation Description

<char> the delimiting character marking the end of the string being
parsed

<chars> zero or more consecutive occurrences of the charctuaer

<space> a delimiting space character

<spaces> zero or more consecutive occurrences of the charsuaee

<quote> a delimiting double quote

<paren> a delimiting right parenthesis

<eol> an implied delimiter marking the end of a line

cce a parsed sequence of arbitrary characters, excluding the
delimiter character

name a token delimited by space, equivalentte<space>or
ccc<eol>

2.2.4 Glossary notation

The glossary entries for each word set are listed in the standard ASCII collating sequence. Each glossary
entry specifies an ANS Forth word and consists of two parisidaxline and thesemantiadescriptionof
the definition.

2.2.4.1 Glossary index line
The index line is a single-line entry containing, from left to right:
Section number, the last four digits of which assign a unique sequential number to all words included
in this Standard,;
DEFINITION-NAME in upper-case, mono-spaced, bold-face letters;
Natural-language pronunciation in quotes if it differs from English;
Word-set designator from table 2.2. The designation for extensions word sets includes “EXT".

Table 2.2 - Word set designators

Word set Designator
Core word set CORE
Block word set BLOCK
Double-Number word set DOUBLE
Exception word set EXCEPTION
Facility word set FACILITY
File-Access word set FILE
Floating-Point word set FLOATING
Locals word set LOCALS
Memory-Allocation word set ~ MEMORY
Programming-Tools word set TOOLS
Search-Order word set SEARCH
String-Handling word set STRING

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 7

2.2.4.2 Glossary semantic description

The first paragraph of the semantic description contains a stack notation for each stack affected by
execution of the word. The remaining paragraphs contain a text description of the semanti:4.3See
Semantics

Page 8

X3J14 dpANS-6 Document

3. Usage requirements

A system shall provide all of the words definedih Core Words It may also provide any words

defined in the optional word sets and extensions word sets. No standard word provided by a system shall
alter the system state in a way that changes the effect of execution of any other standard word except as
provided in this Standard. A system may contain non-standard extensions, provided that they are

consistent with the requirements of this Standard.

The implementation of a system may use words and techniques outside the scope of this Standard.

A system need not provide all words in executable form. The implementation may provide definitions,

including definitions of words in the Core word set,

in source form only. If so, the mechanism for adding

the definitions to the dictionary is implementation defined.

A program that requires a system to provide words or techniques not defined in this Standard has an

environmental dependency.

3.1 Data types

A data type identifies the set of permissible values for a data object. It is not a property of a particular
storage location or position on a stack. Moving a data object shall not affect its type.

No data-type checking is required of a system. An
object is encountered.

ambiguous condition exists if an incorrectly typed data

Table 3.1 summarizes the data types used throughout this Standard. Multiple instances of the same type
in the description of a definition are suffixed with a sequence digit subscript to distinguish them.

Table 3.1 - Data types

Symbol Data type Size on stack
flag flag 1 cell
true true flag 1 cell
false false flag 1 cell
char character 1 cell

n signed number 1 cell
+n non-negative number 1 cell

u unsigned number 1 cell
njut number 1 cell

X unspecified cell 1 cell

xt execution token 1 cell
addr address 1 cell
a-addr aligned address 1 cell
c-addr character-aligned address 1 cell
d double-cell signed number 2 cells
+d double-cell non-negative number 2 cells
ud double-cell unsigned number 2 cells
dluc? double-cell number 2 cells
xd unspecified cell pair 2 cells
colon-sys definition compilation implementation dependent
do-sys do-loop structures implementation dependent
case-sys CASEstructures implementation dependent
of-sys OF structures implementation dependent
orig control-flow origins implementation dependent
dest control-flow destinations implementation dependent
loop-sys loop-control parameters implementation dependent

Collating Sequence: ' "#$% &' () *+,-./digits : ;
WARNING: Preliminary Document

<=>? @ ALPHA[\]”~_"alpha{]|}~
Subject to change without notice

X3J14 dpANS-6 Document Page 9

nest-sys definition calls implementation dependent

i*x, j*x3 any data type 0 or more cells

1 May be either a signed number or an unsigned number depending on
context.

2

May be either a double-cell signed number or a double-cell unsigned
number depending on context.

May be an undetermined number of stack entries of unspecified type. For
examples of use, s€e1.1370EXECUTEG6.1.2050QUIT.

3.1.1 Data-type relationships

Some of the data types are subtypes of other data types. A daitéstgpsubtype of typeif and only if
the members dfare a subset of the memberg.ofThe following list represents the subtype relationships
using the phrase =>j” to denote f is a subtype gf” The subtype relationship is transitivej > j and
j =>k theni =>k:
+Nn =>u=>x;
+n =>n=>x;
char=>+n;
a-addr=>c-addr=>addr=>y;
flag =>x;
xXt=>x;
+d =>d =>xd,
+d =>ud =>xd
Any Forth definition that accepts an argument of tiypleall also accept an argument that is a subtype of

3.1.2 Character types

Characters shall be at least one address unit wide, contain at least eight bits, and have a size less than or
equal to cell size.

The characters provided by a system shall include the graphic characters {32..126}, which represent
graphic forms as shown in table 3.2.

3.1.2.1 Graphic characters

A graphic character is one that is normally displayed (e.g., A, #, &, 6). These values and graphics, shown
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and 1SO-646-1983, International Reference
Version (IRV). The graphic forms of characters outside the hex range {20..7E} are implementation-
defined. Programs that use the graphic hex 24 (the currency sign) have an environmental dependency.

The graphic representation of characters is not restricted to particular type fonts or styles. The graphics
here are examples.

Page 10 X3J14 dpANS-6 Document

Table 3.2 — Standard graphic characters

Hex IRV ASCII| Hex IRV ASCIl| Hex IRV ASCII| Hex IRV ASCII| Hex IRV ASCIlI| Hex IRV ASCII
20 30 0 0|40 @ @50 P P|60 ~ ° 70 p p
21 1 31 1 1 (41 A A|51 Q Q|61 a a |71 g ¢
2 " " 32 2 2|42 B B|52 R R|62 b b |72 r
23 # # |33 3 3|43 C C|53 S S|63 ¢ c |73 s s
24 ° $]|34 4 4 |44 D D|5 T T |64 d d |74 t t
25 % %|3% 5 5|45 E E|55 U U|65 e e |75 u u
26 & & |36 6 6 |46 F F |5 V V|66 f f %6 v v
2r 3r 7 7 (47 G G|57 W W67 g g |77 w w
28 ((38 8 8|48 H H|58 X X |68 h h |78 x x
20)) [39 9 9|49 1 I |5 Y Y|[69 i i |79 y vy
2A * * |BA : : |4A J J |BA Z Z|6A | | Az z
2B+ +|3B ; : [4B K K|5B [[|6B k k|7B { {
2C , , |3 < <|4c L L|5C \ \ |6C | I |7C | |
2D - - |30 = =[4D M M[5D]] |6D m m|7D } }
2E . . 3E > >|4€E N N|5E ~ ~|6E n n|7E ~ ~
2F |/ |/ |3F ? 2?2 |4F O O|5F _ _|6F o o

3.1.2.2 Control characters

All non-graphic characters included in the implementation-defined character set are defined in this
Standard as control characters. In particular, the characters {0..31}, which could be included in the
implementation-defined character set, are control characters.

Programs that require the ability to send or receive control characters have an environmental dependency.

3.1.3 Single-cell types

The implementation-defined fixed size of a cell is specified in address units and the corresponding number
of bits. Sed:.2 Hardware peculiarities.

Cells shall be at least one address unit wide and contain at least sixteen bits. The size of a cell shall be an
integral multiple of the size of a character. Data-stack elements, return-stack elements, addresses,
execution tokens, flags, and integers are one cell wide.

3.1.3.1 Flags

Flags may have one of two logical statese or false Programs that use flags as arithmetic operands
have an environmental dependency.

A true flag returned by a standard word shall be a single-cell value with all bits set. A false flag returned
by a standard word shall be a single-cell value with all bits clear.

3.1.3.2 Integers
The implementation-defined range of signed integers shall include {-32767..+32767}.

The implementation-defined range of non-negative integers shall include {0..32767}.

The implementation-defined range of unsigned integers shall include {0..65535}.

3.1.3.3 Addresses

An address identifies a location in data space with a size of one address unit, which a program may fetch
from or store into except for the restrictions established in this Standard. The size of an address unit is
specified in bits. Each distinct address value identifies exactly one such storage elemarg.3 Txa

space

The set of character-aligned addresses, addresses at which a character can be accessed, is an
implementation-defined subset of all addresses. Adding the size of a character to a character-aligned
address shall produce another character-aligned address.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 11

The set of aligned addresses is an implementation-defined subset of character-aligned addresses. Adding
the size of a cell to an aligned address shall produce another aligned address.

3.1.3.4 Counted strings
A counted string in memory is identified by the addresadd) of its length character.

The length character of a counted string shall contain a binary representation of the number of data
characters, between zero and the implementation-defined maximum length for a counted string. The
maximum length of a counted string shall be at least 255.

3.1.3.5 Execution tokens
Different definitions may have the same execution token if the definitions are equivalent.

3.1.4 Cell-pair types
A cell pair in memory consists of a sequence of two contiguous cells. The cell at the lower address is the
first cell, and its address is used to identify the cell pair. Unless otherwise specified, a cell pair on a stack
consists of the first cell immediately above the second cell.

3.1.4.1 Double-cell integers

On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell
containing the least significant part.

The implementation-defined range of double-cell signed integers shall include
{-2147483647..+2147483647}.

The implementation-defined range of double-cell non-negative integers shall include {0..2147483647}.

The implementation-defined range of double-cell unsigned integers shall include {0..4294967295}.
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-
cell unsigned integer with the same value. $@el.1 Internal number representation

3.1.4.2 Character strings
A string is specified by a cell paicaddru) representing its starting address and length in characters.

3.1.5 System types
The system data types specify permitted word combinations during compilation and execution.

3.1.5.1 System-compilation types

These data types denote zero or more items on the control-flow stack (see 3.2.3.2). The possible presence
of such items on the data stack means that any items already there shall be unavailable to a program until
the control-flow-stack items are consumed.

The implementation-dependent data generated upon beginning to compile a definition and consumed at its
close is represented by the symbolon-syshroughout this Standard.

The implementation-dependent data generated upon beginning to compile a do-loop structure such as
DO ... LOOP and consumed at its close is represented by the sytoksyisthroughout this Standard.

The implementation-dependent data generated upon beginning to coi@pigEa... ENDCASE
structure and consumed at its close is represented by the ssasbedyshroughout this Standard.

The implementation-dependent data generated upon beginning to compie.aENDOF structure
and consumed at its close is represented by the syfibgsthroughout this Standard.

The implementation-dependent data generated and consumed by executing the other standard control-flow
words is represented by the symbmigy anddestthroughout this Standard.

Page 12 X3J14 dpANS-6 Document

3.1.5.2 System-execution types

These data types denote zero or more items on the return stack. Their possible presence means that any
items already on the return stack shall be unavailable to a program until the system-execution items are
consumed.

The implementation-dependent data generated upon beginning to execute a definition and consumed upon
exiting it is represented by the symipelst-syghroughout this Standard.

The implementation-dependent loop-control parameters used to control the execution of do-loops are
represented by the symbobp-systhroughout this Standard. Loop-control parameters shall be available
inside the do-loop for words that use or change these parameters, wordsl sucH-8A\VEand

UNLOOP

3.2 The implementation environment
3.2.1 Numbers

3.2.1.1 Internal number representation

This Standard allows one’s complement, two’s complement, or sign-magnitude number representations
and arithmetic. Arithmetic zero is represented as the value of a single cell with all bits clear.

The representation of a number as a compiled literal or in memory is implementation dependent.

3.2.1.2 Digit conversion
Numbers shall be represented externally by using characters from the standard character set.
Conversion between the internal and external forms of a digit shall behave as follows:

The value irBASEis the radix for number conversion. A digit has a value ranging from zero to one less
than the contents &ASE The digit with the value zero corresponds to the character “0”. This
representation of digits proceeds through the character set to the decimal value nine corresponding to the
character “9”. For digits beginning with the decimal value ten the graphic characters beginning with the
character “A” are used. This correspondence continues up to and including the digit with the decimal
value thirty-five which is represented by the character “Z”. The conversion of digits outside this range is
implementation defined.

3.2.1.3 Free-field number display

Free-field number display uses the characters described in digit conversion, without leading zeros, in a
field the exact size of the converted string plus a trailing space. If a number is zero, the least significant
digit is not considered a leading zero. If the number is negative, a leading minus sign is displayed.

Number display may use the pictured numeric output string buffer to hold partially converted strings (see
3.3.3.6 Other transient regions
3.2.2 Arithmetic

3.2.2.1 Integer division

Division produces a quotiegtand a remainderby dividing operan@ by operand. Division operations
returng, r, or both. The identitpxq + r = a shall hold for alla andb.

When unsigned integers are divided and the remainder is notjzsrihe largest integer less than the
true quotient.

When signed integers are divided, the remainder is not zera, @mdb have the same sigg,is the
largest integer less than the true quotient. If only one operand is negative, whstieemded toward

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 13

negative infinity (floored division) or rounded towards zero (symmetric division) is implementation
defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and
the quotient is rounded to its arithmetic floor. Symmetric division is integer division in which the
remainder carries the sign of the dividend or is zero and the quotient is the mathematical quotient
“rounded towards zero” or “truncated.” Examples of each are shown in tables 3.3 and 3.4.

In cases where the operands differ in sign and the rounding direction matters, a program shall either
include code generating the desired form of division, not relying on the implementation-defined default
result, or have an environmental dependency on the desired rounding direction.

Table 3.3 - Floored Division Example Table 3.4 - Symmetric Division Example
Dividend Divisor Remainder Quotient Dividend Divisor Remainder Quotient
10 7 3 1 10 7 3 1
-10 7 4 -2 -10 7 -3 -1
10 -7 -4 -2 10 -7 3 -1
-10 -7 -3 1 -10 -7 -3 1

3.2.2.2 Other integer operations

In all integer arithmetic operations, both overflow and underflow shall be ignored. The value returned
when either overflow or underflow occurs is implementation defined.

3.2.3 Stacks

3.2.3.1 Data stack

Objects on the data stack shall be one cell wide.

3.2.3.2 Control-flow stack

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of
control-flow words and the restrictions imposed on data-stack usage during the compilation of control
structures.

The elements of the control-flow stack are system-compilation data types.

The control-flow stack may, but need not, physically exist in an implementation. If it does exist, it may

be, but need not be, implemented using the data stack. The format of the control-flow stack is
implementation defined. Since the control-flow stack may be implemented using the data stack, items
placed on the data stack are unavailable to a program after items are placed on the control-flow stack and
remain unavailable until the control-flow stack items are removed.

3.2.3.3 Return stack

Items on the return stack shall consist of one or more cells. A system may use the return stack in an
implementation-dependent manner during the compilation of definitions, during the execution of do-
loops, and for storing run-time nesting information.

A program may use the return stack for temporary storage during the execution of a definition subject to
the following restrictions:

— A program shall not access values on the return stack @&Rp, 2R@or 2R>) that it did not place
there using>R or 2>R;

— A program shall not access from within a do-loop values placed on the return stack before the loop was
entered;

Page 14 X3J14 dpANS-6 Document

— All values placed on the return stack within a do-loop shall be removed befgreOOR +LOOR
UNLOOPor LEAVEIs executed,;

— All values placed on the return stack within a definition shall be removed before the definition is
terminated or beforEXIT is executed.

3.2.4 Operator terminal

Seel.2.2 Exclusions

3.2.4.1 User input device
The method of selecting the user input device is implementation defined.

The method of indicating the end of an input line of text is implementation defined.

3.2.4.2 User output device

The method of selecting the user output device is implementation defined.

3.2.5 Mass storage

A system need not provide any standard words for accessing mass storage. If a system provides any
standard word for accessing mass storage, it shall also implement the Block word set.

3.2.6 Environmental queries

The name spaces f&BNVIRONMENT2nd definitions are disjoint. Names of definitions that are the
same aENVIRONMENT®3trings shall not impair the operationEXlVIRONMENT.? Table 3.5 contains
the valid input strings and corresponding returned value for inquiring about the programming
environment wittENVIRONMENT.?

Table 3.5 - Environmental Query Strings

String Value datatype Constant? Meaning

/COUNTED-STRING n yes maximum size of a counted string, in
characters

/HOLD n yes size of the pictured numeric output string
buffer, in characters

/PAD n yes size of the scratch area pointed t¢*By)

in characters
ADDRESS-UNIT-BITS n yes size of one address unit, in bits

CORE flag no true if complete core word set present
(i.e., not a subset as definedbirl.)
CORE-EXT flag no true if core extensions word set present
FLOORED flag yes true if floored division is the default
MAX-CHAR u yes maximum value of any character in the
implementation-defined character set
MAX-D d yes largest usable signed double number
MAX-N n yes largest usable signed integer
MAX-U u yes largest usable unsigned integer
MAX-UD ud yes largest usable unsigned double number
RETURN-STACK-CELLS n yes maximum size of the return stack, in cells
STACK-CELLS n yes maximum size of the data stack, in cells

If an environmental query (usitgNVIRONMENT)returnsfalse(i.e., unknown) in response to a string,
subsequent queries using the same string may retign|f a query returngue (i.e., known) in response

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 15

to a string, subsequent queries with the same string shall alsotraturif a query designated as
constant in the above table retutnge and a value in response to a string, subsequent queries with the
same string shall retutnue and the same value.

3.3 The Forth dictionary

Forth words are organized into a structure called the dictionary. While the form of this structure is not
specified by the Standard, it can be described as consisting of three logical parts: a hame space, a code
space, and a data space. The logical separation of these parts does not require their physical separation.

A program shall not fetch from or store into locations outside data space. An ambiguous condition exists
if a program addresses name space or code space.

3.3.1 Name space

The relationship between name space and data space is implementation dependent.

3.3.1.1 Word lists

The structure of a word list is implementation dependent. When duplicate names exist in a word list, the
latest-defined duplicate shall be the one found during a search for the name.

3.3.1.2 Definition names

Definition names shall contain {1..31} characters. A system may allow or prohibit the creation of
definition names containing non-standard characters.

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of
a system have an environmental dependency.

A program shall not create definition names containing non-graphic characters.

3.3.2 Code space
The relationship between code space and data space is implementation dependent.

3.3.3 Data space

Data space is the only logical area of the dictionary for which standard words are provided to allocate and
access regions of memory. These regions are: contiguous regions, variables, text-literal regions, input
buffers, and other transient regions, each of which is described in the following sections. A program may
read from or write into these regions unless otherwise specified.

3.3.3.1 Address alignment

Most addresses used in ANS Forth are aligned addresses (indicateditiy or character-aligned

(indicated byc-addr). ALIGNED, CHAR+ and arithmetic operations can alter the alignment state of an
address on the staclCHAR+applied to an aligned address returns a character-aligned address that can
only be used to access characters. Appl@hrAR+0 a character-aligned address produces the
succeeding character-aligned address. Adding or subtracting an arbitrary number to an address can
produce an unaligned address that shall not be used to fetch or store anything. The only way to find the
next aligned address is WikLIGNED. An ambiguous condition exists wh@n! ,, (comma)+! , 2@

or 2! is used with an address that is not aligned, or v@@¢!, or C, is used with an address that is not
character-aligned.

The definitions 06.1.1000CREATEand6.1.2410VARIABLE require that the definitions created by them
return aligned addresses.

After definitions are compiled or the woALLIGN is executed the data-space pointer is guaranteed to be
aligned.

Page 16 X3J14 dpANS-6 Document

3.3.3.2 Contiguous regions

A system guarantees that a region of data space allocatedd$i®d, , (comma)C, (c-comma), and

ALIGN shall be contiguous with the last region allocated with one of the above words, unless the
restrictions in the following paragraphs apply. The data-space pbiBfREalways identifies the

beginning of the next data-space region to be allocated. As successive allocations are made, the data-
space pointer increases. A program may perform address arithmetic within contiguously allocated

regions. The last region of data space allocated using the above operators may be released by allocating a
corresponding negatively-sized region usikid OT, subject to the restrictions of the following

paragraphs.

CREATEestablishes the beginning of a contiguous region of data space, whose starting address is returned
by theCREATH definition. This region is terminated by compiling the next definition.

Since an implementation is free to allocate data space for use by code, the above operators need not
produce contiguous regions of data space if definitions are added to or removed from the dictionary
between allocations. An ambiguous condition exists if deallocated memory contains definitions.

3.3.3.3 Variables

The region allocated for a variable may be non-contiguous with regions subsequently allocated with
, (comma) ol ALLOT. For example, in:

VARIABLE X 1 CELLS ALLOT
the regionX and the regioMLLOTted could be non-contiguous.

Some system-provided variables, sucls@8ATE are restricted to read-only access.

3.3.3.4 Text-literal regions
The text-literal regions, specified by strings compiled \&ithandC", may be read-only.

A program shall not store into the text-literal regions create8"bgndC" nor into any read-only system
variable or read-only transient regions. An ambiguous condition exists when a program attempts to store
into read-only regions.

3.3.3.5 Input buffers

The address, length, and content of the input buffer may be transient. A program shall not write into the
input buffer. In the absence of any optional word sets providing alternative input sources, the input buffer
is either the terminal-input buffer, used @YIT to hold one line from the user input device, or a buffer
specified byEVALUATE In all casesSOURCEeturns the beginning address and length in characters of
the current input buffer.

The minimum size of the terminal-input buffer shall be 80 characters.

The address and length returnedS®YURCEthe string returned BYARSE and directly computed input-
buffer addresses are valid only until the text interpreter does 1/O to refill the input buffer or the input
source is changed.

A program may modify the size of the parse area by changing the contefis within the limits

imposed by this Standard. For example, if the conters#hbfare saved before a parsing operation and
restored afterwards, the text that was parsed will be available again for subsequent parsing operations.
The extent of permissible repositioning using this method depends on the input sourcg.gsBck

buffer regions and11.3.4 Input sourcg.

A program may directly examine the input buffer using its address and length as retuB@dRgFEthe
beginning of the parse area within the input buffer is indexed by the numbiéf inThe values are valid
for a limited time. An ambiguous condition exists if a program modifies the contents of the input buffer.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 17

3.3.3.6 Other transient regions

The data space regions identified®&D WORDand#> (the pictured numeric output string buffer) may
be transient. Their addresses and contents may become invalid after:

— adefinition is created via a defining word;
— definitions are compiled with or :NONAME
— data space is allocated ustg.OT,, (comma),C, (c-comma), oALIGN.

The previous contents of the regions identifiedW@RENd#> may be invalid after each use of these
words. Further, the regions returnedW@R@Nd#> may overlap in memory. Consequently, use of one

of these words can corrupt a region returned earlier by a different word. The other words that construct
pictured numeric output strings#, #, #S, andHOLD may also modify the contents of these regions.
Words that display numbers may be implemented using pictured numeric output words. Consequently,
(dot),.R,.S,?,D.,D.R, U., andU.R could also corrupt the regions.

The size of the scratch area whose address is returrieddghall be at least 84 characters. The contents
of the region addressed PADare intended to be under the complete control of the user: no words
defined in this Standard place anything in the region, although changing data-space allocations as
described ir8.3.3.2 Contiguous regionsnay change the address returnedPB® Non-standard words
provided by an implementation may &0 but such use shall be documented.

The size of the region identified BYORIBhall be at least 33 characters.

The size of the pictured numeric output string buffer shall be at leagt{2* characters, whereis the
number of bits in a cell. Programs that consider it a fixed area with unchanging access parameters have
an environmental dependency.

3.4 The Forth text interpreter

34.1

Upon start-up, a system shall be able to interpret, as descriled. BQ50QUIT, Forth source code
received interactively from a user input device.

Such interactive systems usually furnish a "prompt” indicating that they have accepted a user request and
acted on it. The implementation-defined Forth prompt should contain the word “OK” in some
combination of upper or lower case.

Text interpretation (se@1.1360EVALUATEand6.1.2050QUIT) shall repeat the following steps until
either the parse area is empty or an ambiguous condition exists:

a) Skip leading spaces and parseme(see3.4.1);
b) Search the dictionary name space &de?. If a definition name matching the string is found:
1) if interpreting, perform the interpretation semantics of the definition3<e8.3, and continue
at a);
2) if compiling, perform the compilation semantics of the definition &dé€3.3, and continue at
a).
c) If a definition name matching the string is not found, attempt to convert the string to a number
(see3.4.1.3. If successful:
1) if interpreting, place the number on the data stack, and continue at a);

2) if compiling, compile code that when executed will place the number on the staéki(4480
LITERAL), and continue at a);

d) If unsuccessful, an ambiguous condition exists 8séd).

Parsing

Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined
maximum length of a counted string.

Page 18 X3J14 dpANS-6 Document

If the parse area is empty, i.e., when the numbeiNnis equal to the length of the input buffer, or

contains no characters other than delimiters, the selected string is empty. Otherwise, the selected string
begins with the next character in the parse area, which is the character indexed by the coribénts of

An ambiguous condition exists if the numbepIN is greater than the size of the input buffer.

If delimiter characters are present in the parse area after the beginning of the selected string, the string
continues up to and including the character just before the first such delimiter, and the nusiitbeisin
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter
from the parse area. Otherwise, the string continues up to and including the last character in the parse
area, and the number #iN is changed to the length of the input buffer, thus emptying the parse area.

Parsing may change the contentsIM , but shall not affect the contents of the input buffer. Specifically,
if the value in>IN is saved before starting the parse, resettihgto that value immediately after the
parse shall restore the parse area without loss of data.

3.4.1.1 Delimiters

If the delimiter is the space character, hexBI0)(control characters may be treated as delimiters. The
set of conditions, if any, under which a “space” delimiter matches control characters is implementation
defined.

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before
parsing.
3.4.1.2 Syntax

Forth has a simple, operator-ordered syntax. The pr&s€ returns values as K were executed first,
thenB and finallyC. Words that cause deviations from this linear flow of control are called control-flow
words. Combinations of control-flow words whose stack effects are compatible form control-flow
structures. Examples of typical use are given for each control-flow word in Annex

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones.

This Standard does not require a syntax or program-construct checker.

3.4.1.3 Text interpreter input number conversion

When converting input numbers, the text interpreter shall recognize both positive and negative numbers,
with a negative number represented by a single minus sign, the character “-”, preceding the digits. The
value inBASEis the radix for number conversion.

3.4.2 Finding definition names

A string matches a definition name if each character in the string matches the corresponding character in
the string used as the definition name when the definition was created. The case sensitivity (whether or
not the upper-case letters match the lower-case letters) is implementation defined. A system may be either
case sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive,
ignoring differences in case while searching.

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such
as accented international characters is implementation defined.

A system shall be capable of finding the definition names defined by this Standard when they are spelled
with upper-case letters.
3.4.3 Semantics

The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens
or other representations. They are largely specified by the stack notation in the glossary entries, which

Collating Sequence: '"#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 19

shows what values shall be consumed and produced. The prose in each glossary entry further specifies the
definition’s behavior.

Each Forth definition may have several behaviors, described in the following sections. The terms
“initiation semantics” and “run-time semantics” refer to definition fragments, and have meaning only
within the individual glossary entries where they appear.

3.4.3.1 Execution semantics

3.4.3.2

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary
entry. When a definition has only one specified behavior, the label is omitted.

Execution may occur implicitly, when the definition into which it has been compiled is executed, or
explicitly, when its execution token is passe@&XECUTE The execution semantics of a syntactically
correct definition under conditions other than those specified in this Standard are implementation
dependent.

Glossary entries for defining words include the execution semantics for the new definitioraime
Execution:” section.

Interpretation semantics

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation
semantics of a Forth definition are its execution semantics.

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word set
and any definitions included from the optional word sets or word set extensions whose interpretation
semantics are defined by this Standard.

A system shall be capable of executing, in interpretation state, any new definitions created in accordance
with 3. Usage requirements

3.4.3.3 Compilation semantics

3.4.4

3.45

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics of
a Forth definition shall be to append its execution semantics to the execution semantics of the current
definition.

Possible actions on an ambiguous condition

When an ambiguous condition exists, a system may take one or more of the following actions:

— ignore and continue;

— display a message;

— execute a particular word,;

— setinterpretation state and begin text interpretation;
— take other implementation-defined actions;

— take implementation-dependent actions.

The response to a particular ambiguous condition need not be the same under all circumstances.

Compilation
A program shall not attempt to nest compilation of definitions.

During the compilation of the current definition, a program shall not execute any defining word,
:NONAME or any definition that allocates dictionary data space. The compilation of the current definition
may be suspended usihdleft-bracket) and resumed usihdright-bracket). While the compilation of

Page 20 X3J14 dpANS-6 Document

the current definition is suspended, a program shall not execute any definingN@XRAME or any
definition that allocates dictionary data space.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 21

4. Documentation requirements

When it is impossible or infeasible for a system or program to define a particular behavior itself, it is
permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why
this is so.

4.1 System documentation

4.1.1 Implementation-defined options

The implementation-defined items in the following list represent characteristics and choices left to the
discretion of the implementor, provided that the requirements of this Standard are met. A system shall
document the values for, or behaviors of, each item.

— aligned address requiremer8sl(3.3 Addressées

— behavior 06.1.1320EMIT for non-graphic characters;

— character editing &.1.0695ACCEPTand6.2.1390EXPECT

— character seB(1.2 Character types, 6.1.132BMIT, 6.1.175KEY);

— character-aligned address requiremehits. 3.3 Addresses

— character-set-extensions matching characteriti¢(Finding definition name$;

— conditions under which control characters match a space deligtelr.{ Delimiters;

— format of the control-flow staci8@.3.2 Control-flow stach;

— conversion of digits larger than thirty-fiv&.2.1.2 Digit conversioiy,

— display after input terminates6inl.0695ACCEPTand6.2.1390EXPECT

— exception abort sequence (a6.ih.0680ABORT?;

— input line terminator3(2.4.1 User input devicg

— maximum size of a counted string, in characteérk.3.4 Counted strings6.1.2450WORpP

— maximum size of a parsed strirf®y4(.1 Parsing;

— maximum size of a definition name, in charactgr3.{.2 Definition namey

— maximum string length fd.1.1345ENVIRONMENT,An characters;

— method of selecting.2.4.1 User input device

— method of selecting.2.4.2 User output device

— methods of dictionary compilatioB.8 The Forth dictionary);

— number of bits in one address uBitl(3.3 Addresses

— number representation and arithmedi@ (1.1 Internal number representation;

— ranges for n, +n, u, d, +d, UBL1.3 Single-cell types3.1.4 Cell-pair type3;

— read-only data-space regio3s3(3 Data spacg

— size of buffer a.1.2450WOR[B.3.3.6 Other transient region}

— size of one cell in address uni3sl(3 Single-cell types

— size of one character in address urdt$.2 Character types,

— size of the keyboard terminal input buffr3(3.5 Input buffers);

— size of the pictured numeric output string bufg8(3.6 Other transient region}

— size of the scratch area whose address is returng@@.B900PAD(3.3.3.6 Other transient region}

— system case-sensitivity characterist®&4.@ Finding definition name$,

— system prompB(4 The Forth text interpreter, 6.1.2050QUIT);

— type of division rounding3(2.2.1 Integer division 6.1.0100¢ , 6.1.0110*/MOD, 6.1.023(
6.1.0240MOD, 6.1.1890MOD)

— values 06.1.2250STATEwhen true;

— values returned after arithmetic overfl®d2(2.2 Other integer operationy

Page 22

X3J14 dpANS-6 Document

whether the current definition can be found &tér1250D0ES>(6.1.0450:).

4.1.2 Ambiguous conditions

A system shall document the system action taken upon each of the general or specific ambiguous
conditions identified in this Standard. S2é.4 Possible actions on an ambiguous condition

The following specific ambiguous conditions, indicated by an asterisk, are noted in the glossary entries of
the relevant words. The following general ambiguous conditions could occur because of a combination of
factors:

anameis neither a valid definition name nor a valid number during text interpret&tibije Forth
text interpreter);

a definition name exceeded the maximum length allo®&d1(2 Definition name}

addressing a region not listed3ii3.3 Data Space

argument type incompatible with specified input parameter, e.g., paskigdaa word expecting an
n (3.1 Data type$;

attempting to obtain the execution token, (e.g., &ith0070 , 6.1.1550FIND, etc.) of a definition
with undefined interpretation semantics;

dividing by zero§.1.0100* , 6.1.0110*/MOD, 6.1.0230/ , 6.1.0240/MOD, 6.1.1561FM/MOD
6.1.1890MOD6.1.2214SM/REM 6.1.2370UM/MOD8.6.1.1820M*/);

insufficient data-stack space or return-stack space (stack overflow);
insufficient space for loop-control parameters;

insufficient space in the dictionary;

interpretating a word with undefined interpretation semantics;

modifying the contents of the input buffer or a string lite3a8.8.4 Text-literal regions 3.3.3.5 Input
buffers);

overflow of a pictured numeric output string;
parsed string overflow;

producing a result out of range, e.g., multiplication (ushgsults in a value too big to be
represented by a single-cell integérl(0090*, 6.1.0100% , 6.1.0110*/MOD, 6.1.0570>NUMBER
6.1.1561FM/MOD6.1.2214SM/REM 6.1.2370UM/MOD6.2.0970CONVER;8.6.1.1820M*/);

reading from an empty data stack or return stack (stack underflow);

unexpected end of input buffer, resulting in an attempt to use a zero-length strvagres a
>IN greater than size of input buff&d.4.1 Parsing;

6.1.2120RECURSHEppears aftes.1.1250D0ES>

argument input source different than current input sourcé.®o2148RESTORE-INPUT
data space containing definitions is de-alloca88.8.2 Contiguous regions

data space read/write with incorrect alignmén83.1 Address alignment

data-space pointer not properly alignédL(0150, , 6.1.0860C,);

less than u+2 stack item8.2.2030PICK, 6.2.2150ROLL);

loop-control parameters not availab&(.0140+LOOR 6.1.1680 , 6.1.1730J, 6.1.1760LEAVE
6.1.1800LOOR 6.1.2380UNLOOF,

most recent definition does not haveaame(6.1.17100MMEDIATE);

namenot defined by6.2.2405VALUEuUsed by6.2.2295TO

namenot found 6.1.0070 , 6.1.2033POSTPONB5.1.251("] , 6.2.2530/COMPILE]);
parameters are not of the same tyfpd.1240DQ 6.2.0620?DQ 6.2.2440WITHIN);
6.1.2033POSTPONIBr 6.2.2530[COMPILE] applied t06.2.2295TCQ,

string longer than a counted string returnedby2450WORD

u greater than or equal to the number of bits in a &L.A805.SHIFT, 6.1.2162RSHIFT);

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_ "alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 23

4.1.3

* word not defined vi®.1.1000CREATH®6.1.0550>BODY 6.1.1250D0ES?;

* words improperly used outside1.0490<# and6.1.0040#> (6.1.0030#, 6.1.0050#S,
6.1.1670HOLD 6.1.2210SIGN).

Other system documentation
A system shall provide the following information:

— list of non-standard words usif.2000PAD(3.3.3.6 Other transient region}
— operator’s terminal facilities available;

— program data space available, in address units;

— return stack space available, in cells;

— stack space available, in cells;

— system dictionary space required, in address units.

4.2 Program documentation

42.1

4.2.2

Environmental dependencies

A program shall document the following environmental dependencies, where they apply, and should
document other known environmental dependencies:

— considering the pictured numeric output string buffer a fixed area with unchanging access parameters
(3.3.3.6 Other transient region;

— depending on the presence or absence of non-graphic characters in a received string
(6.1.0695ACCEPT6.2.1390EXPECT;

— relying on a particular rounding directidhZ.2.1 Integer divisior);

— requiring a particular number representation and arithmatit1(1 Internal number
representation);

— requiring non-standard words or techniquedJeage requirements

— requiring the ability to send or receive control characgsZ.2 Control characters6.1.1750KEY);
— using control characters to perform specific functiénk.{320EMIT, 6.1.2310TYPB);

— using flags as arithmetic operand8sl(3.1 Flagk

— using lower case for standard definition names or depending on the case sensitivity of a system
(3.3.1.2 Definition namey

— using the graphic character with a value of hex324.2.1 Graphic character.
Other program documentation
A program shall also document:

— minimum operator’s terminal facilities required;
— whether a Standard System exists after the program is loaded.

Page 24 X3J14 dpANS-6 Document

5. Compliance and labeling

5.1 ANS Forth systems

5.1.1 System compliance

A system that complies with all the system requirements given in se8titfsage requirementsand

4.1 System documentatiorand their sub-sections is a Standard System. An otherwise Standard System
that provides only a portion of the Core words is a Standard System Subset. An otherwise Standard
System (Subset) that fails to comply with one or more of the minimum values or ranges specified in

3. Usage requirementsand its sub-sections has environmental restrictions.

5.1.2 System labeling

A Standard System (Subset) shall be labeled an “ANS Forth System (Subset).” That label, by itself, shall
not be applied to Standard Systems or Standard System Subsets that have environmental restrictions.

The phrase “with Environmental Restrictions” shall be appended to the label of a Standard System
(Subset) that has environmental restrictions.

The phrase “Providingamés) from the Core Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Core Extensions word set.

The phrase “Providing the Core Extensions word set” shall be appended to the label of any Standard
System that provides all of the Core Extensions word set.

5.2 ANS Forth programs

5.2.1 Program compliance

A program that complies with all the program requirements given in se@tidfsage requirementsand
4.2 Program documentationand their sub-sections is a Standard Program.

5.2.2 Program labeling

A Standard Program shall be labeled an “ANS Forth Program.” That label, by itself, shall not be applied

to Standard Programs that require the system to provide standard words outside the Core word set or that
have environmental dependencies.

The phrase “with Environmental Dependencies” shall be appended to the label of Standard Programs that
have environmental dependencies.

The phrase “Requiringamés) from the Core Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Core Extensions word set.

The phrase “Requiring the Core Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Core Extensions word set.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 25

6. Glossary

6.1 Core words

6.1.0010 ! “store” CORE
(xa-addr--)
Storex ata-addr.

See: 3.3.3.1 Address alignment

6.1.0030 # “number-sign” CORE
(ud; --ud,)

Divide ud; by the number iBBASEgiving the gquotienud, and the remainder. (nis the
least-significant digit ofid;.) Converin to external form and add the resulting character to
the beginning of the pictured numeric output string. An ambiguous condition exists if
executes outside of<a# #> delimited number conversion.

See: 6.1.0040#>, 6.1.0050#S, 6.1.0490<#.

6.1.0040 #> “number-sign-greater” CORE
(xd-- c-addru)

Dropxd. Make the pictured numeric output string available as a character stradyrand
u specify the resulting character string. A program may replace characters within the string.

See: 6.1.0030#, 6.1.0050#S, 6.1.0490<#.

6.1.0050 #S “number-sign-s” CORE
(ud; --ud,)

Convert one digit ofid; according to the rule fgt. Continue conversion until the quotient is
zero. ud, is zero. An ambiguous condition exist#8 executes outside of<d# #> delimited
number conversion.

See: 6.1.0030#, 6.1.0040#>, 6.1.0490<#.

6.1.0070 “tick” CORE

(“<spaces>name-- xt)

Skip leading space delimiters. Pansanedelimited by a space. Fimémeand returrxt, the
execution token foname An ambiguous condition existsrimeis not found.

When interpreting,name EXECUTE is equivalent tmame.

See: 3.4 The Forth text interpreter, 3.4.1 Parsing A.6.1.2033POSTPONEA.6.1.2510 [']
D.6.7 Immediacy

Page 26 X3J14 dpANS-6 Document

6.1.0080 (“paren” CORE

Compilation: Perform the execution semantics given below.
Execution: (“ccc<paren¥ --)
Parsecccdelimited by a right parenthesis “){. is an immediate word.
The number of characters@ecmay be zero to the number of characters in the parse area.

See: 3.4.1 Parsing 11.6.1.008(.

6.1.0090 * “star” CORE
(nqug Noluy -- najus)

Multiply n4|u; by no|u, giving the produchg|us.

6.1.0100 */ “star-slash” CORE
(ngnyng--ny)

Multiply n; by n, producing the double-cell intermediate resultDivide d by ng giving the
single-cell quotienh,. An ambiguous condition existsnif is zero or if the quotien lies
outside the range of a signed numberd ahdn, differ in sign, the implementation-defined
result returned will be the same as that returned by either the piitdd® R> FM/MOD
SWAP DROPr the phraseR M* R> SM/REM SWAP DROP.

See: 3.2.2.1 Integer division

6.1.0110 */MOD “star-slash-mod” CORE
(nynyng--nyng)

Multiply n; by n, producing the intermediate double-cell resultDivide d by ny producing

the single-cell remainder; and the single-cell quotient. An ambiguous condition exists if

ng is zero, or if the quotiem lies outside the range of a single-cell signed integet.aifd

ng differ in sign, the implementation-defined result returned will be the same as that returned
by either the phraseR M* R> FM/MOD or the phraseR M* R> SM/REM .

See: 3.2.2.1 Integer division

6.1.0120 + “plus” CORE
(Nglug Nolu; -- Ngfu)
Add n,|u, to nq|uy, giving the sums|u,.

See: 3.3.3.1 Address alignment

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 27

6.1.0130 +! “plus-store” CORE
(njua-addr--)
Add n|u to the single-cell number ataddr.
See: 3.3.3.1 Address alignment
6.1.0140 +LOOP “plus-loop” CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:do-sys-)
Append the run-time semantics given below to the current definition. Resolve the destination
of all unresolved occurrencesldEAVEbetween the location given lbip-sysand the next
location for a transfer of control, to execute the words followib@OR
Run-time: (n--) (R:loop-sys -- |loop-sys)
An ambiguous condition exists if the loop control parameters are unavailablen tdide
loop index. If the loop index did not cross the boundary between the loop limit minus one and
the loop limit, continue execution at the beginning of the loop. Otherwise, discard the current
loop control parameters and continue execution immediately following the loop.
See: 6.1.1240DQ 6.1.1680 , 6.1.1760LEAVE
6.1.0150 |, ‘comma” CORE
(x--)
Reserve one cell of data space and stanethe cell. If the data-space pointer is aligned when
, begins execution, it will remain aligned wheiffinishes execution. An ambiguous
condition exists if the data-space pointer is not aligned prior to executjon of
See: 3.3.3 Data spacg3.3.3.1 Address alignment
6.1.0160 - “minus” CORE
(NgJuy Nylu; -- nglug)
Subtracin,|u, from n,|u;, giving the differences|us.
See: 3.3.3.1 Address alignment
6.1.0180 “dot” CORE
(n--)
Displayn in free field format.
See: 3.2.1.2 Digit conversion3.2.1.3 Free-field number display

Page 28 X3J14 dpANS-6 Document

6.1.0190 ." “dot-quote” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc<quote¥ --)

Parsecccdelimited by" (double-quote). Append the run-time semantics given below to the
current definition.

Run-time: (--)
Displayccc

See: 3.4.1 Parsing 6.2.0200.(.

6.1.0230 / “slash” CORE
(ngny--n3)
Divide n; by n,, giving the single-cell quotiemt;. An ambiguous condition existsnf is
zero. Ifn, andn, differ in sign, the implementation-defined result returned will be the same

as that returned by either the phrageS>D R> FM/MOD SWAP DROPor the phraseR
S>D R> SM/REM SWAP DROP

See: 3.2.2.1 Integer division

6.1.0240 /MOD “slash-mod” CORE
(ngny--ngny)

Divide n; by n,, giving the single-cell remaindeg and the single-cell quotienj. An
ambiguous condition existsnf, is zero. Ifn; andn, differ in sign, the implementation-
defined result returned will be the same as that returned by either the FRr&s® R>
FM/MODor the phraseR S>D R> SM/REM .

See: 3.2.2.1 Integer division

6.1.0250 O< “zero-less” CORE
(n--flag)

flag is true if and only ih is less than zero.

6.1.0270 0= “zero-equals” CORE
(x--flag)

flag is true if and only ik is equal to zero.

6.1.0290 1+ “one-plus” CORE

Add 1 ton,|u; giving the sum,|us.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 29

6.1.0300

6.1.0310

6.1.0320

6.1.0330

6.1.0350

6.1.0370

6.1.0380

6.1.0400

1- “one-minus” CORE
Subtract 1 frorm, |u; giving the difference,|us.

2! “two-store” CORE
(%1 X, a-addr--)
Store the cell paix; x, ata-addr, with x, ata-addrandx, at the next consecutive cell. Itis
equivalent to the sequenS&VAP OVER ! CELL+ !

See: 3.3.3.1 Address alignment

2* “two-star” CORE
(X1 %)
X, is the result of shifting,; one bit toward the most-significant bit, filling the vacated least-
significant bit with zero.

2/ “two-slash” CORE
(X1 %)
X, is the result of shifting; one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

2@ “two-fetch” CORE
(a-addr--x; X,)
Fetch the cell paix; x, stored at-addr. X, is stored ag-addrandx, at the next consecutive
cell. It is equivalent to the sequerigeP CELL+ @ SWAP @

See: 3.3.3.1 Address alignment6.1.03102! .

2DROP “two-drop” CORE
(X1 %5 =)
Drop cell pairx; x2 from the stack.

2DUP “two-dupe” CORE
Duplicate cell paix; X,.

20VER “two-over” CORE

Copy cell pairx; x, to the top of the stack.

Page 30 X3J14 dpANS-6 Document

6.1.0430 2SWAP “two-swap” CORE

Exchange the top two cell pairs.

6.1.0450 : “colon” CORE

(C: “<spaces>name-- colon-sys)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
called a “colon definition.” Enter compilation state and start the current definition, producing
colon-sys Append the initiation semantics given below to the current definition.

The execution semantics whmewill be determined by the words compiled into the body of
the definition. The current definition shall not be findable in the dictionary until it is ended
(or until the execution dDOES>in some systems).

Initiation: (i*x --i*x) (R: --nest-sy9

Save implementation-dependent informatnast-sysabout the calling definition. The stack
effectsi*x represent arguments tame

nameExecution: (i*X -- j*x)

Execute the definitioname The stack effectéx andj*x represent arguments to and results
from name respectively.

See: 3.4 The Forth text interpreter, 3.4.1 Parsing 3.4.5 Compilation 6.1.1250D0ES>
6.1.250Q , 6.1.254(0] , 15.6.2.047QCODE

6.1.0460 ; “semicolon” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:colon-sys--)

Append the run-time semantics below to the current definition. End the current definition,
allow it to be found in the dictionary and enter interpretation state, conseolmysys If
the data-space pointer is not aligned, reserve enough data space to align it.

Run-time: (--) (R: nest-sys-)
Return to the calling definition specified hgst-sys

See: 3.4 The Forth text interpreter, 3.4.5 Compilation

6.1.0480 < “less-than” CORE
(nyn,--flag)
flag is true if and only if, is less thams.

See: 6.1.2340U<

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 31

6.1.0490

6.1.0530

6.1.0540

6.1.0550

6.1.0560

6.1.0570

<# “less-number-sign” CORE
(--)
Initialize the pictured numeric output conversion process.
See: 6.1.0030#, 6.1.0040#>, 6.1.00504S.
= “equals” CORE
(%1 %, --flag)
flag is true if and only ik, is bit-for-bit the same as,.
> “greater-than” CORE
(nyn,--flag)
flag is true if and only ih, is greater than,,
See: 6.2.2350U>.
>BODY “to-body” CORE
(xt--a-addr)
a-addris the data-field address correspondingttoAn ambiguous condition existsxfis not
for a word defined ViCREATE
See: 3.3.3 Data space
>IN “to-in” CORE
(-- a-addr)
a-addris the address of a cell containing the offset in characters from the start of the input
buffer to the start of the parse area.
>NUMBER “to-number” CORE
(ud, c-addr; u; -- ud, c-addr, u,)
ud, is the unsigned result of converting the characters within the string specitieaioly, u;
into digits, using the number BASE and adding each inted; after multiplyingud, by the
number inBASE Conversion continues left-to-right until a character that is not convertible,
including any “+” or “-”, is encountered or the string is entirely convertedddr, is the
location of the first unconverted character or the first character past the end of the string if the
string was entirely convertedy, is the number of unconverted characters in the string. An
ambiguous condition existsufl, overflows during the conversion.
See: 3.2.1.2 Digit conversion

Page 32

X3J14 dpANS-6 Document

6.1.0580 >R “to-r" CORE

Interpretation: Interpretation semantics for this word are undefined.

Execution: (x--) (R: --Xx)

Move x to the return stack.

See: 3.2.3.3 Return stack6.1.2060R>, 6.1.2070R@6.2.03402>R, 6.2.04102R>, 6.2.04152R@

6.1.0630 ?DUP “question-dupe” CORE

(x--0xx)

Duplicatex if it is non-zero.

6.1.0650 @ “fetch” CORE

(a-addr--x)
X is the value stored ataddr.

See: 3.3.3.1 Address alignment

6.1.0670 ABORT CORE

(i*x --) (R:j*x --)

Empty the data stack and perform the functio@WfiT, which includes emptying the return
stack, without displaying a message.

See: 9.6.2.0670ABORT

6.1.0680 ABORT" “abort-quote” CORE

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc<quote¥ --)

Parsecccdelimited by & (double-quote). Append the run-time semantics given below to the

current definition.

Run-time: (i*X X; - |i*x) (R:j*X - |j*x)

Removex, from the stack. If any bit of; is not zero, displagccand perform an
implementation-defined abort sequence that includes the funct®BORT

See: 3.4.1 Parsing9.6.2.0680ABORT".

6.1.0690 ABS “abs” CORE

(n--u)

u is the absolute value of

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]"~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 33

6.1.0695 ACCEPT CORE

(c-addr+ny --+n,)

Receive a string of at mosh, characters. An ambiguous condition existsn{ is zero or

greater than 32,767. Display graphic characters as they are received. A program that depends
on the presence or absence of non-graphic characters in the string has an environmental
dependency. The editing functions, if any, that the system performs in order to construct the
string are implementation-defined.

Input terminates when an implementation-defined line terminator is received. When input
terminates, nothing is appended to the string, and the display is maintained in an
implementation-defined way.

+n, is the length of the string storedcaaddr.

6.1.0705 ALIGN CORE

()

If the data-space pointer is not aligned, reserve enough space to align it.

See: 3.3.3 Data spacg3.3.3.1 Address alignment
6.1.0706 ALIGNED CORE
(addr-- a-addr)
a-addris the first aligned address greater than or equadida
See: 3.3.3.1 Address alignment
6.1.0710 ALLOT CORE
(n--)
If nis greater than zero, resenmvaddress units of data spacen I§ less than zero, releasg |
address units of data spacen I§ zero, leave the data-space pointer unchanged.
If the data-space pointer is aligned anid a multiple of the size of a cell whahLOT begins
execution, it will remain aligned whekLLOT finishes execution.
If the data-space pointer is character alignedreisca multiple of the size of a character when
ALLOT begins execution, it will remain character aligned whkhOT finishes execution.
See: 3.3.3 Data space
6.1.0720 AND CORE

(Xg X5 - X3)

X3 is the bit-by-bit logical “and” ok; with X,.

Page 34 X3J14 dpANS-6 Document

6.1.0750 BASE CORE
(-- a-addr)

a-addris the address of a cell containing the current number-conversion radix {{2...36}}.

6.1.0760 BEGIN CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --dest)

Put the next location for a transfer of contd#st onto the control flow stack. Append the
run-time semantics given below to the current definition.

Run-time: (--)
Continue execution.

See: 3.2.3.2 Control-flow stack 6.1.2140REPEAT 6.1.2390UNTIL, 6.1.2430WHILE

6.1.0770 BL “b-I" CORE
(--char)

charis the character value for a space.

6.1.0850 C! “c-store” CORE
(charc-addr--)

Storechar atc-addr. When character size is smaller than cell size, only the number of low-
order bits corresponding to character size are transferred.

See: 3.3.3.1 Address alignment

6.1.0860 C, “c-comma” CORE
(char--)

Reserve space for one character in the data space andhstoirethe space. If the data-space
pointer is character aligned whén begins execution, it will remain character aligned when
C, finishes execution. An ambiguous condition exists if the data-space pointer is not
character-aligned prior to execution®f.

See: 3.3.3 Data spacge3.3.3.1 Address alignment

6.1.0870 C@ “c-fetch” CORE
(c-addr-- char)

Fetch the character storedcaaddr. When the cell size is greater than character size, the
unused high-order bits are all zeroes.

See: 3.3.3.1 Address alignment

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 35

6.1.0880

6.1.0890

6.1.0895

6.1.0897

6.1.0898

6.1.0950

CELL+ “cell-plus” CORE
(a-addr; -- a-addr,)
Add the size in address units of a celataddr;, giving a-addr,.

See: 3.3.3.1 Address alignment

CELLS CORE
(ng--ny)

n, is the size in address unitsrgfcells.

CHAR “char” CORE

(“<spaces>name-- char)

Skip leading space delimiters. Pansanedelimited by a space. Put the value of its first
character onto the stack.

See: 3.4.1 Parsing 6.1.2520[CHAR] .

CHAR+ “char-plus” CORE
(c-addr; -- c-addr,)
Add the size in address units of a characteraddr;, giving c-addr,.

See: 3.3.3.1 Address alignment

CHARS “chars” CORE
(ng--ny)

n, is the size in address unitsrgfcharacters.

CONSTANT CORE

(x “<spaces>namke--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below.

nameis referred to as a “constant.”

nameExecution: (--X)

Placex on the stack.

See: 3.4.1 Parsing

Page 36 X3J14 dpANS-6 Document

6.1.0980 COUNT CORE
(c-addr -- c-addr, u)
Return the character string specification for the counted string stoceadal;. c-addr, is
the address of the first character afteaddr;,. u is the contents of the charactecaddr,
which is the length in characters of the string-atdr,.

6.1.0990 CR “c-r” CORE
()

Cause subsequent output to appear at the beginning of the next line.

6.1.1000 CREATE CORE

(“<spaces>name--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame

with the execution semantics defined below. If the data-space pointer is not aligned, reserve
enough data space to align it. The new data-space pointer defmés data field. CREATE

does not allocate data spacenames data field.

nameExecution: (-- a-addr)

a-addris the address afamés data field. The execution semanticsyxamemay be extended
by usingDOES>

See: 3.3.3 Data space6.1.1250D0ES>

6.1.1170 DECIMAL CORE
()

Set the numeric conversion radix to ten (decimal).

6.1.1200 DEPTH CORE
(--+n)
+n is the number of single-cell values contained in the data stack b&fevas placed on the
stack.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 37

6.1.1240 DO CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --do-sys)

Placedo-sysonto the control-flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consudwesyssuch
asLOOPR

Run-time: (ny|u; nolu, --) (R: --loop-sys)

Set up loop control parameters with indgju, and limitn,|u;. An ambiguous condition
exists ifn u; andn,|u, are not both the same type. Anything already on the return stack
becomes unavailable until the loop-control parameters are discarded.

See: 3.2.3.2 Control-flow stack 6.1.0140+LOOP 6.1.1800LOOP

6.1.1250 DOES> “does” CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: colon-sys -- colon-sys)

Append the run-time semantics below to the current definition. Whether or not the current
definition is rendered findable in the dictionary by the compilatioD@ES>is

implementation defined. Consuroelon-sys and produceolon-sys. Append the initiation
semantics given below to the current definition.

Run-time: (--) (R:nest-syg--)

Replace the execution semantics of the most recent definition, referredaimasvith the
nameexecution semantics given below. Return control to the calling definition specified by
nest-sys. An ambiguous condition existsriimewas not defined witCREATEor a user-
defined word that callEREATE

Initiation: (i*x -- i*x a-addr) (R: --nest-sys)

Save implementation-dependent informati@st-sys about the calling definition. Place
names data field address on the stack. The stack effectepresent arguments rame

nameExecution: (i*X -- j*x)

Execute the portion of the definition that begins with the initiation semantics appended by the
DOES>which modifiedname The stack effecti$x andj*x represent arguments to and
results fromname respectively.

See: 6.1.1000CREATE

6.1.1260 DROP CORE
(x-)

Removex from the stack.

Page 38 X3J14 dpANS-6 Document

6.1.1290 DUP “dupe” CORE
(x--xx)

Duplicatex.

6.1.1310 ELSE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:orig, -- orig,)

Put the location of a new unresolved forward referamigg onto the control flow stack.

Append the run-time semantics given below to the current definition. The semantics will be
incomplete untilorig,, is resolved (e.g., byHEN. Resolve the forward referencgg, using

the location following the appended execution semantics.

Run-time: (--)
Continue execution at the location given by the resolutiarigs.

See: 6.1.1700F , 6.1.2270THEN

6.1.1320 EMIT CORE
(x-)

If xis a graphic character in the implementation-defined character set, displag effect of
EMIT for all other values af is implementation-defined.

When passed a character whose character-defining bits have a value between hex 20 and 7E
inclusive, the corresponding standard character, specifiddLt8:1 Graphic charactersis
displayed. Because different output devices can respond differently to control characters,
programs that use control characters to perform specific functions have an environmental
dependency. EadBMIT deals with only one character.

See: 6.1.2310TYPE

6.1.1345 ENVIRONMENT? “environment-query” CORE

(c-addru -- false| i*x true)

c-addris the address of a character string amglthe string’s character count.may have a
value in the range from zero to an implementation-defined maximum which shall not be less
than 31. The character string should contain a keyword 3@6 Environmental queriesor

the optional word sets to be checked for correspondence with an attribute of the present
environment. If the system treats the attribute as unknown, the returnedfélisg is

otherwise, the flag isue and tha*x returned is of the type specified in the table for the
attribute queried.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 39

6.1.1360 EVALUATE CORE

(i*x c-addru -- j*x)

Save the current input source specification. Store minus-one EQURCE-IDIf it is

present. Make the string describeddsgddrandu both the input source and input buffer, set
>IN to zero, and interpret. When the parse area is empty, restore the prior input source
specification. Other stack effects are due to the WextSLUATH.

6.1.1370 EXECUTE CORE

See:

6.1.1380 EXIT

Interpretation:

Execution:

See:

6.1.1540 FILL

6.1.1550 FIND

See:

(i*x xt--j*x)

Removext from the stack and perform the semantics identified by it. Other stack effects are
due to the wordEXECUTH.

6.1.0070 , 6.1.2510[]

CORE
Interpretation semantics for this word are undefined.
(--) (R:nest-sys-)

Return control to the calling definition specifieditgst-sys Before executingXIT within a
do-loop, a program shall discard the loop-control parameters by exedhir@OP

3.2.3.3 Return stack6.1.2380UNLOOP

CORE

(c-addruchar--)

If uis greater than zero, starkar in each oiu consecutive characters of memory beginning at
c-addr.

CORE
(c-addr--c-addrO | xt1 | xt-1)

Find the definition named in the counted string-addr. If the definition is not found, return
c-addrand zero. If the definition is found, return its execution tokerif the definition is
immediate, also return one (1), otherwise also return minus-one (-1). For a given string, the
values returned blfIND while compiling may differ from those returned while not compiling.

3.4.2 Finding definition namesA.6.1.0070 , A.6.1.2510['] , A.6.1.2033POSTPONE
D.6.7 Immediacy

Page 40 X3J14 dpANS-6 Document
6.1.1561 FM/MOD “f-m-slash-mod” CORE
(dyng--nyng)
Divide d; by n;, giving the floored quotient; and the remainder,. Input and output stack
arguments are signed. An ambiguous condition existsi#f zero or if the quotient lies
outside the range of a single-cell signed integer.
See: 3.2.2.1 Integer division 6.1.2214SM/REM 6.1.2370UM/MOD
6.1.1650 HERE CORE
(--addr)
addris the data-space pointer.
See: 3.3.3.2 Contiguous regions
6.1.1670 HOLD CORE
(char--)
Add char to the beginning of the pictured numeric output string. An ambiguous condition
exists ifHOLDexecutes outside of<# #> delimited number conversion.
6.1.1680 | CORE
Interpretation: Interpretation semantics for this word are undefined.
Execution: (--nju) (R: loop-sys-- loop-sys)
nju is a copy of the current (innermost) loop index. An ambiguous condition exists if the loop
control parameters are unavailable.
6.1.1700 IF CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --orig)
Put the location of a new unresolved forward referamigeonto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete untibrig is resolved, e.g., byHENor ELSE
Run-time: (x--)
If all bits of x are zero, continue execution at the location specified by the resolutig.of
See: 3.2.3.2 Control flow stack 6.1.1310ELSE, 6.1.2270THEN

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 41

6.1.1710 IMMEDIATE CORE

()

Make the most recent definition an immediate word. An ambiguous condition exists if the
most recent definition does not have a name.

See: D.6.7 Immediacy.
6.1.1720 INVERT CORE
(X -=%)
Invert all bits ofx;, giving its logical inverse,.
See: 6.1.1910NEGATEG6.1.02700=.
6.1.1730 J CORE
Interpretation: Interpretation semantics for this word are undefined.
Execution: (--nju) (R:loop-sys-- loop-sys)
nju is a copy of the index of the next outer loop. An ambiguous condition exists if the loop
control parameters of the next outer loop are unavailable.
6.1.1750 KEY CORE
(--char)
Receive one charactehar, a member of the implementation-defined character set. Keyboard
events that do not correspond to such characters are discarded until a valid character is
received, and those events are subsequently unavailable.
All standard characters can be received. Characters receixdeMare not displayed.
Any standard character returnedKilgY has the numeric value specified3ri.2.1 Graphic
characters Programs that require the ability to receive control characters have an
environmental dependency.
See: 10.6.2.1307FEKEY, 10.6.1.175KEY?.
6.1.1760 LEAVE CORE
Interpretation: Interpretation semantics for this word are undefined.
Execution: (--) (R:loop-sys--)
Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically enclosing
DO ... LOOP orDO ... +LOOP
See: 3.2.3.3 Return stack6.1.0140+LOOR 6.1.1800LOOR

Page 42

X3J14 dpANS-6 Document

6.1.1780 LITERAL CORE

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (x--)

Append the run-time semantics given below to the current definition.

Run-time: (--x)

6.1.1800 LOOP

Placex on the stack.

CORE

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C:do-sys-)

Append the run-time semantics given below to the current definition. Resolve the destination
of all unresolved occurrencesldEAVEbetween the location given lbip-sysand the next
location for a transfer of control, to execute the words followind @@P

Run-time: (--) (R: loop-sys -- |loop-sys)
An ambiguous condition exists if the loop control parameters are unavailable. Add one to the
loop index. If the loop index is then equal to the loop limit, discard the loop parameters and
continue execution immediately following the loop. Otherwise continue execution at the
beginning of the loop.
See: 6.1.1240DQ 6.1.16801 , 6.1.1760LEAVE

6.1.1805 LSHIFT “I-shift” CORE
(X u--x,)
Perform a logical left shift afi bit-places orx;, givingx,. Put zero into the least significant
bits vacated by the shift. An ambiguous condition exisissfgreater than or equal to the
number of bits in a cell.

6.1.1810 M* “m-star” CORE
(ngny,--d)
dis the signed product of timesn,.

6.1.1870 MAX CORE
(ngny--n3)
ns is the greater afi; andn,.

6.1.1880 MIN CORE

(nyny--ng)

ng is the lesser afi; andn,.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 43

6.1.1890 MOD CORE
(nyny--ng)

Divide n; by n,, giving the single-cell remaindeg. An ambiguous condition existsni§ is

zero. Ifn; andn, differ in sign, the implementation-defined result returned will be the same
as that returned by either the phrag&&S>D R> FM/MOD DROP or the phraseR S>D

R> SM/REM DROR

See: 3.2.2.1 Integer division

6.1.1900 MOVE CORE
(addr; addr, u --)

If uis greater than zero, copy the contents obnsecutive address unitsaaldr, to theu
consecutive address unitsaaldr,. After MOVEcompletes, the consecutive address units at
addr, contain exactly what the consecutive address unitsaaidr, contained before the move.

See: 17.6.1.091CMOVEL7.6.1.092CMOVE>

6.1.1910 NEGATE CORE
(ng--ny)
Negaten,, giving its arithmetic inverse,.

See: 6.1.1720INVERT, 6.1.02700=.

6.1.1980 OR CORE
(Xg X5 - X3)

X3 is the bit-by-bit inclusive-or af; with x,.

6.1.1990 OVER CORE
(Xq Xg == Xq X5 %q)

Place a copy of; on top of the stack.

6.1.2033 POSTPONE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“<spaces>namke--)

Skip leading space delimiters. Pansanedelimited by a space. Fiméme Append the
compilation semantics afameto the current definition. An ambiguous condition exists if
nameis not found.

See: 3.4.1 Parsing

Page 44 X3J14 dpANS-6 Document

6.1.2050 QUIT CORE
(=) (Riix =)

Empty the return stack, store zerd(S®URCE-IDIf it is present, make the user input device
the input source, and enter interpretation state. Do not display a message. Repeat the
following:

— Accept a line from the input source into the input buffer>B¢tto zero, and interpret.

— Display the implementation-defined system prompt if in interpretation state, all
processing has been completed, and no ambiguous condition exists.

See: 3.4 The Forth text interpreter.

6.1.2060 R> “r-from” CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (--x) (R: x--)
Move x from the return stack to the data stack.

See: 3.2.3.3 Return stack6.1.0580>R, 6.1.2070R@6.2.03402>R, 6.2.04102R>, 6.2.04152R@

6.1.2070 R@ “r-fetch” CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (--x) (R: x--X)
Copyx from the return stack to the data stack.

See: 3.2.3.3 Return stack6.1.0580>R, 6.1.2060R>, 6.2.03402>R, 6.2.04102R>, 6.2.04152R@

6.1.2120 RECURSE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (--)

Append the execution semantics of the current definition to the current definition. An
ambiguous condition existsRECURSEppears in a definition aft&lOES>

See: 6.1.1250D0ES>6.1.2120RECURSE

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 45

6.1.2140 REPEAT CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:orig dest--)
Append the run-time semantics given below to the current definition, resolving the backward
referencadest Resolve the forward referencgg using the location following the appended
execution semantics.
Run-time: (--)
Continue execution at the location givend®st
See: 6.1.0760BEGIN, 6.1.2430WHILE

6.1.2160 ROT “rote” CORE
(X %o X3 == X9 X3 %1)
Rotate the top three stack entries.

6.1.2162 RSHIFT “r-shift” CORE
(X u--x,)
Perform a logical right shift af bit-places orx,, givingx,. Put zero into the most significant
bits vacated by the shift. An ambiguous condition exisissfgreater than or equal to the
number of bits in a cell.

6.1.2165 S" “s-quote” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc<quote¥ --)
Parsecccdelimited by" (double-quote). Append the run-time semantics given below to the
current definition.
Run-time: (-- c-addru)
Returnc-addrandu describing a string consisting of the characters A program shall not
alter the returned string.
See: 3.4.1 Parsing 6.2.0855C", 11.6.1.2165".
6.1.2170 S>D “s-to-d” CORE

(n--d)

Convert the number to the double-cell numberwith the same numerical value.

Page 46 X3J14 dpANS-6 Document

6.1.2210 SIGN CORE
(n--)
If nis negative, add a minus sign to the beginning of the pictured numeric output string. An
ambiguous condition exists#IGN executes outside of<# #> delimited number
conversion.

6.1.2214 SM/REM “s-m-slash-rem” CORE
(dyng--nyng)

Divide d; by n;, giving the symmetric quotient and the remainder,. Input and output
stack arguments are signed. An ambiguous condition existssizero or if the quotient lies
outside the range of a single-cell signed integer.

See: 3.2.2.1 Integer division 6.1.1561 FM/MOD6.1.2370 UM/MOD

6.1.2216 SOURCE CORE
(--c-addru)

c-addris the address of, ands the number of characters in, the input buffer.

6.1.2220 SPACE CORE
()

Display one space.

6.1.2230 SPACES CORE
(n--)

If nis greater than zero, displayspaces.

6.1.2250 STATE CORE
(-- a-addr)

a-addris the address of a cell containing the compilation-state 88 TEis true when in
compilation state, false otherwise. The true valU8TIATEIs non-zero, but is otherwise
implementation-defined. Only the following standard words alter the valiEATE :
(colon),; (semicolon) ABORTQUIT, :NONAME][(left-bracket), and (right-bracket).

Note: A program shall not directly alter the contentSSGATE
See: 3.4 The Forth text interpreter, 6.1.0450: , 6.1.0460; , 6.1.0670ABORT 6.1.2050QUIT,
6.1.250(] , 6.1.254(] , 6.2.0455:NONAME 15.6.2.225(5TATE
6.1.2260 SWAP CORE
(X X == X3 %q)

Exchange the top two stack items.

Collating Sequence: '"#3$% & '() *+,-./digits: ;<=>? @ ALPHA[\]~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 47

6.1.2270 THEN

Interpretation:

Compilation:

Run-time:

See:

6.1.2310 TYPE

See:

6.1.2320 U.

6.1.2340 U<

See:

6.1.2360 UM*

CORE
Interpretation semantics for this word are undefined.
(C:orig --)

Resolve the forward referenoeg using the location of the execution semantics. Append the
run-time semantics given below to the current definition.

(-)
Continue execution.

6.1.1310ELSE, 6.1.1700F .

CORE
(c-addru--)

If uis greater than zero, display the character string specifieehtgrandu.

When passed a character in a character string whose character-defining bits have a value
between hex 20 and 7E inclusive, the corresponding standard character, spe@ified. by

graphic characters is displayed. Because different output devices can respond differently to
control characters, programs that use control characters to perform specific functions have an
environmental dependency.

6.1.1320EMIT.

“u-dot” CORE
(u--)
Displayu in free field format.

“u-less-than” CORE

(uqu,--flag)
flag is true if and only iti; is less thani,.

6.1.0480<.

“u-m-star” CORE
(uq Uy --ud)

Multiply u; by u,, giving the unsigned double-cell product All values and arithmetic are
unsigned.

Page 48 X3J14 dpANS-6 Document

6.1.2370 UM/MOD “u-m-slash-mod” CORE
(uduy --u,ug)

Divide ud by u,, giving the quotienti; and the remainder,. All values and arithmetic are
unsigned. An ambiguous condition exists,ifis zero or if the quotient lies outside the range
of a single-cell unsigned integer.

See: 3.2.2.1 Integer division 6.1.1561FM/MOD6.1.2214SM/REM

6.1.2380 UNLOOP CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (--) (R:loop-sys-)

Discard the loop-control parameters for the current nesting levelUNLIOORs required for
each nesting level before the definition mayEXdT ed. An ambiguous condition exists if the
loop-control parameters are unavailable.

See: 3.2.3.3 Return stack

6.1.2390 UNTIL CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:dest--)

Append the run-time semantics given below to the current definition, resolving the backward
referencedest

Run-time: (x--)
If all bits of x are zero, continue execution at the location specifiedkely

See: 6.1.0760BEGIN.

6.1.2410 VARIABLE CORE

(“<spaces>name--)

Skip leading space delimiters. Pansgnedelimited by a space. Create a definitionrfame
with the execution semantics defined below. Reserve one cell of data space at an aligned
address.

nameis referred to as a “variable”.
nameExecution: (-- a-addr)

a-addris the address of the reserved cell. A program is responsible for initializing the
contents of the reserved cell.

See: 3.4.1 Parsing

Collating Sequence: ' "#$% &' () *+,-./digits: ; <=>?2 @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 49

6.1.2430 WHILE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: dest-- orig dest)

Put the location of a new unresolved forward refere@migeonto the control flow stack, under
the existingdest Append the run-time semantics given below to the current definition. The
semantics are incomplete undiig anddestare resolved (e.g., IREPEAT.

Run-time: (x--)

If all bits of x are zero, continue execution at the location specified by the resolutig.of

6.1.2450 WORD CORE

(char“<chars>ccc<char>" -- c-addr)

Skip leading delimiters. Parse charactarsdelimited bychar. An ambiguous condition
exists if the length of the parsed string is greater than the implementation-defined length of a
counted string.

c-addris the address of a transient region containing the parsed word as a counted string. If
the parse area was empty or contained no characters other than the delimiter, the resulting
string has a zero length. A space, not included in the length, follows the string. A program
may replace characters within the string.

Note: The requirement to follow the string with a space is obsolescent and is included as a
concession to existing programs that G&NVERT A program shall not depend on the
existence of the space.

See: 3.3.3.6 Other transient regions3.4.1 Parsing

6.1.2490 XOR “x-or” CORE
(Xg X5 - X3)

X3 is the bit-by-bit exclusive-or of; with x,.

6.1.2500 [“left-bracket” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: Perform the execution semantics given below.
Execution: (--)
Enter interpretation statd. is an immediate word.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation 6.1.2540Q] .

Page 50 X3J14 dpANS-6 Document

6.1.2510 T[] “bracket-tick” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“<spaces>namk--)

Skip leading space delimiters. Pansenedelimited by a space. Fimme Append the run-
time semantics given below to the current definition.

An ambiguous condition existsnameis not found.
Run-time: (--xt)

Placenamés execution tokemt on the stack. The execution token returned by the compiled
phrase [] X " is the same value returned bByX' ” outside of compilation state.

See: 3.4.1 ParsingA.6.1.0070 , A.6.1.2033POSTPONHD.6.7 Immediacy

6.1.2520 [CHAR] “bracket-char” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“<spaces>namk--)

Skip leading space delimiters. Pansenedelimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (--char)
Placechar, the value of the first charactermdme on the stack.

See: 3.4.1 Parsing 6.1.0895CHAR

6.1.2540 | “right-bracket” CORE
()
Enter compilation state.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation 6.1.2500 .

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 51

6.2 Core extension words

6.2.0060 #TIB

Note:

6.2.0200 (

Compilation:

Execution:

See:

6.2.0210 .R

6.2.0260 0<>

6.2.0280 0>

6.2.0340 2>R

Interpretation:

Execution:

See:

“number-t-i-b” CORE EXT
(--a-addr)
a-addris the address of a cell containing the number of characters in the terminal input buffer.

This word is obsolescent and is included as a concession to existing implementations.

“dot-paren” CORE EXT

Perform the execution semantics given below.
(“cce<parenx --)
Parse and displagccdelimited by a right parenthesis™ .(is an immediate word.

3.4.1 Parsing 6.1.0190." .

“dot-r” CORE EXT
(nyny--)

Displayn, right aligned in a fieldh, characters wide. If the number of characters required to
displayn, is greater than,, all digits are displayed with no leading spaces in a field as wide
as necessary.

“zero-not-equals” CORE EXT
(x--flag)

flag is true if and only ik is not equal to zero.

“zero-greater” CORE EXT
(n--flag)

flag is true if and only ih is greater than zero.

“two-to-r” CORE EXT
Interpretation semantics for this word are undefined.
(X1 %5 =) (R: ==Xy %)
Transfer cell paik; x, to the return stack. Semantically equivalerSWWAP >R >R.

3.2.3.3 Return stack6.1.0580>R, 6.1.2060R>, 6.1.2070R@6.2.04102R>, 6.2.04152R@

Page 52 X3J14 dpANS-6 Document

6.2.0410 2R> “two-r-from” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (--X;X5) (R Xy Xy =)
Transfer cell paix; x, from the return stack. Semantically equivaleriRtoR> SWAP.

See: 3.2.3.3 Return stack6.1.0580>R, 6.1.2060R>, 6.1.2070R@6.2.03402>R, 6.2.04152R@

6.2.0415 2R@ “two-r-fetch” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (--X; X5) (R Xy Xy == Xq X5)

Copy cell pairx; X, from the return stack. Semantically equivalent to
R> R> 2DUP >R >R SWAP .

See: 3.2.3.3 Return stack6.1.0580>R, 6.1.2060R>, 6.1.2070R@6.2.03402>R, 6.2.04102R>.

6.2.0455 :NONAME “colon-no-name” CORE EXT
(C: --colon-sys) (S: --xt)

Create an execution toket) enter compilation state and start the current definition,
producingcolon-sys Append the initiation semantics given below to the current definition.

The execution semantics xifwill be determined by the words compiled into the body of the
definition. This definition can be executed later by usintgXECUTE

If the control-flow stack is implemented using the data steakn-sysshall be the topmost
item on the data stack. S8&.3.2 Control-flow stack

Initiation: (i*x --i*x) (R: --nest-sy9

Save implementation-dependent informatn@st-sysabout the calling definition. The stack
effectsi*x represent argumentsxb

xt Execution: (i*x --j*x)
Execute the definition specified By, The stack effecti$x andj*x represent arguments to
and results fromxt, respectively.
6.2.0500 <> “not-equals” CORE EXT
(%1 %, --flag)

flag is true if and only ik, is not bit-for-bit the same as.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document

Page 53

6.2.0620 ?DO

Interpretation:

Compilation:

Run-time:

See:

6.2.0700 AGAIN

Interpretation:

Compilation:

Run-time:

See:

6.2.0855 C"

Interpretation:

Compilation:

Run-time:

See:

“question-do” CORE EXT

Interpretation semantics for this word are undefined.
(C: --do-sys)

Putdo-sysonto the control-flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consudeesydsuch
asLOOR

(nqJug noJu, --) (R: -~ |loop-sys)

If n,|u, is equal tan,|u,, continue execution at the location given by the consumeo-slys
Otherwise set up loop control parameters with inggx, and limitn,|u; and continue

executing immediately followin@DQ Anything already on the return stack becomes
unavailable until the loop control parameters are discarded. An ambiguous condition exists if
ny|u; andn,|u, are not both of the same type.

3.2.3.2 Control-flow stack 6.1.0140+LOOR 6.1.1240DQ 6.1.16801 , 6.1.1760LEAVE
6.1.1800LOOR 6.1.2380UNLOOP

CORE EXT
Interpretation semantics for this word are undefined.
(C:dest--)

Append the run-time semantics given below to the current definition, resolving the backward
referencedest

()

Continue execution at the location specifieddlegt If no other control flow words are used,
any program code aft&«GAIN will not be executed.

6.1.0760BEGIN.

“c-quote” CORE EXT
Interpretation semantics for this word are undefined.
(“cce<quote --)

Parsecccdelimited by" (double-quote) and append the run-time semantics given below to the
current definition.

(-- c-addr)

Returnc-addr, a counted string consisting of the charaoters A program shall not alter the
returned string.

3.4.1 Parsing6.1.21655", 11.6.1.2165".

Page 54 X3J14 dpANS-6 Document

6.2.0873 CASE CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --case-sy3

Mark the start of th€ASE ... OF ... ENDOF ... ENDCASE structure. Append the
run-time semantics given below to the current definition.

Run-time: (--)
Continue execution.

See: 6.2.1342ENDCASE6.2.1343ENDOF-6.2.19500F

6.2.0945 COMPILE, “compile-comma” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.
Execution: (xt--)
Append the execution semantics of the definition representgttbyhe execution semantics

of the current definition.

6.2.0970 CONVERT CORE EXT
(ud, c-addr; -- ud, c-addr,)

ud, is the result of converting the characters within the text beginning at the first character
afterc-addr, into digits, using the number BASE and adding each digit tad; after
multiplying ud; by the number iBBASE Conversion continues until a character that is not
convertible is encounterea-addr, is the location of the first unconverted character. An
ambiguous condition existsufd, overflows.

Note: This word is obsolescent and is included as a concession to existing implementations. Its
function is superseded Iy1.0570>NUMBER

See: 3.2.1.2 Digit conversion

6.2.1342 ENDCASE “end-case” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C:case-sys-)

Mark the end of th€ASE ... OF ... ENDOF ... ENDCASE structure. Usease-sys
to resolve the entire structure. Append the run-time semantics given below to the current
definition.

Run-time: (x--)
Discard the case selectoand continue execution.

See: 6.2.0873CASE 6.2.1343ENDOF6.2.19500F,

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 55

6.2.1343 ENDOF “end-of” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:case-sygof-sys-- case-sys)
Mark the end of the. OF ... ENDOF ... part of theCASEstructure. The next
location for a transfer of control resolves the reference giveri-bys Append the run-time
semantics given below to the current definition. Reptase-sygwith case-syson the
control-flow stack, to be resolved BNDCASE
Run-time: (--)
Continue execution at the location specified by the consuneasetsys
See: 6.2.0873CASE 6.2.1342ENDCASE6.2.19500F
6.2.1350 ERASE CORE EXT
(addru--)
If uis greater than zero, clear all bits in each obnsecutive address units of memory
beginning atddr .
6.2.1390 EXPECT CORE EXT
(c-addr+n --)
Receive a string of at mosh characters. Display graphic characters as they are received. A
program that depends on the presence or absence of non-graphic characters in the string has
an environmental dependency. The editing functions, if any, that the system performs in order
to construct the string of characters are implementation-defined.
Input terminates when an implementation-defined line terminator is received or when the
string is+n characters long. When input terminates, nothing is appended to the string and the
display is maintained in an implementation-defined way.
Store the string at-addrand its length iIrsPAN
Note: This word is obsolescent and is included as a concession to existing implementations. Its
function is superseded Iy1.0695ACCEPT
6.2.1485 FALSE CORE EXT
(--false)
Return &alseflag.
See: 3.1.3.1 Flags
6.2.1660 HEX CORE EXT
(--)

Set contents dBASEto sixteen.

Page 56 X3J14 dpANS-6 Document

6.2.1850 MARKER CORE EXT

(“<spaces>name--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below.

nameExecution: (--)

Restore all dictionary allocation and search order pointers to the state they had just prior to the
definition ofname Remove the definition afameand all subsequent definitions. Restoration

of any structures still existing that could refer to deleted definitions or deallocated data space

is not necessarily provided. No other contextual information such as numeric base is affected.

See: 3.4.1 Parsing 15.6.2.1580FORGET

6.2.1930 NIP CORE EXT
(Xg X5 = X5)

Drop the first item below the top of stack.

6.2.1950 OF CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --of-sys)

Putof-sysonto the control flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consuofierys§uch
asENDOF

Run-time: (X; X == [X{)

If the two values on the stack are not equal, discard the top value and continue execution at the
location specified by the consumeradfsys e.g., following the neXENDOF Otherwise,
discard both values and continue execution in line.

See: 6.2.0873CASE 6.2.1342ENDCASEG.2.1343ENDOF

6.2.2000 PAD CORE EXT
(-- c-addr)

c-addris the address of a transient region that can be used to hold data for intermediate
processing.

See: 3.3.3.6 Other transient regions

Collating Sequence: ' "#$% &' () *+,-./digits: ; <=>?2 @ ALPHA[\]"_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 57

6.2.2008 PARSE CORE EXT

(char*“ccc<char>" -- c-addru)
Parsecccdelimited by the delimitechar.

c-addris the address (within the input buffer) ant the length of the parsed string. If the
parse area was empty, the resulting string has a zero length.

See: 3.4.1 Parsing

6.2.2030 PICK CORE EXT
(Xy oo Xy Xg U ==X oo X X9 X,)
Removeu. Copy thex, to the top of the stack. An ambiguous condition exists if there are less
thanu+2 items on the stack befoR#CK is executed.
6.2.2040 QUERY CORE EXT
(--)
Make the user input device the input source. Receive input into the terminal input buffer,
replacing any previous contents. Make the result, whose address is retufiiBd Hye input
buffer. SetIN to zero.
Note: This word is obsolescent and is included as a concession to existing implementations.
6.2.2125 REFILL CORE EXT
(--flag)
Attempt to fill the input buffer from the input source, returning a true flag if successful.
When the input source is the user input device, attempt to receive input into the terminal input
buffer. If successful, make the result the input buffer>Bétto zero, and returtiue.
Receipt of a line containing no characters is considered successful. If there is no input
available from the current input source, retiaise
When the input source is a string fr&tALUATE returnfalseand perform no other action.
See: 7.6.2.212REFILL, 11.6.2.212REFILL .
6.2.2148 RESTORE-INPUT CORE EXT

(X, ...Xy n--flag)

Attempt to restore the input source specification to the state describgdnsgughx,,. flagis
true if the input source specification cannot be so restored.

An ambiguous condition exists if the input source represented by the arguments is not the
same as the current input source.

See: A.6.2.2182SAVE-INPUT.

Page 58 X3J14 dpANS-6 Document

6.2.2150 ROLL CORE EXT

(Xy Xyeq - X U == Xyoq -+ X9 X)

Removeu. Rotateu+1 items on the top of the stack. An ambiguous condition exists if there

are less than+2 items on the stack befoROLLIis executed.

6.2.2182 SAVE-INPUT CORE EXT
(= Xy --x n)
X; throughx,, describe the current state of the input source specification for later use by
RESTORE-INPUT

6.2.2218 SOURCE-ID “source-i-d” CORE EXT
(-01]-1)

Identifies the input source as follows:

SOURCE-ID Input source
-1 String (viaEVALUATE
0 User input device

See: 11.6.1.22180URCE-ID

6.2.2240 SPAN CORE EXT
(-- a-addr)

a-addris the address of a cell containing the count of characters stored by the last execution of

EXPECT

Note: This word is obsolescent and is included as a concession to existing implementations.

6.2.2290 TIB “t-i-b” CORE EXT
(-- c-addr)
c-addris the address of the terminal input buffer.

Note: This word is obsolescent and is included as a concession to existing implementations.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 59

6.2.2295

TO

CORE EXT

Interpretation: (x “<spaces>namke--)

Skip leading spaces and parsemedelimited by a space. Staxén name An ambiguous
condition exists ihamewas not defined by ALUE

Compilation: (“<spaces>name--)
Skip leading spaces and parsemedelimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition existarifewas not defined
by VALUE
Run-time: (x--)
Storex in name
Note: An ambiguous condition exists if eitheOSTPONBr [COMPILE] is applied torQ.
See: 6.2.2405VALUE 13.6.1.2295TQ
6.2.2298 TRUE CORE EXT
(--true)
Return arue flag, a single-cell value with all bits set.
See: 3.1.3.1 Flags
6.2.2300 TUCK CORE EXT
(X X ==X X1 X5)
Copy the first (top) stack item below the second stack item.
6.2.2330 U.R “u-dot-r” CORE EXT
(un--)
Displayu right aligned in a fielah characters wide. If the number of characters required to
displayu is greater than, all digits are displayed with no leading spaces in a field as wide as
necessary.
6.2.2350 U> “u-greater-than” CORE EXT
(uqu,--flag)
flag is true if and only iti; is greater than,,.
See: 6.1.0540>.
6.2.2395 UNUSED CORE EXT
(--u)

u is the amount of space remaining in the region addressd&Ri£, in address units.

Page 60 X3J14 dpANS-6 Document

6.2.2405 VALUE CORE EXT

(x “<spaces>namke--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below, with an initial value equal to

nameis referred to as a “value”.
nameExecution: (--X)

Placex on the stack. The value »fs that given whenamewas created, until the phrase
TO name is executed, causing a new valuxob be associated wittame

See: 3.4.1 Parsing

6.2.2440 WITHIN CORE EXT

Perform a comparison of a test vahygu, with a lower limitn,|u, and an upper limit,|us,

returningtrue if either (,Ju,<nsjus and (,|u,<=n;|u; andnJu;<nsjus)) or (,Ju,>n5Juy and
(n,Ju,<=n,|u; ornq|u;<nglug)) is true, returnindalseotherwise. An ambiguous condition
exists ifny|u;, nolu,, andnsju, are not all the same type.

6.2.2530 [COMPILE] “bracket-compile” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“<spaces>namk--)

Skip leading space delimiters. Pansenedelimited by a space. Fimhme If namehas
other than default compilation semantics, append them to the current definition; otherwise
append the execution semantichiafne An ambiguous condition existsnémeis not found.

See: 3.4.1 Parsing

6.2.2535 \ “packslash” CORE EXT

Compilation: Perform the execution semantics given below.
Execution: (“ccc<eol>’--)
Parse and discard the remainder of the parse ar@aan immediate word.

See: 7.6.2.2538.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 61

7. The optional Block word set

7.1 Introduction

7.2 Additional terms
block: 1024 characters of data on mass storage, designated by a block number.

block buffer: a block-sized region of data space where a block is made temporarily available for use.
The current block buffer is the block buffer most recently accessBH®CK BUFFER LOAD LIST , or
THRU

7.3 Additional usage requirements

7.3.1 Environmental queries
Append table 7.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 7.1 - Environmental Query Strings

String Value data type Constant? Meaning
BLOCK flag no block word set present
BLOCK-EXT flag no block extensions word set present

7.3.2 Data space
A program may access memory within a valid block buffer.
See: 3.3.3 Data Space

7.3.3 Block buffer regions

The address of a block buffer returnedBiyOCKor BUFFERIs transient. A call tBLOCKor BUFFER
may render a previously-obtained block-buffer address invalid, as may a call to any word that:

— parses:

— displays characters on the user output device, sucYiRiEor EMIT;

— controls the user output device, suciCBRer AT-XY;;

— receives or tests for the presence of characters from the user input deviceAsSLICERSor KEY,

— waits for a condition or event, such\dSor EKEY,

— manages the block buffers, suclFatlSH SAVE-BUFFERS or EMPTY-BUFFERS

— performs any operation on a file or file-name directory that implies 1/0, sSiRERIEL or any word
that returns aior;

implicitly performs I/O, such as text interpreter nesting and un-nesting when files are being used
(including un-nesting implied byHROYV

If the input source is a block, these restrictions also apply to the address retuBR@JREE

Block buffers are uniquely assigned to blocks.

Page 62 X3J14 dpANS-6 Document

7.3.4 Parsing

The Block word set implements an alternative input source for the text interpreter. When the input source
is a block BLK shall contain the non-zero block number and the input buffer is the 1024-character buffer
containing that block.

A block is conventionally displayed as 16 lines of 64 characters.

A program may switch the input source to a block by us@gDor THRU Input sources may be nested
usingLOADandEVALUATEN any order.

A program may reposition the parse area within a block by manipukifihg More extensive
repositioning can be accomplished usBAVE-INPUT andRESTORE-INPUT

See: 3.4.1 Parsing

7.3.5 Possible action on an ambiguous condition
See: 3.4.4 Possible action on an ambiguous condition

— A system with the Block word set may set interpretation state and interpret a block.
7.4 Additional documentation requirements
7.4.1 System documentation

7.4.1.1 Implementation-defined options

— the format used for display BY6.2.177QIST (if implemented);
— the length of a line affected By6.2.2533 (if implemented).

7.4.1.2 Ambiguous conditions

Correct block read was not possible;

I/0O exception in block transfer;

Invalid block number7(6.1.080BLOCK 7.6.1.082(BUFFER 7.6.1.1790_.OAD);
* A program directly alters the contents/#6.1.079(BLK;

* No current block buffer for.6.1.2400UPDATE

7.4.1.3 Other system documentation

— any restrictions a multiprogramming system places on the use of buffer addresses;
— the number of blocks available for source text and data.

7.4.2 Program documentation

— the number of blocks required by the program.
7.5 Compliance and labeling

7.5.1 ANS Forth systems

The phrase “Providing the Block word set” shall be appended to the label of any Standard System that
provides all of the Block word set.

The phrase “Providingamés) from the Block Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Block Extensions word set.

The phrase “Providing the Block Extensions word set” shall be appended to the label of any Standard
System that provides all of the Block and Block Extensions word sets.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 63

7.5.2 ANS Forth programs

The phrase “Requiring the Block word set” shall be appended to the label of Standard Programs that
require the system to provide the Block word set.

The phrase “Requiringamés) from the Block Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Block Extensions word set.

The phrase “Requiring the Block Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Block and Block Extensions word sets.

7.6 Glossary

7.6.1 Block words
7.6.1.0790 BLK “b-1-k” BLOCK
(--a-addr)

a-addris the address of a cell containing zero or the number of the mass-storage block being
interpreted. IBLK contains zero, the input source is not a block and can be identified by
SOURCE-ID if SOURCE-IDis available. An ambiguous condition exists if a program

directly alters the contents BLK.

See: 7.3.3 Block buffer regions

7.6.1.0800 BLOCK BLOCK
(u--a-addr)

a-addris the address of the first character of the block buffer assigned to mass-storage block
An ambiguous condition existsufis not an available block number.

If block u is already in a block buffea-addris the address of that block buffer.

If block u is not already in memory and there is an unassigned block buffer, transfeu block
from mass storage to an unassigned block buffeaddris the address of that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign a
block buffer. If the block in that buffer has bedRDATH, transfer the block to mass storage
and transfer block from mass storage into that buffex-addris the address of that block
buffer.

At the conclusion of the operation, the block buffer pointed ta-bgdris the current block
buffer and is assigned to

Page 64 X3J14 dpANS-6 Document

7.6.1.0820 BUFFER BLOCK
(u--a-addr)

a-addris the address of the first character of the block buffer assigned toublddke
contents of the block are unspecified. An ambiguous condition exists ifot an available
block number.

If block u is already in a block buffea-addris the address of that block buffer.

If block u is not already in memory and there is an unassigned baféetdris the address of
that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign a
block buffer. If the block in that buffer has bddRDATIH, transfer the block to mass storage.
a-addris the address of that block buffer.

At the conclusion of the operation, the block buffer pointed ta-bgdris the current block
buffer and is assigned to

See: 7.6.1.080BLOCK

7.6.1.1360 EVALUATE BLOCK
Extend the semantics 6f1.1360EVALUATEO include:

Store zero iBLK.

7.6.1.1559 FLUSH BLOCK
(--)
Perform the function dBAVE-BUFFERShen unassign all block buffers.

7.6.1.1790 LOAD BLOCK
(X u--j*x)

Save the current input-source specification. StdreBLK (thus making blocki the input

source and setting the input buffer to encompass its contents)Nsé&b zero, and interpret.
When the parse area is exhausted, restore the prior input source specification. Other stack
effects are due to the word®ALCed.

An ambiguous condition existsufis zero or is not a valid block number.

See: 3.4 The Forth text interpreter.

7.6.1.2180 SAVE-BUFFERS BLOCK
(--)
Transfer the contents of ead?DATH block buffer to mass storage. Mark all buffers as
unmodified.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 65

7.6.1.2400 UPDATE BLOCK
()

Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer.

UPDATHEoes not immediately cause 1/0.

See: 7.6.1.080BLOCK7.6.1.082(BBUFFER 7.6.1.155%LUSH 7.6.1.2180GAVE-BUFFERS

7.6.2 Block extension words

7.6.2.1330 EMPTY-BUFFERS BLOCK EXT
(--)
Unassign all block buffers. Do not transfer the contents ofJBYATH block buffer to mass
storage.

See: 7.6.1.080BLOCK

7.6.2.1770 LIST BLOCK EXT
(u--)
Display blocku in an implementation-defined format. Storen SCR

See: 7.6.1.080BLOCK

7.6.2.2125 REFILL BLOCK EXT
(--flag)
Extend the execution semantics6o?.2125REFILL with the following:

When the input source is a block, make the next block the input source and current input
buffer by adding one to the valueBifK and setting’IN to zero. Returtrue if the new value
of BLK is a valid block number, otherwitase

See: 6.2.2125REFILL, 11.6.2.212REFILL.

7.6.2.2190 SCR “s-c-1” BLOCK EXT
(-- a-addr)

a-addris the address of a cell containing the block number of the block most rdd&ftlgd.

7.6.2.2280 THRU BLOCK EXT
(X ug Uy =-j*x)

LOADthe mass storage blocks numbengthroughu, in sequence. Other stack effects are
due to the wordsOALed.

Page 66 X3J14 dpANS-6 Document

7.6.2.2535 \ “backslash” BLOCK EXT
Extend the semantics 6f1.2535\ to be:

Compilation: Perform the execution semantics given below.
Execution: (“ccc<eol>"--)

If BLK contains zero, parse and discard the remainder of the parse area; otherwise parse and
discard the portion of the parse area corresponding to the remainder of the currénidine.
an immediate word.

See: 6.2.2535\ .

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 67

8. The optional Double-Number word set

8.1 Introduction

Sixteen-bit Forth systems often use double-length numbers. However, many Forths on small embedded
systems do not, and many users of Forth on systems with a cell size of 32 bits or more find that the use of
double-length numbers is much diminished. Therefore, the words that manipulate double-length entities
have been placed in this optional word set.

8.2 Additional terms and notation

None.
8.3 Additional usage requirements

8.3.1 Environmental queries
Append table 8.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 8.1 - Environmental Query Strings

String Value data type Constant? Meaning
DOUBLE flag no double-number word set present
DOUBLE-EXT flag no double-number extensions word set present

8.3.2 Text interpreter input number conversion

When the text interpreter processes a number that is immediately followed by a decimal point and is not
found as a definition name, the text interpreter shall convert it to a double-cell number.

For example, enterinDECIMAL 1234 leaves the single-cell numb&234 on the stack,
and enterindECIMAL 1234. leaves the double-cell numb&234 0 on the stack.

See: 3.4.1.3 Text interpreter input number conversion
8.4 Additional documentation requirements
8.4.1 System documentation

8.4.1.1 Implementation-defined options

— no additional requirements.

8.4.1.2 Ambiguous conditions
* doutside range af in 8.6.1.114(MD>S

8.4.1.3 Other system documentation

— no additional requirements.

8.4.2 Program documentation

— no additional requirements.

Page 68 X3J14 dpANS-6 Document

8.5 Compliance and labeling

8.5.1 ANS Forth systems

The phrase “Providing the Double-Number word set” shall be appended to the label of any Standard
System that provides all of the Double-Number word set.

The phrase “Providingamés) from the Double-Number Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Double-Number Extensions word set.

The phrase “Providing the Double-Number Extensions word set” shall be appended to the label of any
Standard System that provides all of the Double-Number and Double-Number Extensions word sets.

8.5.2 ANS Forth programs

The phrase “Requiring the Double-Number word set” shall be appended to the label of Standard Programs
that require the system to provide the Double-Number word set.

The phrase “Requiringamés) from the Double-Number Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Double-Number Extensions
word set.

The phrase “Requiring the Double-Number Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Double-Number and Double-Number
Extensions word sets.

8.6 Glossary

8.6.1 Double-Number words
8.6.1.0360 2CONSTANT “two-constant” DOUBLE
(Xq X5 “<spaces>namte--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below.

nameis referred to as a “two-constant.”
nameExecution: (--X; X5)
Place cell paik; X, on the stack.

See: 3.4.1 Parsing

8.6.1.0390 Z2LITERAL “two-literal” DOUBLE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (X; X, --)
Append the run-time semantics below to the current definition.
Run-time: (--X; X5)

Place cell paik; X, on the stack.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 69

8.6.1.0440 2VARIABLE “two-variable” DOUBLE

nameExecution:

8.6.1.1040 D+

8.6.1.1050

8.6.1.1060

8.6.1.1070

8.6.1.1075

8.6.1.1080

See:

D-

D.R

DO<

DO=

(“<spaces>name--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below. Reserve two consecutive cells of data space.

nameis referred to as a “two-variable.”
(--a-addr)

a-addris the address of the first (lowest address) cell of two consecutive cells in data space
reserved b2VARIABLE when it definechame A program is responsible for initializing the
contents.

3.4.1 Parsing 6.1.2410VARIABLE.

“d-plus” DOUBLE
(dqJud; dy|ud, -- dslud;)
Add d,|ud, to d;|ud;, giving the sund;jud,.

“d-minus” DOUBLE
(dqJud; dy|ud, -- dslud;)
Subtracid,|ud, from d,|ud;, giving the differenceljud,.

“d-dot” DOUBLE
(d--)

Displayd in free field format.

“d-dot-r” DOUBLE
(dn--)

Displayd right aligned in a fielah characters wide. If the number of characters required to
displayd is greater than, all digits are displayed with no leading spaces in a field as wide as
necessary.

“d-zero-less” DOUBLE
(d--flag)

flag is true if and only ifl is less than zero.

“d-zero-equals” DOUBLE
(xd--flag)

flag is true if and only ikdis equal to zero.

Page 70 X3J14 dpANS-6 Document

8.6.1.1090 D2* “d-two-star” DOUBLE
(xd; --xd,)
xd, is the result of shiftingd; one bit toward the most-significant bit, filling the vacated least-
significant bit with zero.

8.6.1.1100 D2/ “d-two-slash” DOUBLE
(xd; --xd,)
xd, is the result of shiftingd; one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

8.6.1.1110 D< “d-less-than” DOUBLE
flag is true if and only itl; is less thaml,.

8.6.1.1120 D= “d-equals” DOUBLE
(xd; xd, --flag)
flag is true if and only ikd, is bit-for-bit the same asd,.

8.6.1.1140 D>S “d-to-s” DOUBLE
(d--n)
nis the equivalent a. An ambiguous condition existsdflies outside the range of a signed
single-cell number.

8.6.1.1160 DABS “d-abs” DOUBLE
(d--ud)
ud is the absolute value df

8.6.1.1210 DMAX “d-max” DOUBLE
dy is the greater od; andd,.

8.6.1.1220 DMIN “d-min” DOUBLE
(dyd;--dg)

d; is the lesser ad; andd,,.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 71

8.6.1.1230 DNEGATE “d-negate” DOUBLE
(dy-dy)

d, is the negation ad,.

8.6.1.1820 M*/ “m-star-slash” DOUBLE
(dyng+ny--dy)
Multiply d; by n; producing the triple-cell intermediate resultDividet by +n, giving the
double-cell quotiendl,. An ambiguous condition exists+h, is zero or negative, or the
guotient lies outside of the range of a double-precision signed integer.

8.6.1.1830 M+ “m-plus” DOUBLE
(d4Jud; n--dojud,)
Add ntod;|ud;, giving the sunu,ud,.

8.6.2 Double-Number extension words
8.6.2.0420 2ROT “two-rote” DOUBLE EXT

Rotate the top three cell pairs on the stack bringing celkpaiyto the top of the stack.

8.6.2.1270 DU< “d-u-less” DOUBLE EXT
(ud; ud, --flag)

flag is true if and only itid; is less thamd,.

Page 72 X3J14 dpANS-6 Document

9. The optional Exception word set

9.1 Introduction

9.2 Additional terms and notation

None.
9.3 Additional usage requirements

9.3.1 THROWalues

The THROWalues {-255...-1} shall be used only as assigned by this Standard. The values {-4095...-256}
shall be used only as assigned by a system.

If the File-Access or Memory-Allocation word sets are implemented, it is recommended that the non-zero
values ofior lie within the range of systefHROWalues, as defined above. In an operating-system
environment, this can sometimes be accomplished by “biasing” the range of operating-system exception-
codes to fall within th @ HROWange.

Programs shall not define values for use WitHROVih the range {-4095...-1}.

9.3.2 Exception frame
An exception frame is the implementation-dependent set of information recording the current execution
state necessary for the proper functionin@ATCHandTHROW It often includes the depths of the data
stack and return stack.

9.3.3 Exception stack
A stack used for the nesting of exception frame€AY¥ CHandTHROWIt may be, but need not be,
implemented using the return stack.

9.3.4 Environmental queries
Append table 9.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 9.1 - Environmental query strings

String Value data type Constant? Meaning
EXCEPTION flag no Exception word set present
EXCEPTION-EXT flag no Exception extensions word set present

9.3.5 Possible actions on an ambiguous condition

A system choosing to executelROWhen detecting one of the ambiguous conditions listed in table 9.3.6
shall use the throw code listed there.

See: 3.4.4 Possible actions on an ambiguous condition

Table 9.2 - THROW/ode assignments

Code Reserved for Code Reserved for
-1 ABORT -3 stack overflow
-2 ABORT" -4 stack underflow

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document

Page 73

-5

-6

-7

-8

-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21

return stack overflow
return stack underflow
do-loops nested too deeply during executig
dictionary overflow

invalid memory address

division by zero

result out of range

argument type mismatch
undefined word

interpreting a compile-only word
invalidFORGET

attempt to use zero-length string as a nani
pictured numeric output string overflow
parsed string overflow

definition name too long

write to a read-only location
unsupported operation

(e.g.,AT-XY on a too-dumb terminal)

-32 invalid name argument (&.@. XXX)
-33 Dblock read exception
-34 block write exception
-35 invalid block number
-36 invalid file position
-37 file /0O exception
-38 non-existent file
-39 unexpected end of file
-40 invaliBASEfor floating point conversion
-41 loss of precision
-42 floating-point divide by zero
-43 floating-point result out of range
-44 floating-point stack overflow
-45 floating-point stack underflow
-46 floating-point invalid argument
-47 compilation word list deleted
-48 invalidPOSTPONE
-49 search-order overflow

-22 control structure mismatch -50 search-order underflow

-23 address alignment exception -51 compilation word list changed
-24 invalid numeric argument -52control-flow stack overflow

-25 return stack imbalance -53 exception stack overflow

-26 loop parameters unavailable -54 floating-point underflow

-27 invalid recursion -55 floating-point unidentified fault

-28 user interrupt -56 QUIT

-29 compiler nesting -57 exception in sending or receiving a
-30 obsolescent feature character

-31 >BODYused on noiGREATH definition -58 [IF] ,[ELSE] , or[THEN] exception

9.3.6 Exception handling

There are several methods of coupl@gTCHandTHROWb other procedural nestings. The usual
nestings are the execution of definitions, use of the return stack, use of loops, instantiation of locals and
nesting of input sources (i.e., witlOAD EVALUATE or INCLUDE-FILE).

When aTHROWeturns control to £ATCH the system shall un-nest not only definitions, but also, if
present, locals and input source specifications, to return the system to its proper state for continued
execution past thEATCH

9.4 Additional documentation requirements

9.4.1 System documentation

9.4.1.1

Implementation-defined options

— Values used in the system®$.1.0875CATCHand9.6.1.2275THROWR.3.1 THROWalues 9.3.5

Possible actions on an ambiguous conditipn

9.4.1.2 Ambiguous conditions

— no additional requirements.

9.4.1.3 Other system documentation

— no additional requirements.

Page 74 X3J14 dpANS-6 Document

9.4.2 Program documentation

— no additional requirements.
9.5 Compliance and labeling
9.5.1 ANS Forth systems

The phrase “Providing the Exception word set” shall be appended to the label of any Standard System that
provides all of the Exception word set.

The phrase “Providingamés) from the Exception Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Exception Extensions word set.

The phrase “Providing the Exception Extensions word set” shall be appended to the label of any Standard
System that provides all of the Exception and Exception Extensions word sets.

9.5.2 ANS Forth programs

The phrase “Requiring the Exception word set” shall be appended to the label of Standard Programs that
require the system to provide the Exception word set.

The phrase “Requiringamés) from the Exception Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Exception Extensions word set.

The phrase “Requiring the Exception Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Exception and Exception Extensions word sets.

9.6 Glossary

9.6.1 Exception words
9.6.1.0875 CATCH EXCEPTION

(*x xt--j*x 0 |i*x n)

Push an exception frame on the exception stack and then execute the executign(ésken
with EXECUTEin such a way that control can be transferred to a point justGAECHT
THROVi5 executed during the executionxaf

If the execution okt completes normally (i.e., the exception frame pushed bY"hisCHs

not popped by an execution BHROWpop the exception frame and return zero on top of the
data stack, above whatever stack items would have been returrReEXiyCUTE Otherwise,
the remainder of the execution semantics are giverHigOW

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 75

9.6.1.2275 THROW EXCEPTION

(k*x n--Kk*x |i*xX n)

If any bits ofn are non-zero, pop the topmost exception frame from the exception stack, along
with everything on the return stack above that frame. Then restore the input source
specification in use before the correspondd#gr CHand adjust the depths of all stacks

defined by this Standard so that they are the same as the depths saved in the exception frame (
is the same number as thia the input arguments to the correspondd?grCH, putn on top

of the data stack, and transfer control to a point just afteCATeCHhat pushed that

exception frame.

If the top of the stack is non zero and there is no exception frame on the exception stack, the
behavior is as follows:

If nis minus-one (-1), perform the function@®f..0670ABORT(the version oABORTIN
the Core word set), displaying no message.

If nis minus-two, perform the function 6f1.0680ABORT" (the version oABORT"in
the Core word set), displaying the charactersassociated with th@RBORT"that
generated theHROW

Otherwise, the system may display an implementation-dependent message giving
information about the condition associated withThEROWoden. Subsequently, the
system shall perform the function @f1.0670ABORT(the version 0ABORTIn the Core
word set).

9.6.2 Exception extension words
9.6.2.0670 ABORT EXCEPTION EXT

See:

Extend the semantics 6f1.0670ABORTo be:
(i*x --) (R:j*x --)
Perform the function oft THROW.

6.1.0670ABORT

9.6.2.0680 ABORT" “abort-quote” EXCEPTION EXT

Interpretation:

Compilation:

Run-time:

See:

Extend the semantics 6f1.0680ABORT"to be:
Interpretation semantics for this word are undefined.
(“cce<quote --)

Parsecccdelimited by & (double-quote). Append the run-time semantics given below to the
current definition.

(% xq == |*x) (R*x - |J*x)

Removex, from the stack. If any bit of; is not zero, perform the function & THROW,
displayingcccif there is no exception frame on the exception stack.

3.4.1 Parsing 6.1.0680ABORT".

Page 76 X3J14 dpANS-6 Document

10. The optional Facility word set

10.1 Introduction

10.2 Additional terms and notation
None.

10.3 Additional usage requirements

10.3.1 Character types

Programs that use more than seven bits of a characi®.@&p.130FKEYhave an environmental
dependency.

See: 3.1.2 Character types

10.3.2 Environmental queries
Append table 10.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 10.1 — Environmental query strings

String Value data type Constant? Meaning
FACILITY flag no facility word set present
FACILITY-EXT flag no facility extensions word set present

10.4 Additional documentation requirements
10.4.1 System documentation

10.4.1.1 Implementation-defined options

— encoding of keyboard eveni€(6.2.130FEKEY);
— duration of a system clock tick;
— repeatability to be expected from executioa®6.2.1909MS

10.4.1.2 Ambiguous conditions

* 10.6.1.074AT-XY operation can't be performed on user output device.

10.4.1.3 Other system documentation

— no additional requirements.
10.4.2 Program documentation

10.4.2.1 Environmental dependencies

using more than seven bits of a charactéfif.2.130FKEY.

10.4.2.2 Other program documentation

no additional requirements.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 77

10.5 Compliance and labeling

10.5.1 ANS Forth systems

The phrase “Providing the Facility word set” shall be appended to the label of any Standard System that
provides all of the Facility word set.

The phrase “Providingamés) from the Facility Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Facility Extensions word set.

The phrase “Providing the Facility Extensions word set” shall be appended to the label of any Standard
System that provides all of the Facility and Facility Extensions word sets.
10.5.2 ANS Forth programs

The phrase “Requiring the Facility word set” shall be appended to the label of Standard Programs that
require the system to provide the Facility word set.

The phrase “Requiringamés) from the Facility Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Facility Extensions word set.

The phrase “Requiring the Facility Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Facility and Facility Extensions word sets.

10.6 Glossary

10.6.1 Facility words
10.6.1.0742 AT-XY “at-x-y” FACILITY
(upu,--)

Perform implementation-dependent steps so that the next character displayed will appear in
columnu,, row u, of the user output device, the upper left corner of which is column zero, row
zero. An ambiguous condition exists if the operation cannot be performed on the user output
device with the specified parameters.

10.6.1.1755 KEY? “key-question” FACILITY
(--flag)

If a character is available, retumue. Otherwise, returfalse If non-character keyboard
events are available before the first valid character, they are discarded and are subsequently
unavailable. The character shall be returned by the next execut@of

After KEY?returns with a value dfue, subsequent executionsiKIEY ? prior to the execution
of KEY or EKEYalso returrtrue, without discarding keyboard events.

10.6.1.2005 PAGE FACILITY
()

Move to another page for output. Actual function depends on the output device. On a
terminal, PAGEclears the screen and resets the cursor position to the upper left corner. On a
printer, PAGEperforms a form feed.

Page 78 X3J14 dpANS-6 Document

10.6.2 Facility extension words
10.6.2.1305 EKEY “e-key” FACILITY EXT

(--u)
Receive one keyboard event The encoding of keyboard events is implementation defined.

See: 10.6.1.175KEY?, 6.1.1750KEY.

10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT

(u--ufalse|chartrue)
If the keyboard event corresponds to a character in the implementation-defined character set,
return that character atidie. Otherwise returm andfalse

10.6.2.1307 EKEY? “e-key-question” FACILITY EXT
(--flag)

If a keyboard event is available, retutnge. Otherwise returnfalse The event shall be
returned by the next execution®KEY.

After EKEY?returns with a value dfue, subsequent executionsEKEY ?prior to the
execution oKEY, KEY? or EKEYalso returrtrue, referring to the same event.

10.6.2.1325 EMIT? “emit-question” FACILITY EXT
(--flag)

flag is true if the user output device is ready to accept data and the execMiTah place
of EMIT? would not have suffered an indefinite delay. If the device status is indeterminate,

flag is true.
10.6.2.1905 MS FACILITY EXT
(u--)

Wait at leasti milliseconds.

Note: The actual length and variability of the time period depends upon the implementation-defined
resolution of the system clock and upon other system and computer characteristics beyond the
scope of this Standard.

10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT
(== +ng +ny +n3+n, N5 +ng)

Return the current time and daten, is the second {0...59}n, is the minute {0...59}+n4
is the hour {0...23};+n, is the day {1...31}ng is the month {1...12}, anéing is the year
(e.g., 1991).

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 79

11. The optional File-Access word set

11.1 Introduction
These words provide access to mass storage in the form of “files” under the following assumptions:

— files are provided by a host operating system;

— file names are represented as character strings;

— the format of file names is determined by the host operating system;

— an open file is identified by a single-cell file identifigie{d);

— file-state information (e.g., position, size) is managed by the host operating system;

— file contents are accessed as a sequence of characters;

— file read operations return an actual transfer count, which can differ from the requested transfer count.

11.2 Additional terms
file-access method:a permissible means of accessing a file, such as “read/write” or “read only”.
file position: the character offset from the start of the file.

input file: the file, containing a sequence of lines, that is the input source.
11.3 Additional usage requirements
11.3.1 Data types

Append table 11.1 to table 3.1.

Table 11.1 — Data types

Symbol Data type Size on stack
ior I/0O results 1 cell
fam file access method 1 cell
fileid file identifiers 1 cell

11.3.1.1 File identifiers
File identifiers are implementation-dependent single-cell values that are passed to file operators to
designate specific files. Opening a file assigns a file identifier, which remains valid until closed.
11.3.1.2 1/O results

I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that
the I/O operation completed successfully; other values and their meanings are implementation-defined.
Reaching the end of a file shall be reported as zero.

An I/O exception in the execution of a File-Access word that can return an I/O result shall not cause a
THROWexception indications are returned in ibe
11.3.1.3 File access methods

File access methods are implementation-defined single-cell values.

11.3.1.4 File names

A character string containing the name of the file. The file name may include an implementation-
dependent path name. The format of file names is implementation defined.

Page 80 X3J14 dpANS-6 Document

11.3.2 Blocks in files
If the File-Access word set is implemented, the Block word set shall be implemented.
Blocks may, but need not, reside in files. When they do:

— Block numbers may be mapped to one or more files by implementation-defined means. An ambiguous
condition exists if a requested block number is not currently mapped;

— AnUPDATH block that came from a file shall be transferred back to the same file.

11.3.3 Environmental queries
Append table 11.2 to table 3.5.

See: 3.2.6 Environmental queries

Table 11.2 — Environmental query strings

String Value data type Constant? Meaning
FILE flag no file word set present
FILE-EXT flag no file extensions word set present

11.3.4 Input source

The File-Access word set creates another input source for the text interpreter. When the input source is a
text file, BLK shall contain zerd&sOURCE-IDshall contain théleid of that text file, and the input buffer
shall contain one line of the text file.

Input with INCLUDED INCLUDE-FILE , LOADandEVALUATEshall be nestable in any order to at least
eight levels.

A program that uses more than eight levels of input-file nesting has an environmental dependency.

See: 3.3.3.5 Input buffers 9. Optional Exception word set

11.3.5 Other transient regions
The list of words using memory in transient regions is extended to intiu@el.2165" .

See: 3.3.3.6 Other transient regions

11.3.6 Parsing

When parsing from a text file using a space delimiter, control characters shall be treated the same as the
space character.

Lines of at least 128 characters shall be supported. A program that requires lines of more than 128
characters has an environmental dependency.

A program may reposition the parse area within the input buffer by manipulating the contdhts of
More extensive repositioning can be accomplished USKGE-INPUT andRESTORE-INPUT

See: 3.4.1 Parsing

Collating Sequence: '"#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 81

11.4 Additional documentation requirements
11.4.1 System documentation

11.4.1.1 Implementation-defined options

file access methods usedty6.1.0768IN, 11.6.1.101CCREATE-FILE, 11.6.1.197@PEN-FILE,
11.6.1.205R/0, 11.6.1.2056R/W, and11.6.1.2425N/Q

— file exceptions;

— file line terminator11.6.1.209(READ-LINE);

— file name formatl(1.3.1.4 File names

— information returned by1.6.2.152&ILE-STATUS;

— input file state after an exceptidrl(6.1.171ANCLUDE-FILE , 11.6.1.1718NCLUDED);
— ior values and meaning 1.3.1.2 1/O result3,

— maximum depth of file input nesting1(3.4 Input source;

— maximum size of input lind.1.3.6 Parsing;

— methods for mapping block ranges to file$.8.2 Blocks in file},
— number of string buffers providetil(6.1.21655");

— size of string buffer used iy.6.1.2165%".

11.4.1.2 Ambiguous conditions

* attempting to position a file outside its boundariek.§.1.214REPOSITION-FILE);

* attempting to read from file positions not yet writtéd.6.1.208(READ-FILE ,
11.6.1.209(READ-LINE);

* fileid is invalid (11.6.1.171ANCLUDE-FILE);
* /O exception reading or closirfgeid (11.6.1.171ANCLUDE-FILE , 11.6.1.1718NCLUDED);
* named file cannot be openebl(6.1.1718NCLUDED);
* requesting an unmapped block numlil.8.2 Blocks in file¥;
* using11.6.1.22180URCE-IDwhen7.6.1.079BLK is not zero.
11.4.1.3 Other system documentation

— no additional requirements.
11.4.2 Program documentation

11.4.2.1 Environmental dependencies
— requiring lines longer than 128 charactéfks 3.6 Parsing;
— using more than eight levels of input-file nestihd.8.4 Input sourca.

11.4.2.2 Other program documentation

— no additional requirements.
11.5 Compliance and labeling

11.5.1 ANS Forth systems

The phrase “Providing the File Access word set” shall be appended to the label of any Standard System
that provides all of the File Access word set.

Page 82 X3J14 dpANS-6 Document

The phrase “Providingamés) from the File Access Extensions word set” shall be appended to the label
of any Standard System that provides portions of the File Access Extensions word set.

The phrase “Providing the File Access Extensions word set” shall be appended to the label of any
Standard System that provides all of the File Access and File Access Extensions word sets.

11.5.2 ANS Forth programs

The phrase “Requiring the File Access word set” shall be appended to the label of Standard Programs that
require the system to provide the File Access word set.

The phrase “Requiringamés) from the File Access Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the File Access Extensions word set.

The phrase “Requiring the File Access Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the File Access and File Access Extensions word sets.

11.6 Glossary

11.6.1 File Access words
11.6.1.0080 (“paren” FILE
(“cce<parenx --)

Extend the semantics 6f1.0080(to include:

When parsing from a text file, if the end of the parse area is reached before a right parenthesis
is found, refill the input buffer from the next line of the file, s to zero, and resume
parsing, repeating this process until either a right parenthesis is found or the end of the file is

reached.
11.6.1.0765 BIN FILE
(fam, -- fam,)

Modify the implementation-defined file access metfad, to additionally select a “binary”,
i.e., not line oriented, file access method, giving access méhgd

See: 11.6.1.2054/0O, 11.6.1.205@R/W, 11.6.1.2423N/O

11.6.1.0900 CLOSE-FILE FILE
(fileid -- ior)

Close the file identified bfileid. ior is the implementation-defined 1/O result code.

Collating Sequence: '"#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 83

11.6.1.1010 CREATE-FILE FILE

(c-addru fam-- fileid ior)

Create the file named in the character string specifieddgydr andu, and open it with file
access methodm. The meaning of values &mis implementation defined. If a file with
the same name already exists, recreate it as an empty file.

If the file was successfully created and opeidis zero fileid is its identifier, and the file
has been positioned to the start of the file.

Otherwisejor is the implementation-defined 1/O result code &laid is undefined.

11.6.1.1190 DELETE-FILE FILE
(c-addru --ior)

Delete the file named in the character string specifiectdgdru. ior is the implementation-
defined I/O result code.

11.6.1.1520 FILE-POSITION FILE
(fileid --udior)

ud is the current file position for the file identified Bieid. ior is the implementation-defined
I/O result code.udis undefined ifor is non-zero.

11.6.1.1522 FILE-SIZE FILE
(fileid -- udior)

ud is the size, in characters, of the file identifiedfitsid. ior is the implementation-defined
I/O result code. This operation does not affect the value returneldl BYyPOSITION . udis
undefined ifior is non-zero.

11.6.1.1717 INCLUDE-FILE FILE
(i*x fileid - j*x)

Removsfileid from the stack. Save the current input source specification, including the
current value o6OURCE-ID. Storefileid in SOURCE-ID. Make the file specified bifleid
the input source. Store zeroBhK. Other stack effects are due to the woMISLUDE.

Repeat until end of file: read a line from the file, fill the input buffer from the contents of that
line, set>IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

Page 84 X3J14 dpANS-6 Document

When the end of the file is reached, close the file and restore the input source specification to
its saved value.

An ambiguous condition existsfifeid is invalid, if there is an 1/O exception readfilgid, or
if an 1/0O exception occurs while closifigeid. When an ambiguous condition exists, the
status (open or closed) of any files that were being interpreted is implementation-defined.

See: 11.3.4 Input source

11.6.1.1718 INCLUDED FILE
(i*x c-addru -- j*x)

Removec-addru from the stack. Save the current input source specification, including the
current value o6OURCE-ID. Open the file specified byraddru, store the resultinfileid in
SOURCE-ID, and make it the input source. Store zerBliK. Other stack effects are due to
the words included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents of that
line, set>IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

When the end of the file is reached, close the file and restore the input source specification to
its saved value.

An ambiguous condition exists if the named file can not be opened, if an I/O exception occurs
reading the file, or if an I1/O exception occurs while closing the file. When an ambiguous
condition exists, the status (open or closed) of any files that were being interpreted is
implementation-defined.

See: 11.6.1.171ANCLUDE-FILE .

11.6.1.1970 OPEN-FILE FILE

(c-addru fam-- fileid ior)

Open the file named in the character string specifiect&gdr u, with file access method
indicated byfam The meaning of values t#mis implementation defined.

If the file is successfully openeidy is zerofileid is its identifier, and the file has been
positioned to the start of the file.

Otherwisejor is the implementation-defined 1/O result code &leid is undefined.

11.6.1.2054 R/O “r-o” FILE

(--fam)
famis the implementation-defined value for selecting the “read only” file access method.

See: 11.6.1.101CCREATE-FILE, 11.6.1.197@PEN-FILE.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 85

11.6.1.2056 R/W “r-w” FILE

(--fam)
famis the implementation-defined value for selecting the “read/write” file access method.

See: 11.6.1.101CCREATE-FILE, 11.6.1.197@PEN-FILE.

11.6.1.2080 READ-FILE FILE
(c-addruy fileid -- u, ior)
Readu, consecutive charactersdeaddrfrom the current position of the file identified by
fileid.
If u; characters are read without an exceptionis zero andl, is equal tai;.

If the end of the file is reached befargcharacters are reaidy is zero andl, is the number
of characters actually read.

If the operation is initiated when the value returnedrthfe-POSITION is equal to the value
returned byFILE-SIZE for the file identified byfileid, ior is zero andl, is zero.

If an exception occursor is the implementation-defined 1/O result code, apnts the number
of characters transferred ¢eaddrwithout an exception.

An ambiguous condition exists if the operation is initiated when the value returfeédisy
POSITION is greater than the value returneddyE-SIZE for the file identified byfileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operatidRlLE-POSITION returns the next file position after the
last character read.

Page 86 X3J14 dpANS-6 Document

11.6.1.2090 READ-LINE FILE
(c-addru, fileid -- u, flag ior)

Read the next line from the file specifiedfilgid into memory at the addressaddr. At most

u; characters are read. Up to two implementation-defined line terminating characters may be
read into memory at the end of the line, but are not included in thegoufihe line buffer
provided byc-addrshould be at least +2 characters long.

If the operation succeedefthg is true andor is zero. If a line terminator was received before
u; characters were read, thepis the number of characters, not including the line terminator,
actually read (0 <#, <=u;). Whenu, = u, the line terminator has yet to be reached.

If the operation is initiated when the value returnedrthfe-POSITION is equal to the value
returned byFILE-SIZE for the file identified byfileid, flag is false,or is zero, and, is

zero. Ifior is non-zero, an exception occurred during the operatiomansl the
implementation-defined 1/O result code.

An ambiguous condition exists if the operation is initiated when the value returfedisy
POSITION is greater than the value returnedddyE-SIZE for the file identified byfileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operatioRlLE-POSITION returns the next file position after the
last character read.

11.6.1.2142 REPOSITION-FILE FILE
(‘udfileid --ior)

Reposition the file identified bffleid toud. ior is the implementation-defined I/O result code.
An ambiguous condition exists if the file is positioned outside the file boundaries.

At the conclusion of the operatidflLE-POSITION returns the valuad.

11.6.1.2147 RESIZE-FILE FILE
(‘udfileid --ior)

Set the size of the file identified jeid toud. ior is the implementation-defined 1/O result
code.

If the resultant file is larger than the file before the operation, the portion of the file added as a
result of the operation might not have been written.

At the conclusion of the operatidflLE-SIZE returns the valuad andFILE-POSITION
returns an unspecified value.

See: 11.6.1.208(READ-FILE, 11.6.1.209(READ-LINE.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 87

11.6.1.2165 S" “s-quote” FILE
Extend the semantics 6f1.2165S" to be:

Interpretation: (“ccc<quote¥ -- c-addru)

Parsecccdelimited by' (double quote). Store the resulting straagddru at a temporary

location. The maximum length of the temporary buffer is implementation-dependent but shall
be no less than 80 characters. Subsequent uS&sméy overwrite the temporary buffer. At
least one such buffer shall be provided.

Compilation: (“ccc<quote® --)

Parsecccdelimited by" (double quote). Append the run-time semantics given below to the
current definition.

Run-time: (--c-addru)
Returnc-addrandu that describe a string consisting of the characiers

See: 3.4.1 Parsing 6.2.0855C", 6.1.21655", 11.3.5 Other transient regions

11.6.1.2218 SOURCE-ID “source-i-d” FILE
(- 0] -1 fileid)

Extend6.2.2218SOURCE-IDto include text-file input as follows:

SOURCE-ID Input source

fileid Text file “fileid”
-1 String (viaEVALUATE
0 User input device

An ambiguous condition exists#OURCE-IDis used wheBLK contains a non-zero value.

11.6.1.2425 W/O “w-0" FILE

(--fam)
famis the implementation-defined value for selecting the “write only” file access method.

See: 11.6.1.101CCREATE-FILE, 11.6.1.197@MPEN-FILE.

11.6.1.2480 WRITE-FILE FILE
(c-addru fileid -- ior)

Write u characters frong-addrto the file identified byfileid starting at its current position.
ior is the implementation-defined I/O result code.

At the conclusion of the operatidRlLE-POSITION returns the next file position after the
last character written to the file, aRtLE-SIZE returns a value greater than or equal to the
value returned b¥ILE-POSITION .

See: 11.6.1.208(READ-FILE, 11.6.1.209(READ-LINE.

Page 88 X3J14 dpANS-6 Document

11.6.1.2485 WRITE-LINE FILE
(c-addru fileid -- ior)

Write u characters frorns-addrfollowed by the implementation-dependent line terminator to
the file identified byfileid starting at its current positionor is the implementation-defined
I/O result code.

At the conclusion of the operatidRlLE-POSITION returns the next file position after the
last character written to the file, aRtLE-SIZE returns a value greater than or equal to the
value returned b¥#ILE-POSITION .

See: 11.6.1.208(READ-FILE, 11.6.1.209(READ-LINE.

11.6.2 File-Access extension words
11.6.2.1524 FILE-STATUS FILE EXT
(c-addru -- xiior)

Return the status of the file identified by the character striaddru. If the file existsjor is
zero; otherwiséor is the implementation-defined 1/O result codecontains implementation-
defined information about the file.

11.6.2.1560 FLUSH-FILE FILE EXT
(fileid -- ior)

Attempt to force any buffered information written to the file referred téleid to be written

to mass storage, and the size information for the file to be recorded in the storage directory if
changed. If the operation is successhil,is zero. Otherwise, it is an implementation-

defined 1/O result code.

11.6.2.2125 REFILL FILE EXT
(--flag)

Extend the execution semantics6o?.2125REFILL with the following:

When the input source is a text file, attempt to read the next line from the text-input file. If
successful, make the result the current input bufferIdetto zero, and returtiue.
Otherwise returfialse

See: 6.2.2125REFILL, 7.6.2.2123REFILL .

11.6.2.2130 RENAME-FILE FILE EXT
(c-addr u, c-addr, u, --ior)

Rename the file named by the character strhagldr; u, to the name in the character string
c-addr, u,. ior is the implementation-defined I/O result code.

Collating Sequence: ' "#$% &' () *+,-./digits: ; <=>?2 @ ALPHA[\]"_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 89

12. The optional Floating-Point word set

12.1 Introduction
12.2 Additional terms and notation

12.2.1 Definition of terms

float-aligned address: the address of a memory location at which a floating-point number can be
accessed.

double-float-aligned address:the address of a memory location at which a 64-bit IEEE double-precision
number can be accessed.

single-float-aligned address:the address of a memory location at which a 32-bit IEEE single-precision
number can be accessed.

IEEE floating-point number: a floating-point number as definedANSI/IEEE Standard 754-1985

12.2.2 Notation

12.2.2.1 Numeric notation

The following notation is used to define the syntax of the external representation of floating-point
numbers:

— Each component of a floating-point number is defined with a rule consisting of the name of the

component (italicized in angle-brackets, e.gige>), the characters := and a concatenation of tokens
and metacharacters;

— Tokens may be literal characters (in bold face, E)gr rule names in angle brackets (e.gligit>);
— The metacharacter * is used to specify zero or more occurrences of the preceding tokelig{ext);, <
— Tokens enclosed with [and] are optional (e.gigR=]);
— Vertical bars separate choices from a list of tokens enclosed with bracesd.g.}){
12.2.2.2 Stack notation
Floating-point stack notation when the floating-point stack is separate from the data stack is:
(F: before-- after)

12.3 Additional usage requirements

12.3.1 Data types
Append table 12.1 to table 3.1.

Table 12.1 - Data Types

Symbol Data type Size on stack

r floating-point number implementation-defined
f-addr float-aligned address 1 cell
sf-addr single-float-aligned address 1 cell

df-addr double-float-aligned address 1 cell

Page 90 X3J14 dpANS-6 Document

12.3.1.1 Addresses

The set of float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a floating-point number to a float-aligned address shall produce a float-aligned address.

The set of double-float-aligned addresses is an implementation-defined subset of the set of aligned
addresses. Adding the size of a 64-bit IEEE double-precision floating-point number to a double-float-
aligned address shall produce a double-float-aligned address.

The set of single-float-aligned addresses is an implementation-defined subset of the set of aligned
addresses. Adding the size of a 32-bit IEEE single-precision floating-point number to a single-float-
aligned address shall produce a single-float-aligned address.

12.3.1.2 Floating-point numbers

The internal representation of a floating-point number, including the format and precision of the
significand and the format and range of the exponent, is implementation defined.

Any rounding or truncation of floating-point numbers is implementation defined.

12.3.2 Floating-point operations

“Round to nearest” means round the result of a floating-point operation to the representable value nearest
the result. If the two nearest representable values are equally near the result, the one having zero as its
least significant bit shall be delivered.

“Round toward negative infinity” means round the result of a floating-point operation to the representable
value nearest to and no greater than the result.

12.3.3 Floating-point stack
A last in, first out list that shall be used by all floating-point operators.

The width of the floating-point stack is implementation-defined. By default the floating-point stack shall
be separate from the data and return stacks. A program may determine whether floating-point numbers
are kept on the data stack by passing the stib@ATING-STACK to ENVIRONMENT.?

The size of a floating-point stack shall be at least 6 items.

A program that depends on the floating-point stack being larger than six items has an environmental
dependency.

12.3.4 Environmental queries
Append table 12.2 to table 3.5.

See: 3.2.6 Environmental queries

Table 12.2 — Environmental query strings

String Value Data type Constant? Meaning

FLOATING flag no floating-point word set present
FLOATING-EXT flag no floating-point extensions word set present
FLOATING-STACK n yes Ifn = zero, floating-point numbers are kept

on the data stack; otherwines the
maximum depth of the separate floating-
point stack.

MAX-FLOAT r yes largest usable floating-point number

Collating Sequence: '"#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 91

12.3.5

12.3.6

12.3.7

Address alignment

Since the address returned b REATH word is not necessarily aligned for any particular class of
floating-point data, a program shall align the address (to be float aligned, single-float aligned, or double-
float aligned) before accessing floating-point data at the address.

See:3.3.3.1 Address Alignment12.3.1.1 Addresses

Variables

A program may address memory in data space regions made avail&MARIABLE. These regions
may be non-contiguous with regions subsequently allocated witbmma) o ALLOT.

See: 3.3.3.3 Variables

Text interpreter input number conversion

If the Floating-Point word set is present in the dictionary and the current HaEE€ISMAL the input
number-conversion algorithm shall be extended to recognize floating-point numbers in this form:

Convertible string := significand><exponerw

<significand ;= [<sigr>]<digits>[. <digitsC>]

<exponernt ;= E[<sigr>]<digits0>

<sigr>:={+|- }

<digits> := <digit><digitsC>

<digitsC> := digit>*

<digit>:={0|1]2|3]|4|5]|6|7]8|9}

These are examples of valid representations of floating-point numbers in program source:

1E 1.E 1.E0 +1.23E-1 -1.23E+1
See:3.4.1.3 Text interpreter input number conversion12.6.1.0558>FLOAT.

12.4 Additional documentation requirements

12.4.1 System documentation

12.4.1.1 Implementation-defined options

— format and range of floating-point numbet2.8.1 Data typesl2.6.1.214REPRESEN)f
— results 0i2.6.1.214REPRESENWhenfloat is out of range;

— rounding or truncation of floating-point numbet2.8.1.2Floating-point numbers);

— size of floating-point stack 2.3.3Floating-point stack);

— width of floating-point stackl@.3.3Floating-point stack).

12.4.1.2 Ambiguous conditions

— DF@or DF! is used with an address that is not double-float aligned;

— F@orF! is used with an address that is not float aligned;

— floating point result out of rang#2.6.1.1430/);

— SF@or SF! is used with an address that is not single-float aligned;

* BASEis not decimal12.6.1.214REPRESENT12.6.2.142F. , 12.6.2.151FE., 12.6.2.1613FS.);
* both arguments equal zerb2(6.2.148FATAN2);

* cosf,) is zero as an argument fb2.6.2.1625-TAN

* dcan't be precisely representedlaatin 12.6.1.113M™>F;

* dividing by zero 12.6.1.1434])

Page 92 X3J14 dpANS-6 Document

* exponent too big for conversiohq.6.2.120DF!, 12.6.2.120DF@12.6.2.2205F! ,
12.6.2.2205F@;

* float less than onel@.6.2.147FACOSH

* float less than or equal to minus-ori2 (6.2.1554LNP1);

* float less than or equal to zerb2(6.2.1553FLN, 12.6.2.155FLOQG;

* floatless than zerdl@.6.2.148FASINE, 12.6.2.161&SQRT;

* float magnitude greater than ork2(6.2.1476AC0$12.6.2.1486-ASIN, 12.6.2.149FFATANH,;

* integer part ofloat can't be represented tyn 12.6.1.1470>D,

* string larger than pictured-numeric output ar2.§.2.142°F. , 12.6.2.151FE. , 12.6.2.161FS.).

12.4.1.3 Other system documentation

12.4.2

— no additional requirements.

Program documentation

12.4.2.1 Environmental dependencies

— requiring the floating-point stack to be larger than six itdi@s3(3Floating-point stack).

12.4.2.2 Other program documentation

— no additional requirements.

12.5 Compliance and labeling

125.1

12.5.2

ANS Forth systems

The phrase “Providing the Floating-Point word set” shall be appended to the label of any Standard System
that provides all of the Floating-Point word set.

The phrase “Providingamés) from the Floating-Point Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Floating-Point Extensions word set.

The phrase “Providing the Floating-Point Extensions word set” shall be appended to the label of any
Standard System that provides all of the Floating-Point and Floating-Point Extensions word sets.

ANS Forth programs

The phrase “Requiring the Floating-Point word set” shall be appended to the label of Standard Programs
that require the system to provide the Floating-Point word set.

The phrase “Requiringamés) from the Floating-Point Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Floating-Point Extensions
word set.

The phrase “Requiring the Floating-Point Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Floating-Point and Floating-Point Extensions word
sets.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 93

12.6 Glossary

12.6.1 Floating-Point words
12.6.1.0558 >FLOAT “to-float” FLOATING

12.6.1.1130

12.6.1.1400

12.6.1.1410

12.6.1.1420

12.6.1.1425

(c-addru -- true |false) (F: --r |) or (c-addru --r true | false)

An attempt is made to convert the string specified-agldr andu to internal floating-point
representation. If the string represents a valid floating-point number in the syntax below, its
valuer andtrue are returned. If the string does not represent a valid floating-point number
only falseis returned.

A string of blanks should be treated as a special case representing zero.

The syntax of a convertible string :significand>[<exponert]
<significand> := [<sigre]{< digits>[. <digitsC>] | . <digits> }
<exponert := <markepr<digitsC>

<marker := {<e-form> | <sign-forn»}

<e-formp := <e-char[<sign-forny]

<sign-formp := { + |-}

<e-char:={D|d |E|e}

D>F “d-to-f” FLOATING
(d--)(F:--r)or(d--r)
r is the floating-point equivalent af An ambiguous condition existsdfcannot be precisely
represented as a floating-point value.

F! “f-store” FLOATING
(f-addr--) (F:r --) or (r f-addr--)
Storer atf-addr.

F* “f-star” FLOATING
(Firyro--rg)or(ryry--rg)
Multiply rq byr, givingr,.

F+ “f-plus” FLOATING
(Firyro--rg)or(ryry--rg)
Addr, tor, giving the sunt,.

F- “f-minus” FLOATING

(Firyro--rg)or(ryry--rg)

Subtractr, fromr, givingr,.

Page 94 X3J14 dpANS-6 Document

12.6.1.1430 F/ “f-slash” FLOATING
(Firgry--rg)or(ryry--rg)
Divider, byr,, giving the quotient;. An ambiguous condition existsrif is zero, or the
quotient lies outside of the range of a floating-point number.

12.6.1.1440 FO< “f-zero-less-than” FLOATING
(--flag) (F:r--)or (r--flag)
flag is true if and only if is less than zero.

12.6.1.1450 FO= “f-zero-equals” FLOATING
(--flag) (F:r--)or (r--flag)
flag is true if and only if is equal to zero.

12.6.1.1460 F< “f-less-than” FLOATING
(--flag) (Firyry--)or(ryr,--flag)
flag is true if and only if, is less tham,.

12.6.1.1470 F>D “f-to-d” FLOATING
(--d)(F:r--)or(r--d)
d is the double-cell signed-integer equivalent of the integer portion ©he fractional
portion ofr is discarded. An ambiguous condition exists if the integer portiorcarfinot be
precisely represented as a double-cell signed integer.

12.6.1.1472 F@ “f-fetch” FLOATING
(f-addr--) (F:--r) or (f-addr--r)
r is the value stored &addr.

12.6.1.1479 FALIGN “f-align” FLOATING
(--)
If the data-space pointer is not float aligned, reserve enough data space to make it so.

12.6.1.1483 FALIGNED “f-aligned” FLOATING

(addr -- f-addr)

f-addris the first float-aligned address greater than or equeddo

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 95

12.6.1.1492 FCONSTANT “f-constant” FLOATING

(“<spaces>name--) (F:r --) or (r “<spaces>hame--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below.

nameis referred to as an “f-constant.”
nameExecution: (--) (F:--r)or(--r)
Placer on the floating-point stack.

See: 3.4.1 Parsing

12.6.1.1497 FDEPTH “f-depth” FLOATING

(-+n)

+n is the number of values contained on the default separate floating-point stack. If floating-
point numbers are kept on the data stackis the current number of possible floating-point
values contained on the data stack.

12.6.1.1500 FDROP “f-drop” FLOATING
(Fir--)or(r--)

Remover from the floating-point stack.

12.6.1.1510 FDUP “f-dupe” FLOATING
(Fir--rr)or(r--rr)
Duplicater.

12.6.1.1552 FLITERAL “f-literal” FLOATING

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (F:r--)or (r--)
Append the run-time semantics given below to the current definition.
Run-time: (F:--r)or (--r)

Placer on the floating-point stack.

12.6.1.1555 FLOAT+ “float-plus” FLOATING
(f-addr, -- f-addr,)

Add the size in address units of a floating-point numbé&atidr;, giving f-addr,.

Page 96 X3J14 dpANS-6 Document
12.6.1.1556 FLOATS FLOATING
(ng--ny)
n, is the size in address unitsrgffloating-point numbers.
12.6.1.1558 FLOOR FLOATING
(Firg--ry)or(ry--ry)
Roundr, to an integral value using the “round toward negative infinity” rule, givng
12.6.1.1562 FMAX “f-max” FLOATING
(Firgry--rg)or(ryry--rg)
ryis the greater af; andr,,.
12.6.1.1565 FMIN “f-min” FLOATING
(Firyro--rg)or(ryry--rg)
r;is the lesser af; andr,.
12.6.1.1567 FNEGATE “f-negate” FLOATING
(Firg--ry)or(ry--ry)
r, is the negation af;.
12.6.1.1600 FOVER “f-over” FLOATING
(Firgry==rqyryry)or(ryry=-ryryry)
Place a copy af; on top of the floating-point stack.
12.6.1.1610 FROT “f-rote” FLOATING
(Firgryrg=-ryrgry)or(ryryrz=-ryorary)
Rotate the top three floating-point stack entries.
12.6.1.1612 FROUND “f-round” FLOATING
(Firg--ry)or(ry--ry)
Roundr, to an integral value using the “round to nearest” rule, gixng
See: 12.3.2 Floating-point operations
12.6.1.1620 FSWAP “f-swap” FLOATING

(Firgrg--ryrg)or(ryry--ryry)

Exchange the top two floating-point stack items.

Collating Sequence: '"#3$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 97

12.6.1.1630 FVARIABLE “f-variable” FLOATING

nameExecution:

See:

(“<spaces>name--)

Skip leading space delimiters. Pansanedelimited by a space. Create a definitionrfame
with the execution semantics defined below. ResgéiweOATS address units of data space
at a float-aligned address.

nameis referred to as an “f-variable.”
(--f-addr)

f-addris the address of the data space reservé/BRIABLE when it createdame A
program is responsible for initializing the contents of the reserved space.

3.4.1 Parsing

12.6.1.2143 REPRESENT FLOATING

See:

(c-addru--nflag, flag,) (F:r--) or (r c-addru--nflag, flag,)

At c-addr, place the character-string external representation of the significand of the floating-
point number. Return the decimal-base exponennathe sign aflag, and “valid result” as
flag,. The character string shall consist of thmost significant digits of the significand
represented as a decimal fraction with the implied decimal point to the left of the first digit,
and the first digit zero only if all digits are zero. The significand is roundedigits

following the round to nearest rulejs adjusted, if necessary, to correspond to the rounded
magnitude of the significand. fiag, is true them was in the implementation-defined range

of floating-point numbers. Hag, is true therr is negative.

An ambiguous condition exists if the valueBASEis not decimal ten.

Whenflag, is false,n andflag, are implementation defined, as are the contentsaafdr.
Under these circumstances, the string-atldr shall consist of graphic characters.

3.2.1.2 Digit conversion6.1.0750BASE 12.3.2 Floating-point operations

12.6.2 Floating-Point extension words
12.6.2.1203 DF! “d-f-store” FLOATING EXT

See:

(df-addr--) (F:r --) or (r df-addr--)

Store the floating-point numberas a 64-bit IEEE double-precision numbedfaaddr. If the
significand of the internal representatiorr ¢fas more precision than the IEEE double-
precision format, it will be rounded using the “round to nearest” rule. An ambiguous
condition exists if the exponent ofs too large to be accommodated in IEEE double-precision
format.

12.3.1.1 Addressesdl 2.3.2 Floating-point operations

Page 98 X3J14 dpANS-6 Document

12.6.2.1204 DF@ “d-f-fetch” FLOATING EXT
(df-addr--) (F: --r) or (df-addr--r)

Fetch the 64-bit IEEE double-precision number storeif-atidrto the floating-point stack as

r in the internal representation. If the IEEE double-precision significand has more precision
than the internal representation it will be rounded to the internal representation using the
“round to nearest” rule. An ambiguous condition exists if the exponent of the IEEE double-
precision representation is too large to be accommodated by the internal representation.

See: 2.3.1.1 Addressesl?2.3.2 Floating-point operations

12.6.2.1205 DFALIGN “d-f-align” FLOATING EXT
(--)
If the data-space pointer is not double-float aligned, reserve enough data space to make it so.

See: 12.3.1.1 Addresses

12.6.2.1207 DFALIGNED “d-f-aligned” FLOATING EXT
(addr -- df-addr)

df-addris the first double-float-aligned address greater than or eqadtito

See: 12.3.1.1 Addresses

12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT
(df-addr; -- df-addr,)

Add the size in address units of a 64-bit IEEE double-precision numbgattr;, giving df-
addr,.

See: 12.3.1.1 Addresses

12.6.2.1209 DFLOATS “d-floats” FLOATING EXT
(ng--ny)

n, is the size in address unitsmqf64-bit IEEE double-precision numbers.

12.6.2.1415 F** “f-star-star” FLOATING EXT
(Firyro--rg)or(ryry--rg)

Raiser, to the power,, giving the product,.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 99

12.6.2.1427 F. “f-dot” FLOATING EXT
(=) (Fir=)or(r--)
Displgy, with a trailing space, the top number on the floating-point stack using fixed-point
notation:

[-] <digits>. <digitsO>
An ambiguous condition exists if the valueBASEis not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.
See: 12.6.1.0558FLOAT.

12.6.2.1474 FABS “f-abs” FLOATING EXT
(Firy=-ry)or(ry--ry)
r, is the absolute value of.

12.6.2.1476 FACOS “f-a-cos” FLOATING EXT
(Firg=-ry)or(ry--ry)
r, is the principal radian angle whose cosing isAn ambiguous condition exists if || is
greater than 1.

12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT
(Firg=-ry)or(ry--ry)
r, is the floating-point value whose hyperbolic cosing isAn ambiguous condition exists if
ry is less than one.

12.6.2.1484 FALOG “f-a-log” FLOATING EXT
(Firg=-ry)or(ry--ry)
Raise ten to the powey, givingr,.

12.6.2.1486 FASIN “f-a-sine” FLOATING EXT
(Firg=-ry)or(ry--ry)
r, is the principal radian angle whose sine;is An ambiguous condition exists if || is
greater than one.

12.6.2.1487 FASINH “f-a-cinch” FLOATING EXT

(Firg=-ry)or(ry--ry)

r, is the floating-point value whose hyperbolic sinejis An ambiguous condition existsrif
is less than zero.

Page 100 X3J14 dpANS-6 Document

12.6.2.1488 FATAN “f-a-tan” FLOATING EXT
(Firg--ry)or(ry--ry)

r, is the principal radian angle whose tangemt.is

12.6.2.1489 FATANZ2 “f-a-tan-two” FLOATING EXT
(Firyro--rg)or(ryry--rg)
ry is the radian angle whose tangent;is,. An ambiguous condition existsrif andr, are
zero.

12.6.2.1491 FATANH “f-a-tan-h” FLOATING EXT
(Firy=-ry)or(ry--ry)
r, is the floating-point value whose hyperbolic tangem}.isAn ambiguous condition exists if
r, is outside the range of -1EO to 1EO.

12.6.2.1493 FCOS “f-cos” FLOATING EXT
(Firg=-ry)or(ry--ry)

r, is the cosine of the radian angle

12.6.2.1494 FCOSH “f-cosh” FLOATING EXT
(Firg--ry)or(ry--ry)

r, is the hyperbolic cosine of.

12.6.2.1513 FE. “f-e-dot” FLOATING EXT
(--)(Fr--)or(r--)

Display, with a trailing space, the top number on the floating-point stack using engineering
notation, where the significand is greater than or equal to 1.0 and less than 1000.0 and the
exponent is a multiple of three.

An ambiguous condition exists if the valueBASEis not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750BASE 12.3.2 Floating-point operations12.6.1.214REPRESENT

12.6.2.1515 FEXP “f-e-x-p” FLOATING EXT
(Firg--ry)or(ry--ry)

Raisee to the power, givingr,.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 101

12.6.2.1516

12.6.2.1553

12.6.2.1554

12.6.2.1557

12.6.2.1613

FEXPM1 “f-e-x-p-m-one” FLOATING EXT
(Firg=-ry)or(ry--ry)
Raisee to the power, and subtract one, giving.

FLN “f-l-n” FLOATING EXT
(Firg=-ry)or(ry--ry)
r, is the natural logarithm of. An ambiguous condition existsrif is less than or equal to
zero.

FLNP1 “f-I-n-p-one” FLOATING EXT
(Firy=-ry)or(ry--ry)
r, is the natural logarithm of the quantityplus one. An ambiguous condition exists;ifs
less than or equal to negative one.

FLOG “f-log” FLOATING EXT
(Firg=-ry)or(ry--ry)
r, is the base-ten logarithm of. An ambiguous condition existsrifis less than or equal to
zero.

FS. “f-s-dot” FLOATING EXT

(=) (Fr=)or(r-)

Display, with a trailing space, the top number on the floating-point stack in scientific notation:

<significand><exponer#
where:
<significand> = [-]<digit>. <digitsO>

<exponert = E[-]<digits>

An ambiguous condition exists if the valueBASEis not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750BASE 12.3.2 Floating-point operations12.6.1.214REPRESENT

12.6.2.1614

FSIN “f-sine” FLOATING EXT
(Firg=-ry)or(ry--ry)

r, is the sine of the radian angle

Page 102 X3J14 dpANS-6 Document

12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT
(Firy=-rorg)or(ry--rors)

r, is the sine of the radian angle r5 is the cosine of the radian angle

12.6.2.1617 FSINH “f-cinch” FLOATING EXT
(Firg--ry)or(ry--ry)

r, is the hyperbolic sine of,.

12.6.2.1618 FSQRT “f-square-root” FLOATING EXT
(Firy=-ry)or(ry--ry)

r, is the square root of. An ambiguous condition existsrif is less than zero.

12.6.2.1625 FTAN “f-tan” FLOATING EXT
(Firg=-ry)or(ry--ry)

r, is the tangent of the radian angje An ambiguous condition exists if cog(is zero.

12.6.2.1626 FTANH “f-tan-h" FLOATING EXT
(Firg--ry)or(ry--ry)

r, is the hyperbolic tangent of.

12.6.2.1640 F~ “f-proximate” FLOATING EXT
(—-flag) (Firyrorg--)or(ryrory--flag)
If r5 is positive flag is true if the absolute value af; (minusr,) is less thams.

If r5is zeroflag is true if the implementation-dependent encoding @ndr, are exactly
identical (positive and negative zero are unequal if they have distinct encodings).

If r5 is negativeflag is true if the absolute value of (minusr,) is less than the absolute value
of ry times the sum of the absolute values,adndr,.

12.6.2.2035 PRECISION FLOATING EXT
(—-u)

Return the number of significant digits currently usedrbyFE. , or FS. asu.

12.6.2.2200 SET-PRECISION FLOATING EXT
(u--)

Set the number of significant digits currently used=byFE. , orFS. tou.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 103

12.6.2.2202 SF! “s-f-store” FLOATING EXT
(sf-addr--) (F:r --) or (r sf-addr--)

Store the floating-point numberas a 32-bit IEEE single-precision numbesfaaddr If the
significand of the internal representatiorr ¢dfas more precision than the IEEE single-
precision format, it will be rounded using the “round to nearest” rule. An ambiguous
condition exists if the exponent ofs too large to be accommodated by the IEEE single-
precision format.

See: 12.3.1.1 Addressesl2.3.2 Floating-point operations

12.6.2.2203 SF@ “s-f-fetch” FLOATING EXT
(sf-addr--) (F: --r) or (sf-addr--r)

Fetch the 32-bit IEEE single-precision number storedi-atidrto the floating-point stack as

in the internal representation. If the IEEE single-precision significand has more precision
than the internal representation, it will be rounded to the internal representation using the
“round to nearest” rule. An ambiguous condition exists if the exponent of the IEEE single-
precision representation is too large to be accommodated by the internal representation.

See: 12.3.1.1 Addressesl2.3.2 Floating-point operations

12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT
(--)
If the data-space pointer is not single-float aligned, reserve enough data space to make it so.

See: 12.3.1.1 Addresses

12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT
(addr -- sf-addr)

sf-addris the first single-float-aligned address greater than or eqadidto

See: 12.3.1.1 Addresses

12.6.2.2207 SFLOAT+ “s-float-plus” FLOATING EXT
(sf-addn -- sf-add,)

Add the size in address units of a 32-bit IEEE single-precision numbgatily, giving sf-
addr,.

See: 12.3.1.1 Addresses

Page 104 X3J14 dpANS-6 Document

12.6.2.2208 SFLOATS “s-floats” FLOATING EXT
(ng--ny)
n, is the size in address unitsrgf32-bit IEEE single-precision numbers.

See: 12.3.1.1 Addresses

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 105

13. The optional Locals word set

13.1 Introduction
See: Annex A.13 The Locals Word Set

13.2 Additional terms and notation

None.
13.3 Additional usage requirements

13.3.1 Locals

A local is a data object whose execution semantics shall return its value, whose scope shall be limited to
the definition in which it is declared, and whose use in a definition shall not preclude reentrancy or
recursion.

13.3.2 Environmental queries
Append table 13.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 13.1 — Environmental query strings

String Value data type Constant? Meaning

#LOCALS n yes maximum number of local variables in a
definition

LOCALS flag no locals word set present

LOCALS-EXT flag no locals extensions word set present

13.3.3 Processing locals

To support the locals word set, a system shall provide a mechanism to receive the messages defined by
(LOCAL) and respond as described here.

During the compilation of a definition after(colon),:NONAME or DOES> a program may begin

sending local identifier messages to the system. The process shall begin when the first message is sent.
The process shall end when the “last local” message is sent. The system shall keep track of the names,
order, and number of identifiers contained in the complete sequence.

The system, upon receipt of a sequence of local-identifier messages, shall take the following actions at
compile time:

1) Create temporary dictionary entries for each of the identifiers pasded@ad\L) , such that each
identifier will behave as Bbcal. These temporary dictionary entries shall vanish at the end of the
definition, denoted by (semicolon),CODE, or DOES> The system need not maintain these
identifiers in the same way it does other dictionary entries as long as they can be found by normal
dictionary searching processes. Furthermore, if the Search-Order word set is present, local identifiers
shall always be searched before any of the word lists in any definable search order, and none of the
Search-Order words shall change the locals’ privileged position in the search order. Local identifiers
may reside in mass storage.

2) For each identifier passed(tTdOCAL) , the system shall generate an appropriate code sequence that
does the following at execution time:

Page 106

X3J14 dpANS-6 Document

3)

4)

a) Allocate a storage resource adequate to contain the value of a local. The storage shall be
allocated in a way that does not preclude re-entrancy or recursion in the definition using the
local.

b) Initialize the value using the top item on the data stack. If more than one local is declared, the
top item on the stack shall be moved into the first local identified, the next item shall be moved
into the second, and so on.

The storage resource may be the return stack or may be implemented in other ways, such as in
registers. The storage resource shall not be the data stack. Use of locals shall not restrict use of the
data stack before or after the point of declaration.

Arrange that any of the legitimate methods of terminating execution of a definition, specifically
(semicolon);CODE, DOES>or EXIT, will release the storage resource allocated for the locals, if
any, declared in that definitiolABORTshall release all local storage resources,G&tdCH THROW
(if implemented) shall release such resources for all definitions whose execution is being terminated.

Separate sets of locals may be declared in defining words B¥d&8>for use by the defining word,
and afteDOES>for use by the word defined.

A system implementing the Locals word set shall support the declaration of at least eight locals in a
definition.

Immediate words in a program may ys®CAL) to implement syntaxes for local declarations with the
following restrictions:

A program shall not compile any executable code into the current definition between the time
(LOCAL) is executed to identify the first local for that definition and the time of sending the single
required “last local” message;
The position in program source at which the sequenge€d@AL) messages is sent, referred to here
as the point at which locals are declared, shall not lie within the scope of any control structure;
Locals shall not be declared until values previously placed on the return stack within the definition
have been removed,;
After a definition’s locals have been declared, a program may place data on the return stack. However,
if this is done, locals shall not be accessed until those values have been removed from the return stack;
Words that return execution tokens, such éick), [] , or FIND, shall not be used with local
names;
A program that declares more than eight locals in a single definition has an environmental
dependency;
Locals may be accessed or updated within control structures, including do-loops;
Local names shall not be referenced®STPONEBRNI[COMPILE] .

See: 3.4 The Forth text interpreter.

13.4 Additional documentation requirements

13.4.1 System documentation

134.1.1

13.4.1.2

Implementation-defined options
maximum number of locals in a definitiatB(3.3 Processing local43.6.2.1799 OCALS)).

Ambiguous conditions

executing a nameldcal while in interpretation statd 8.6.1.008GLOCAL));
namenot defined bywALUEor LOCAL(13.6.1.2295T0).

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 107

13.4.1.3 Other system documentation

— no additional requirements.

13.4.2 Program documentation

13.4.2.1 Environmental dependencies

declaring more than eight locals in a single definitid#13.3 Processing locals

13.4.2.2 Other program documentation

no additional requirements.

13.5 Compliance and labeling

1351

13.5.2

ANS Forth systems

The phrase “Providing the Locals word set” shall be appended to the label of any Standard System that
provides all of the Locals word set.

The phrase “Providingamés) from the Locals Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Locals Extensions word set.

The phrase “Providing the Locals Extensions word set” shall be appended to the label of any Standard
System that provides all of the Locals and Locals Extensions word sets.
ANS Forth programs

The phrase “Requiring the Locals word set” shall be appended to the label of Standard Programs that
require the system to provide the Locals word set.

The phrase “Requiringamés) from the Locals Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Locals Extensions word set.

The phrase “Requiring the Locals Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Locals and Locals Extensions word sets.

Page 108 X3J14 dpANS-6 Document

13.6 Glossary

13.6.1 Locals words
13.6.1.0086 (LOCAL) “Paren-local-paren” LOCAL

Interpretation: Interpretation semantics for this word are undefined.
Execution: (c-addru--)

When executed during compilatiqh, OCAL) passes a message to the system that has one of
two meanings. lbiis non-zero, the message identifies a teal whose definition name is
given by the string of characters identifieddsgddru. If uis zero, the message is “last local”
andc-addrhas no significance.

The result of executin.OCAL) during compilation of a definition is to create a set of
namedocal identifiers, each of which is a definition name, that only have execution
semantics within the scope of that definition’s source.

local Execution: (--x)

Push thdocal's value,x, onto the stack. THecal's value is initialized as described18.3.3
Processing localsand may be changed by precedingltteal's name withTO. An ambiguous
condition exists whetocal is executed while in interpretation state.

Note: This word does not have special compilation semantics in the usual sense because it provides
access to a system capability for use by other user-defined words that do have them. However,
the locals facility as a whole and the sequence of messages passed defines specific usage rules
with semantic implications that are described in detail in setéBdh3 Processing locals

Note: This word is not intended for direct use in a definition to declare that definition’s locals. Itis
instead used by system or user compiling words. These compiling words in turn define their
own syntax, and may be used directly in definitions to declare locals. In this context, the
syntax for(LOCAL) is defined in terms of a sequence of compile-time messages and is
described in detail in sectidr8.3.3 Processing locals

Note: The Locals word set modifies the syntax and semantié2d?295TOas defined in the Core
Extensions word set.

See: 3.4 The Forth text interpreter.

Collating Sequence: ! "#$% &' () *+,-./digits:; <=>? @ ALPHA[\]"_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 109

13.6.1.2295 TO LOCAL
Extend the semantics 6f2.2295TOto be:

Interpretation: (x “<spaces>namke--)

Skip leading spaces and parsemedelimited by a space. Staxén name An ambiguous
condition exists ihamewas not defined by ALUE

Compilation: (“<spaces>namk--)

Skip leading spaces and parsemedelimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition existarifewas not defined
by eitherVALUEor (LOCAL) .

Run-time: (x--)
Storex in name
Note: An ambiguous condition exists if eithe©OSTPONBr[COMPILE] is applied torQ.

See: 3.4.1 Parsing 6.2.2295TQ, 6.2.2405VALUE 13.6.1.008LOCAL) .

13.6.2 Locals extension words
13.6.2.1795 LOCALS]| “locals-bar” LOCAL EXT

Interpretation: Interpretation semantics for this word are undefined.
Compllatlon (“namq” “ nam%ﬂ “nam%” “ | no__)

Create up to eight local identifiers as described CAL) . The list of locals to be defined
is terminated by . Append the run-time semantics given below to the current definition.

Run-time: (X, ... X5 Xq =)

Initialize up to eight local identifiers as described $6.1.008LOCAL) , each of which
takes as its initial value the top stack item, removing it from the stack. Identifieg is
initialized withx,, identifiernameg with x,, etc. When invoked, each local will return its
value. The value of a local may be changed us$1§.1.2295TO.

Page 110 X3J14 dpANS-6 Document

14. The optional Memory-Allocation word set

14.1 Introduction

14.2 Additional terms and notation

None.
14.3 Additional usage requirements

14.3.1 1/O Results data type

I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that
the I/O operation completed successfully; other values and their meanings are implementation-defined.

Append table 14.1 to table 3.1.

Table 14.1 — Data types

Symbol Data type Size on stack
ior I/O results 1 cell

14.3.2 Environmental queries
Append table 14.2 to table 3.5.

See: 3.2.6 Environmental queries

Table 14.2 — Environmental query strings

String Value datatype Constant? Meaning

MEMORY-ALLOC flag no memory-allocation word set present

MEMORY-ALLOC-EXT flag no memory-allocation extensions word set
present

14.3.3 Allocated regions

A program may address memory in data space regions made avail&hle@EATE or RESIZE and not
yet released bFREE

See: 3.3.3 Data space
14.4 Additional documentation requirements
14.4.1 System documentation

14.4.1.1 Implementation-defined options
— values and meaning iofr (14.3.1 1/0 Results data type14.6.1.0707/ALLOCATE 14.6.1.1605-REE
14.6.1.214RESIZE).
14.4.1.2 Ambiguous conditions

— no additional requirements.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 111

14.4.1.3 Other system documentation

— no additional requirements.

14.4.2 Program documentation

— no additional requirements.
14.5 Compliance and labeling

14.5.1 ANS Forth systems

The phrase “Providing the Memory-Allocation word set” shall be appended to the label of any Standard
System that provides all of the Memory-Allocation word set.

The phrase “Providingamés) from the Memory-Allocation Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Memory-Allocation Extensions word set.

The phrase “Providing the Memory-Allocation Extensions word set” shall be appended to the label of any
Standard System that provides all of the Memory-Allocation and Memory-Allocation Extensions word
sets.

14.5.2 ANS Forth programs

The phrase “Requiring the Memory-Allocation word set” shall be appended to the label of Standard
Programs that require the system to provide the Memory-Allocation word set.

The phrase “Requiringamés) from the Memory-Allocation Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Memory-Allocation
Extensions word set.

The phrase “Requiring the Memory-Allocation Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Memory-Allocation and Memory-
Allocation Extensions word sets.

14.6 Glossary

14.6.1 Memory-Allocation words
14.6.1.0707 ALLOCATE MEMORY
(u--a-addrior)

Allocateu address units of contiguous data space. The data-space pointer is unaffected by this
operation. The initial content of the allocated space is undefined.

If the allocation succeeda;addris the aligned starting address of the allocated spacerand
is zero.

If the operation failsa-addrdoes not represent a valid addressiands the implementation-
defined 1/O result code.

See: 6.1.1650HERE 14.6.1.1609-REE 14.6.1.214RESIZE.

Page 112 X3J14 dpANS-6 Document

14.6.1.1605 FREE MEMORY
(a-addr--ior)

Return the contiguous region of data space indicateddrjdrto the system for later
allocation. a-addrshall indicate a region of data space that was previously obtained by
ALLOCATEor RESIZE. The data-space pointer is unaffected by this operation.

If the operation succeedsr is zero. If the operation fail®r is the implementation-defined
I/O result code.

See: 6.1.1650HERE 14.6.1.070 ALLOCATE 14.6.1.214RESIZE.

14.6.1.2145 RESIZE MEMORY
(‘a-addr; u -- a-addr, ior)

Change the allocation of the contiguous data space starting at the adddelsg previously
allocated byALLOCATEor RESIZE, to u address unitsu may be either larger or smaller
than the current size of the region. The data-space pointer is unaffected by this operation.

If the operation succeeds;addr, is the aligned starting addressucdiddress units of allocated
memory andor is zero. a-addr, may be, but need not be, the sama-addr;. If they are not

the same, the values contained in the regi@ratdr, are copied t@-addr,, up to the

minimum size of either of the two regions. If they are the same, the values contained in the
region are preserved to the minimunmuadr the original size. la-addr, is not the same as
addry, the region of memory a-addr; is returned to the system according to the operation of
FREE

If the operation failsa-addr, equalsa-addr, the region of memory at-addr, is unaffected,
andior is the implementation-defined 1/O result code.

See: 6.1.1650HERE 14.6.1.070/ALLOCATE 14.6.1.160FREE

14.6.2 Memory-Allocation extension words

None

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 113

15. The optional Programming-Tools word set

15.1 Introduction

This word set extension contains words most often used during the development of applications.

15.2 Additional terms and notation

None.
15.3 Additional usage requirements

15.3.1 Environmental queries
Append table 15.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 15.1 — Environmental query strings

String Value data type Constant? Meaning

TOOLS flag no programming-tools word set present

TOOLS-EXT flag no programming-tools extensions word set
present

15.3.2 The Forth dictionary

A program using the wordSODEor ;CODE associated with assembler code has an environmental
dependency on that particular instruction set and assembler notation.

Programs using the wor@DITOR or ASSEMBLERequire the Search Order word set or an equivalent
implementation-defined capability.

See: 3.3 The Forth dictionary.
15.4 Additional documentation requirements
15.4.1 System documentation

15.4.1.1 Implementation-defined options

— ending sequence for input followit§.6.2.047QCODE and15.6.2.0930CODE
— manner of processing input followit§.6.2.047QCODE and15.6.2.093CODE

— search-order capability f&6.6.2.130EEDITORand15.6.2.074ASSEMBLER15.3.3 The Forth
dictionary);

— source and format of display b$.6.1.21945EE

15.4.1.2 Ambiguous conditions

* deleting the compilation word-lisi5.6.2.158(FORGEY;

* fewer thanu+1 items on control-flow stack $.6.2.101515.6.2.102)
* namecan't be found1(5.6.2.1580FORGET;

* namenot defined vi&6.1.1000CREATHE215.6.2.047QCODE);

* 6.1.2033POSTPONEpplied t015.6.2.2533IF] ;

Page 114 X3J14 dpANS-6 Document

* reaching the end of the input source before matching.2.253JELSE] or 15.6.2.2533THEN]
(15.6.2.253721F]);

* removing a needed definitiod%.6.2.1580FORGEY.
15.4.1.3 Other system documentation

— no additional requirements.
15.4.2 Program documentation

15.4.2.1 Environmental dependencies
— using the word$5.6.2.047QCODE or 15.6.2.093@CODE

15.4.2.2 Other program documentation

— no additional requirements.
15.5 Compliance and labeling

15.5.1 ANS Forth systems

The phrase “Providing the Programming-Tools word set” shall be appended to the label of any Standard
System that provides all of the Programming-Tools word set.

The phrase “Providingamés) from the Programming-Tools Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Programming-Tools Extensions word set.

The phrase “Providing the Programming-Tools Extensions word set” shall be appended to the label of any
Standard System that provides all of the Programming-Tools and Programming-Tools Extensions word
sets.

15.5.2 ANS Forth programs

The phrase “Requiring the Programming-Tools word set” shall be appended to the label of Standard
Programs that require the system to provide the Programming-Tools word set.

The phrase “Requiringamés) from the Programming-Tools Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Programming-Tools
Extensions word set.

The phrase “Requiring the Programming-Tools Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Programming-Tools and Programming-
Tools Extensions word sets.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 115

15.6 Glossary

15.6.1 Programming-Tools words

15.6.1.0220 .S

See:

15.6.1.0600 ?

See:

“dot-s” TOOLS
()

Copy and display the values currently on the data stack. The format of the display is
implementation-dependent.

.S may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #3.

3.3.3.6 Other transient regions

“question” TOOLS
(a-addr--)
Display the value stored ataddr.

? may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #3.

3.3.3.6 Other transient regions

15.6.1.1280 DUMP TOOLS

See:

(addru--)

Display the contents af consecutive addresses starting@dr. The format of the display is
implementation dependent.

DUMRNay be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #y.

3.3.3.6 Other Transient Regions

15.6.1.2194 SEE TOOLS

See:

(“<spaces>name--)

Display a human-readable representation of the named word’s definition. The source of the
representation (object-code decompilation, source block, etc.) and the particular form of the
display is implementation defined.

SEEmay be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #3.

3.3.3.6 Other transient regions

Page 116 X3J14 dpANS-6 Document

15.6.1.2465 WORDS TOOLS
()

List the definition names in the first word list of the search order. The format of the display is
implementation-dependent.

WORD$®ay be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #y.

See: 3.3.3.6 Other Transient Regions

15.6.2 Programming-Tools extension words
15.6.2.0470 ;CODE “semicolon-code” TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C:colon-sys--)

Append the run-time semantics below to the current definition. End the current definition,
allow it to be found in the dictionary, and enter interpretation state, consaolorgsys

Process subsequent characters in the parse area in an implementation-defined manner, thus
generating corresponding machine code. Those characters typically represent source code in a
programming language, usually some form of assembly language. The process continues,
refilling the input buffer as needed, until an implementation-defined ending sequence is
processed.

Run-time: (--) (R:nest-sys-)

Replace the execution semantics of the most recent definition wittatheexecution
semantics given below. Return control to the calling definition specifiegtftysys An
ambiguous condition exists if the most recen definition was not definedREATEor a
user-defined word that cal®REATE

nameExecution: (i*X -- j*x)
Perform the machine code sequence that was generated follG@OmE

See: 6.1.1250DOES=>

15.6.2.0702 AHEAD TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: --orig)

Put the location of a new unresolved forward referamigeonto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete untibrig is resolved (e.g., byHEN.

Run-time: (--)

Continue execution at the location specified by the resolutionignf

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 117

15.6.2.0740 ASSEMBLER TOOLS EXT
(--)
Replace the first word list in the search order withABSEMBLERvord list.

See: 16. The optional Search-Order word set

15.6.2.0830 BYE TOOLS EXT
()

Return control to the host operating system, if any.

15.6.2.0930 CODE TOOLS EXT

(“<spaces>name--)

Skip leading space delimiters. Pansgnedelimited by a space. Create a definitionrfame
called a “code definition,” with the execution semantics defined below.

Process subsequent characters in the parse area in an implementation-defined manner, thus
generating corresponding machine code. Those characters typically represent source code in a
programming language, usually some form of assembly language. The process continues,

refilling the input buffer as needed, until an implementation-defined ending sequence is
processed.

nameExecution: (i*x --j*xX)
Execute the machine code sequence that was generated fol@@Dg

See: 3.4.1 Parsing

15.6.2.1015 CS-PICK “c-s-pick” TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.

Execution: (C:des}, ...origgldes} -- des, ... origg|dest des,)
(S:u--)

Removeu. Copydes}, to the top of the control-flow stack. An ambiguous condition exists if
there are less thar-1 items, each of which shall be arg or dest on the control-flow stack
beforeCS-PICK is executed.

If the control-flow stack is implemented using the data staskall be the topmost item on
the data stack.

Page 118

X3J14 dpANS-6 Document

15.6.2.1020 CS-ROLL “c-s-roll” TOOLS EXT

Interpretation:

Execution:

Interpretation semantics for this word are undefined.

(C:orig |des}, orig,,_4|des}, 4 ... origgldes} -- orig,,_;|des},_; ... origg|desy, orig, |des},)
(S:u--)

Removeu. Rotateu+1 elements on top of the control-flow stack so thag, |des}, is on top of
the control-flow stack. An ambiguous condition exists if there are lessitfiaitems, each of
which shall be arig or dest on the control-flow stack befof@S-ROLL is executed.

If the control-flow stack is implemented using the data staskall be the topmost item on
the data stack.

15.6.2.1300 EDITOR TOOLS EXT

See:

(--)
Replace the first word list in the search order withEB4TOR word list.

16. The Optional Search-Order Word Set

15.6.2.1580 FORGET TOOLS EXT

Note:

See:

(“<spaces>name--)

Skip leading space delimiters. Pansenedelimited by a space. Fimame then delet@ame
from the dictionary along with all words added to the dictionary atieve An ambiguous
condition exists ihamecannot be found.

If the Search-Order word set is preséi@RGETearches the compilation word list. An
ambiguous condition exists if the compilation word list is deleted.

An ambiguous condition existsFHORGETemoves a word required for correct execution.
This word is obsolescent and is included as a concession to existing implementations.

3.4.1 Parsing

15.6.2.2250 STATE TOOLS EXT

See:

(-- a-addr)

Extend the semantics 6f1.2250STATEto allow;CODEto change the value BTATE A
program shall not directly alter the contentSaATE

3.4 The Forth text interpreter, 6.1.0450: , 6.1.0460; , 6.1.0670ABORT6.1.2050QUIT,
6.1.2250STATE 6.1.250(] , 6.1.254(] , 6.2.0455:NONAME 15.6.2.047QCODE

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 119

15.6.2.2531 [ELSE] “bracket-else” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (“<spaces>name .’.--)

Skipping leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences[t#] ... [THEN] and[IF] ... [ELSE] ...

[THEN] , until the wordTHEN] has been parsed and discarded. If the parse area becomes
exhausted, it is refilled as wiREFILL . [ELSE] is an immediate word.

See: 3.4.1 Parsing

15.6.2.2532 [IF] “bracket-if” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (flag|flag “<spaces>name .”.--)

If flag istrue, do nothing. Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrenfie$ of [THEN]

and[IF] ... [ELSE] ... [THEN] , until either the wordELSE] or the word

[THEN] has been parsed and discarded. If the parse area becomes exhausted, it is refilled as
with REFILL . [IF] is an immediate word.

An ambiguous condition exists[iF] isPOSTPONE, or if the end of the input buffer is
reached and cannot be refilled before the termindBh@E] or [THEN] is parsed.

See: 3.4.1 Parsing

15.6.2.2533 [THEN] “bracket-then” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (--)

Does nothing.[THEN] is an immediate word.

Page 120 X3J14 dpANS-6 Document

16. The optional Search-Order word set
16.1 Introduction

16.2 Additional terms and notation
compilation word list: the word list into which new definition names are placed.

search order: a list of word lists specifying the order in which the dictionary will be searched.
16.3 Additional usage requirements

16.3.1 Data types

Word list identifiers are implementation-dependent single-cell values that identify word lists.
Append table 16.1 to table 3.1.

Table 16.1 — Data types

Symbol Data type Size on stack
wid word list identifiers 1 cell

See: 3.1 Data types3.4.2 Finding definition names3.4 The Forth text interpreter.

16.3.2 Environmental queries
Append table 16.2 to table 3.5.

See: 3.2.6 Environmental queries

Table 16.2 — Environmental query strings

String Value data type Constant? Meaning

SEARCH-ORDER flag no search-order word set present
SEARCH-ORDER-EXT flag no search-order extensions word set present
WORDLISTS n yes maximum number of word lists usable in

the search order

16.3.3 Finding definition names

When searching a word list for a definition name, the system shall search each word list from its last
definition to its first. The search may encompass only a single word list, aSSEARCH-WORDLISTor
all the word lists in the search order, as with the text interpretdfiaiial

Changing the search order shall only affect the subsequent finding of definition names in the dictionary.
A system with the Search-Order word set shall allow at least eight word lists in the search order.

An ambiguous condition exists if a program changes the compilation word list during the compilation of a
definition or before modification of the behavior of the most recently compiled definition@@BE,
DOES> or IMMEDIATE

A program that requires more than eight word lists in the search order has an environmental dependency.

See: 3.4.2 Finding definition names

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 121

16.3.4

Contiguous regions

The regions of data space produced by the operations descrb8®3i2 Contiguous regionsnay be
non-contiguous i¥WORDLISTis executed between allocations.

16.4 Additional documentation requirements

16.4.1

System documentation

16.4.1.1 Implementation-defined options

— maximum number of word lists in the search oriiér3.3 Finding definition names16.6.1.2197
SET-ORDEFR;

— minimum search ordet§.6.1.2197SET-ORDER16.6.2.19650NLYj.

16.4.1.2 Ambiguous conditions

* changing the compilation word list.3.3 Finding definition name};
* search order emptyl6.6.2.203PREVIOUS;
* too many word lists in search ordé6(6.2.0715 ALSQ.

16.4.1.3 Other system documentation

16.4.2

no additional requirements.

Program documentation

16.4.2.1 Environmental dependencies

— requiring more than eight word-lists in the search ot®B8(3 Finding definition name}.

16.4.2.2 Other program documentation

— no additional requirements.

16.5 Compliance and labeling

16.5.1

16.5.2

ANS Forth systems

The phrase “Providing the Search-Order word set” shall be appended to the label of any Standard System
that provides all of the Search-Order word set.

The phrase “Providingamés) from the Search-Order Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Search-Order Extensions word set.

The phrase “Providing the Search-Order Extensions word set” shall be appended to the label of any
Standard System that provides all of the Search-Order and Search-Order Extensions word sets.

ANS Forth programs

The phrase “Requiring the Search-Order word set” shall be appended to the label of Standard Programs
that require the system to provide the Search-Order word set.

The phrase “Requiringamés) from the Search-Order Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Search-Order Extensions
word set.

The phrase “Requiring the Search-Order Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Search-Order and Search-Order Extensions word
sets.

Page 122 X3J14 dpANS-6 Document

16.6 Glossary

16.6.1 Search-Order words
16.6.1.1180 DEFINITIONS SEARCH
(-)

Make the compilation word list the same as the first word list in the search order. Specifies
that the names of subsequent definitions will be placed in the compilation word list.
Subsequent changes in the search order will not affect the compilation word list.

See: 16.3.3 Finding Definition Names

16.6.1.1550 FIND SEARCH
Extend the semantics 6f1.1550FIND to be:

(c-addr--c-addrO | xt1 | xt-1)

Find the definition named in the counted string-addr. If the definition is not found after
searching all the word lists in the search order, rattaddrand zero. If the definition is
found, returrxt. If the definition is immediate, also return one (1); otherwise also return
minus-one (-1). For a given string, the values returneldip while compiling may differ
from those returned while not compiling.

See: 3.4.2 Finding definition names6.1.0070 , 6.1.1550FIND, 6.1.2033POSTPONE
6.1.2510'] , D.6.7 Immediacy

16.6.1.1595 FORTH-WORDLIST SEARCH
(--wid)

Returnwid, the identifier of the word list that includes all standard words provided by the
implementation. This word list is initially the compilation word list and is part of the initial
search order.

16.6.1.1643 GET-CURRENT SEARCH
(--wid)

Returnwid, the identifier of the compilation word list.

16.6.1.1647 GET-ORDER SEARCH
(- wid,, ... wid; n)

Returns the number of word ligtsn the search order and the word list identifieid, ...
wid, identifying these word listswid, identifies the word list that is searched first, and],
the word list that is searched last. The search order is unaffected.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 123

16.6.1.2192 SEARCH-WORDLIST SEARCH
(c-addruwid -- O [xt 1 [xt-1)

Find the definition identified by the strirggaddru in the word list identified bwid. If the
definition is not found, return zero. If the definition is found, return its execution tdkeard
one (1) if the definition is immediate, minus-one (-1) otherwise.

16.6.1.2195 SET-CURRENT SEARCH
(wid --)

Set the compilation word list to the word list identifiedviiyl.

16.6.1.2197 SET-ORDER SEARCH
(wid,, ... wid; n --)

Set the search order to the word lists identifieavial, ... wid;. Subsequently, word listid;

will be searched first, with word listid, searched last. ifis zero, empty the search order. If
nis minus one, set the search order to the implementation-defined minimum search order.
The minimum search order shall include the wét@RTH-WORDLISBNdSET-ORDER A
system shall allom to be at least eight.

16.6.1.2460 WORDLIST SEARCH
(--wid)

Creates a new empty word list, returning its word list identifidr The new word list may

be returned from a pool of preallocated word lists or may be dynamically allocated in data
space. A system shall allow the creation of at least 8 new word lists in addition to any
provided as part of the system.

16.6.2 Search-Order extension words
16.6.2.0715 ALSO SEARCH EXT
(-)

Transform the search order consistingvaf,,, ... wid,, wid; (wherewid, is searched first) into
wid,,, ...wid,, wid,, wid;. An ambiguous condition exists if there are too many word lists in
the search order.

16.6.2.1590 FORTH SEARCH EXT
()

Transform the search order consistingvaf,,, ... wid,, wid; (wherewid, is searched first) into
Wid, .. widy, WideorTH-WORDLIST

Page 124 X3J14 dpANS-6 Document

16.6.2.1965 ONLY SEARCH EXT
()

Set the search order to the implementation-defined minimum search order. The minimum
search order shall include the woRISRTH-WORDLISBndSET-ORDER

16.6.2.1985 ORDER SEARCH EXT
()

Display the word lists in the search order in their search order sequence, from first searched to
last searched. Also display the word list into which new definitions will be placed. The
display format is implementation dependent.

ORDERnay be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified #y.

See 3.3.3.6 Other Transient Regions

16.6.2.2037 PREVIOUS SEARCH EXT
()

Transform the search order consistingvaf,,, ... wid,, wid; (wherewid, is searched first) into
wid,,, ...wid,. An ambiguous condition exists if the search order was empty before
PREVIOUSwas executed.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 125

17. The optional String word set

17.1 Introduction

17.2 Additional terms and notation
None.

17.3 Additional usage requirements
Append table 17.1 to table 3.5.

See: 3.2.6 Environmental queries

Table 17.1 — Environmental query strings

String Value data type Constant? Meaning
STRING flag no string word set present
STRING-EXT flag no string extensions word set present

17.4 Additional documentation requirements
None.

17.5 Compliance and labeling

17.5.1 ANS Forth systems

The phrase “Providing the String word set” shall be appended to the label of any Standard System that
provides all of the String word set.

The phrase “Providingamés) from the String Extensions word set” shall be appended to the label of any
Standard System that provides portions of the String Extensions word set.

The phrase “Providing the String Extensions word set” shall be appended to the label of any Standard
System that provides all of the String and String Extensions word sets.

17.5.2 ANS Forth programs

The phrase “Requiring the String word set” shall be appended to the label of Standard Programs that
require the system to provide the String word set.

The phrase “Requiringamés) from the String Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the String Extensions word set.

The phrase “Requiring the String Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the String and String Extensions word sets.

Page 126 X3J14 dpANS-6 Document

17.6 Glossary

17.6.1 String words

17.6.1.0170 -TRAILING “dash-trailing” STRING
(c-addru, -- c-addru,)
If u, is greater than zera, is equal tai, less the number of spaces at the end of the character
string specified bg-addru,. If u, is zero or the entire string consists of spaogss zero.

17.6.1.0245 /STRING “slash-string” STRING
(c-addr u; n-- c-addr, u,)
Adjust the character string etaddr; by n characters. The resulting character string, specified
by c-addr, u,, begins at-addr, plusn characters and ig minusn characters long.

17.6.1.0780 BLANK STRING
(c-addru--)
If uis greater than zero, store the character value for spaaimsecutive character

positions beginning at-addr.

17.6.1.0910 CMOVE “c-move” STRING
(c-addn c-addr, u --)

If uis greater than zero, copyconsecutive characters from the data space startrgdatr;
to that starting at-addr,, proceeding character-by-character from lower addresses to higher
addresses.

Contrast with: 17.6.1.092CMOVE>

17.6.1.0920 CMOVE> “c-move-up” STRING
(c-addr c-addr, u --)

If uis greater than zero, copyconsecutive characters from the data space startgdatr;
to that starting at-addr,, proceeding character-by-character from higher addresses to lower
addresses.

Contrast with: 17.6.1.091CMOVE

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 127

17.6.1.0935 COMPARE STRING
(c-addr; u; c-addr, u, --n)

Compare the string specified byaddr; u; to the string specified by-addr, u,. The strings

are compared, beginning at the given addresses, character by character, up to the length of the
shorter string or until a difference is found. If the two strings are identicakero. If the

two strings are identical up to the length of the shorter stnirgminus-one (-1) il is less

thanu, and one (1) otherwise. If the two strings are not identical up to the length of the

shorter stringn is minus-one (-1) if the first non-matching character in the string specified by
c-addn, u; has a lesser numeric value than the corresponding character in the string specified
by c-addr, u, and one (1) otherwise.

17.6.1.2191 SEARCH STRING
(c-addr, u; c-addr, u, -- c-addr; us flag)

Search the string specified byaddr; u, for the string specified bg-addr, u,. If flagis true,
a match was found ataddr; with u, characters remaining. flag is false there was no
match anct-addr; is c-addr; andu; is u;.

17.6.1.2212 SLITERAL STRING

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (c-addr u--)
Append the run-time semantics given below to the current definition.
Run-time: (-- c-addr, u)

Returnc-addr, u describing a string consisting of the characters specifiedauidr, u during
compilation. A program shall not alter the returned string.

17.6.2 String extension words

None

Page 128 X3J14 dpANS-6 Document

A. Rationale (informative annex)

A.1 Introduction
A.1.1 Purpose

A.1.2 Scope

This Standard is more extensive than previous industry standards for the Forth language. Several things
made this necessary:

— the desire to resolve conflicts between previous standards;

— the need to eliminate semantic ambiguities and other inadequacies;

— the requirement to standardize common practice, where possible resolving divergences in a way that
minimizes the cost of compliance;

— the desire to standardize common system techniques, including those germane to hardware.

The result of the effort to satisfy all of these objectives is a Standard arranged so that the required word set
remains small. Thus ANS Forth can be provided for resource-constrained embedded systems. Words
beyond those in the required word set are organized into a number of optional word sets and their
extensions, enabling implementation of tailored systems that are Standard.

When judging relative merits, the members of the X3J14 Technical Committee were guided by the
following goals (listed in alphabetic order):

Consistency The Standard provides a functionally complete set of words with minimal
functional overlap.

Cost of compliance This goal includes such issues as common practice, how much existing code
would be broken by the proposed change, and the amount of effort required to
bring existing applications and systems into conformity with the Standard.

Efficiency Execution speed, memory compactness.
Portability Words chosen for inclusion should be free of system-dependent features.
Readability Forth definition names should clearly delineate their behavior. That behavior

should have an apparent simplicity which supports rapid understanding. Forth
should be easily taught and support readily maintained code.

Utility Be judged to have sufficiently essential functionality and frequency of use to be
deemed suitable for inclusion.

A.1.3 Document organization

A.1.3.1 Word sets

From the beginning, the X3J14 Technical Committee faced not only conflicting ideas as to what “real”
Forth is, but also conflicting needs of the various groups within the Forth community. At one extreme
were those who pressed for a “bare” Forth. At the other extreme were those who wanted a “fat” Forth.
Many were somewhere in between. All were convinced of the rightness of their own position and of the
wrongness of at least one of the two extremes. The committee’s composition reflected this full range of
interests.

The approach we have taken is to define a Core word set establishing a greatest lower bound for required
system functionality and to provide a portfolio of optional word sets for special purposes. This simple
approach parallels the fundamental nature of Forth as an extensible language, and thereby achieves a kind
of meta-extensibility.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 129

With this key, high-level compromise, regardless of the actual makeup of the individual word sets, a firm
and workable framework is established for the long term. One may or may not agree that there should be
a Locals word set, or that the waCZ®MPILE, belongs in the Core Extensions word set. But at least

there is a mechanism whereby such things can be included in a logical and orderly manner.

Several implications of this scheme of optional word sets are significant.

First, ANS Forth systems can continue to be implemented on a greater range of hardware than could be
claimed by almost any other single language. Since only the Core word set is required, very limited
hardware will be able to accommodate an ANS Forth implementation.

Second, a greater degree of portability of applications, and of programmers, is anticipated. The optional
word sets standardize various functions (e.g., floating point) that were widely implemented before, but not
with uniform definition names and methodologies, nor the same levels of completeness. With such words
now standardized in the optional word sets, communications between programmers -- verbally, via
magazine or journal articles, etc. -- will leap to a new level of facility, and the shareability of code and
applications should rise dramatically.

Third, ANS Forth systems may be designed to offer the user the power to selectively, even dynamically,
include or exclude one or more of the optional word sets or portions thereof. Also, lower-priced products
may be offered for the user who needs the Core word set and not much more. Thus, virtually unlimited
flexibility will be available to the user.

But these advantages have a price. The burden is on the user to decide what capabilities are desired, and
to select product offerings accordingly, especially when portability of applications is important. We do not
expect most implementors to attempt to provide all word sets, but rather to select those most valuable to
their intended markets.

The basic requirement is that if the implementor claims to have a particular optional word set the entire
required portion of that word set must be available. If the implementor wishes to offer only part of an
optional word set, it is acceptable to say, for example, “This system offers portions of the [named] word
set,” particularly if the selected or excluded words are itemized clearly.

Each optional word set will probably appeal to a particular constituency. For example, scientists
performing complex mathematical analysis may place a higher value on the Floating-Point word set than
programmers developing simple embedded controllers. As in the case of the core extensions, we expect
implementors to offer those word sets they expect will be valued by their users.

Optional word sets may be offered in source form or otherwise factored so that the user may selectively
load them.

The extensions to the optional word sets include words which are deemed less essential to performing the
primary activity supported by the word set, though clearly relevant to it. As in the case of the Core
Extensions, implementors may selectively add itemized subsets of a word set extension providing the
labeling doesn’t mislead the user into thinking incorrectly that all words are present.

A.2 Terms and notation

A.2.1 Definitions of terms
ambiguous condition

The response of a Standard System to an ambiguous condition is left to the discretion of the implementor.
A Standard System need not explicitly detect or report the occurrence of ambiguous conditions.

cross compiler

Cross-compilers may be used to prepare a program for execution in an embedded system, or may be used
to generate Forth kernels either for the same or a different run-time environment.

data field

Page 130 X3J14 dpANS-6 Document

A.2.2

A.2.2.

A.3

A3.1

In earlier standards, data fields were known as “parameter fields”.

On subroutine threaded Forth systems, everything is object code. There are no traditional code or data
fields. Only a word defined b@REATEor by a word that callEREATEhas a data field. Only a data
field defined viaCREATEcan be manipulated portably.

word set

This Standard recognizes that some functions, while useful in certain application areas, are not
sufficiently general to justify requiring them in all Forth systems. Further, it is helpful to group Forth
words according to related functions. These issues are dealt with using the concept of word sets.

The “Core” word set contains the essential body of words in a Forth system. It is the only “required” word
set. Other word sets defined in this Standard are optional additions to make it possible to provide
Standard Systems with tailored levels of functionality.

Notation

2 Stack notation

The use ofsys orig, anddestdata types in stack effect diagrams conveys two pieces of information.

First, it warns the reader that many implementations use the data stack in unspecified ways for those
purposes, so that items underneath on either the control-flow or data stacks are unavailable. Second, in
cases whererig anddestare used, explicit pairing rules are documented on the assumption that all
systems will implement that model so that its results are equivalent to employment of some stack, and that
in fact many implementations do use the data stack for this purpose. However, nothing in this Standard
requires that implementations actually employ the data stack (or any other) for this purpose so long as the
implied behavior of the model is maintained.

Usage requirements

Forth systems are unusually simple to develop, in comparison with compilers for more conventional
languages such as C. In addition to Forth systems supported by vendors, public-domain implementations
and implementation guides have been widely available for nearly twenty years, and a large number of
individuals have developed their own Forth systems. As a result, a variety of implementation approaches
have developed, each optimized for a particular platform or target market.

The X3J14 Technical Committee has endeavored to accommodate this diversity by constraining
implementors as little as possible, consistent with a goal of defining a standard interface between an
underlying Forth System and an application program being developed on it.

Similarly, we will not undertake in this section to tell you how to implement a Forth System, but rather
will provide some guidance as to what the minimum requirements are for systems that can properly claim
compliance with this Standard.

Data-types

Most computers deal with arbitrary bit patterns. There is no way to determine by inspection whether a cell
contains an address or an unsigned integer. The only meaning a datum possesses is the meaning assigned
by an application.

When data are operated upon, the meaning of the result depends on the meaning assigned to the input
values. Some combinations of input values produce meaningless results: for instance, what meaning can
be assigned to the arithmetic sum of the ASCII representation of the character “A” and a TRUE flag? The
answer may be “no meaning”; or alternatively, that operation might be the first step in producing a
checksum. Context is the determiner.

Collating Sequence: ' "#$% &' () *+,-./digits:; <=>?2 @ ALPHA[\]"_ "alpha{]|}~

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 131

The discipline of circumscribing meaning which a program may assign to various combinations of bit
patterns is sometimes callddtatyping Many computer languages impose explicit data typing and have
compilers that prevent ill-defined operations.

Forth rarely explicitly imposes data-type restrictions. Still, data types implicitly do exist, and discipline is
required, particularly if portability of programs is a goal. In Forth, it is incumbent upon the programmer
(rather than the compiler) to determine that data are accurately typed.

This section attempts to offer guidance regardiepctodata typing in Forth.

A.3.1.2 Character types

The correct identification and proper manipulation of the character data type is beyond the purview of
Forth’s enforcement of data type by means of stack depth. Characters do not necessarily occupy the entire
width of their single stack entry with meaningful data. While the distinction between signed and unsigned
character is entirely absent from the formal specification of Forth, the tendency in practice is to treat
characters as short positive integers when mathematical operations come into play.

Standard Character Set

1) The storage unit for the character data ty@C!, FILL , etc.) must be able to contain unsigned
numbers from O through 255.

2) An implementation is not required to restrict character storage to that range, but a Standard Program
without environmental dependencies cannot assume the ability to store numbers outside that range in a
“char” location.

3) The allowed number representations are two’s-complement, one’s-complement, and signed-magnitude.
Note that all of these number systems agree on the representation of positive numbers.

4) Since a thar’ can store small positive numbers and since the character data type is a sub-range of the
unsigned integer data typ8! must store the n least-significant bits of a cell (8 <= n <= bits/cell). Given
the enumeration of allowed number representations and their known enco@Rgg %x C! xxC@ "

must leave a stack item with some number of bits set, which will thus will be accepted as nonHzero by

5) For the purposes of inplKEY, ACCEPT etc.) and outpulEMIT, TYPE etc.), the encoding between

numbers and human-readable symbols is ISO646/IRV (ASCII) within the range from 32 to 126 (space to
~). EBCDIC is out (most “EBCDIC” computer systems support ASCII too). Outside that range, it is up to
the implementation. The obvious implementation choice is to use ASCII control characters for the range
from O to 31, at least for the “displayable” characters in that range (TAB, RETURN, LINEFEED,
FORMFEED). However, this is not as clear-cut as it may seem, because of the variation between
operating systems on the treatment of those characters. For example, some systems TAB to 4 character
boundaries, others to 8 character boundaries, and others to preset tab stops. Some systems perform an
automatic linefeed after a carriage return, others perform an automatic carriage return after a linefeed, and
others do neither.

The codes from 128 to 255 may eventually be standardized, either formally or informally, for use as
international characters, such as the letters with diacritical marks found in many European languages.
One such encoding is the 8-bit ISO Latin-1 character set. The computer marketplace at large will
eventually decide which encoding set of those characters prevails. For Forth implementations running
under an operating system (the majority of those running on standard platforms these days), most Forth
implementors will probably choose to do whatever the system does, without performing any remapping
within the domain of the Forth system itself.

6) A Standard Program can depend on the ability to receive any character in the range 32 ... 126 through
KEY, and similarly to display the same set of charactersEMIT. If a program must be able to receive

or display any particular character outside that range, it can declare an environmental dependency on the
ability to receive or display that character.

Page 132 X3J14 dpANS-6 Document

7) A Standard Program cannot use control characters in definition names. However, a Standard System is
not required to enforce this prohibition. Thus, existing systems that currently allow control characters in
words names froBLOCKsource may continue to allow them, and programs running on those systems

will continue to work. In text file source, the parsing action with space as a delimiteB{e\ WORD

treats control characters the same as spaces. This effectively implies that you cannot use control
characters in definition names from text-file source, since the text interpreter will treat the control
characters as delimiters. Note that this “control-character folding” applies only when space is the

delimiter, thus the phras€HAR) WORD may collect a string containing control characters.

Storage and retrieval

Characters are transferred from the data stack to memdazy bpd from memory to the data stack@@

A number of lower-significance bits equivalent to the implementation-dependent widthafeterare
transferred from a popped data stack entry to an address by the a@iowitfiout affecting any bits

which may comprise the higher-significance portion of the cell at the destination address; however, the
action ofC@clears all higher-significance bits of the data stack entry which it pushes that are beyond the
implementation-dependent width of a character (which may include implementation-defined display
information in the higher-significance bits). The programmer should keep in mind that operating upon
arbitrary stack entries with words intended for the character data type may result in truncation of such
data.

Manipulation on the stack

In addition toC@andC!, characters are moved to, from and upon the data stack by the following words:
>R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

Additional operations
The following mathematical operators are valid for character data:

+ - */ /MOD MOD

The following comparison and bitwise operators may be valid for characters, keeping in mind that display
information cached in the most significant bits of characters in an implementation-defined fashion may
have to be masked or otherwise dealt with:

AND OR > < U> U< = <> 0= 0<> MAX MIN
LSHIFT RSHIFT

A.3.1.3 Single -cell types
A single-cell stack entry viewed without regard to typing is the fundamental data type of Forth. All other
data types are actually represented by one or more single-cell stack entries.
Storage and retrieval

Single-cell data are transferred from the stack to memoty, bpm memory to the stack & All bits

are transferred in both directions and no type checking of any sort is performed, nor does the Standard
System check that a memory address usdd dny@is properly aligned or properly sized to hold the

datum thus transferred.

Manipulation on the stack

Here is a selection of the most important words which move single-cell data to, from and upon the data
stack:

I @ >R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 133

Comparison operators

The following comparison operators are universally valid for one or more single cells:

= <> 0= 0<>
A.3.1.3.1 Flags

A FALSEflag is a single-cell datum with all bits unset, antRUEflag is a single-cell datum with all

bits set. While Forth words which test flags accept any non-null bit pattern as true, there exists the concept
of thewell-formedflag. If an operation whose result is to be used as a flag may produce any bit-mask other
thanTRUEor FALSE, the recommended discipline is to convert the result to a well-formed flag by means

of the Forth word<> so that the result of any subsequent logical operations on the flag will be
predictable.

In addition to the words which move, fetch and store single-cell items, the following words are valid for
operations on one or more flag data residing on the data stack:

AND OR XOR INVERT
A.3.1.3.2 Integers

A single-cell datum may be treated by a Standard Program as a signed integer. Moving and storing such
data is performed as for any single-cell data. In addition to the universally-applicable operators for single-
cell data specified above, the following mathematical and comparison operators are valid for single-cell
signed integers:

* */ *MOD /MOD MOD + +! - / 1+ 1- ABS MAX MIN NEGATE
0< 0> < >

Given the same number of bits, unsigned integers usually represent twice the number of absolute values
representable by signed integers.

A single-cell datum may be treated by a Standard Program as an unsigned integer. Moving and storing
such data is performed as for any single-cell data. In addition, the following mathematical and
comparison operators are valid for single-cell unsigned integers:

UM* UM/MOD + +! - 1+ 1- * U< U>
A.3.1.3.3 Addresses

An address is uniquely represented as a single cell unsigned number and can be treated as such when
being moved to, from, or upon the stack. Conversely, each unsigned number represents a unique address
(which is not necessarily an address of accessible memory). This one-to-one relationship between

addresses and unsigned numbers forces an equivalence between address arithmetic and the corresponding
operations on unsigned numbers.

Several operators are provided specifically for address arithmetic:
CHAR+ CHARS CELL+ CELLS
and, if the floating-point word set is present:
FLOAT+ FLOATS SFLOAT+ SFLOATS DFLOAT+ DFLOATS
A Standard Program may never assume a particular correspondence between a Forth address and the
physical address to which it is mapped.

A.3.1.3.4 Counted strings

The trend in ANS Forth is to move toward the consistent use ottaddru” representation of strings on
the stack. The use of the alternate “address of counted string” stack representation is discouraged. The
traditional Forth word$VORRNAFIND continue to use the “address of counted string” representation for

Page 134 X3J14 dpANS-6 Document

historical reasons. The new wdtd , added as a porting aid for existing programs, also uses the counted
string representation.

Counted strings remain useful as a way to store strings in memory. This use is not discouraged, but when
references to such strings appear on the stack, it is preferable to usadt |’ representation.
A.3.1.3.5 Execution tokens

The association between an execution token and a definition is static. Once made, it does not change with
changes in the search order or anything else. However it may not be unique, e.g., the phrases

"1+ and

'CHAR+
might return the same value.

A.3.1.4 Cell-pair types

Storage and retrieval
Two operators are provided to fetch and store cell pairs:
2@ 2!
Manipulation on the stack
Additionally, these operators may be used to move cell pairs from, to and upon the stack:
2>R 2DROP 2DUP 20VER 2R> 2SWAP 2ROT

Comparison
The following comparison operations are universally valid for cell pairs:
D= DO=

A.3.1.4.1 Double-Cell Integers

If a double-cell integer is to be treated as signed, the following comparison and mathematical operations
are valid:

D+ D- D< DO< DABS DMAX DMIN DNEGATE M* M+

If a double-cell integer is to be treated as unsigned, the following comparison and mathematical operations
are valid:

D+ D- UM/MOD DU<

A.3.1.4.2 Character strings
See: A.3.1.3.4 Counted Strings.

A.3.2 The Implementation environment

A.3.2.1 Numbers

Traditionally, Forth has been implemented on two’s-complement machines where there is a one-to-one
mapping of signed numbers to unsigned numbers—any single cell item can be viewed either as a signed or
unsigned number. Indeed, the signed representation of any positive number is identical to the equivalent
unsigned representation. Further, addresses are treated as unsigned numbers: there is no distinct pointer
type. Arithmetic ordering on two’s complement machines allewasd- to work on both signed and

unsigned numbers. This arithmetic behavior is deeply embedded in common Forth practice. As a
consequence of these behaviors, the likely ranges of signed and unsigned numbers for implementations
hosted on each of the permissible arithmetic architectures is:

Collating Sequence: ' "#$% &' () *+,-./digits:; <=>?2 @ ALPHA[\]"_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 135

Arithmetic architecture signed numbers unsigned numbers

Two’s complement r-1ton 0to 1+l
One’s complement nton Oton
Signed magnitude n-ton 0ton

wheren is the largest positive signed number. For all three architectures, signed numbers in the 0 to N
range are bitwise identical to the corresponding unsigned number. Note that unsigned numbers on a
signed magnitude machine are equivalent to signed non-negative numbers as a consequence of the forced
correspondence between addresses and unsigned numbers and of the required bethavebr.of

For reference, these number representations may be defined by the vikly@AGEES implemented:

two’s complement: : NEGATE INVERT 1+
one’s complement: : NEGATE INVERT ;
signed-magnitude: : NEGATE HIGH-BIT XOR ;

whereHIGH-BIT is a bit mask with only the most-significant bit set. Note that all of these number
systems agree on the representation of non-negative numbers.

Per3.2.1.1 Internal number representationand6.1.02700=, the implementor must ensure that no
standard or supported word return negative zero for any numeric (non-Boolean or flag) result. Many
existing programmer assumptions will be violated otherwise.

There is no requirement to implement circular unsigned arithmetic, nor to set the range of unsigned
numbers to the full size of a cell. There is historical precedent for limiting the rande tifat of+n,
which is permissible when the cell size is greater than 16 bits.

A.3.2.1.2 Digit conversion

For example, an implementation might convert the characters "a" through "z" identically to the characters
"A" through "Z," or it might treat the characters "[" through "~" as additional digits with decimal values
35 through 71, respectively.

A.3.2.2 Arithmetic

A.3.2.2.1 division

The Forth-79 Standard specifies that the signed division operateald@®@D MOD*/MOD, and*/) round
non-integer quotients towards zero (symmetric division). Forth 83 changed the semantics of these
operators to round towards negative infinity (floored division). Some in the Forth community have
declined to convert systems and applications from the Forth-79 to the Forth-83 divide. To resolve this
issue, an ANS Forth system is permitted to supply either floored or symmetric operators. In addition,
ANS Forth systems must provide a floored division primitieI(MOLD), a symmetric division primitive
(SM/REN, and a mixed precision multiplication operatiol*).

This compromise protects the investment made in current Forth applications; Forth-79 and Forth-83
programs are automatically compliant with ANS Forth with respect to division. In practice, the rounding
direction rarely matters to applications. However, if a program requires a specific rounding direction, it
can use the floored division primiti'eM/MODor the symmetric division primitivEM/REMto construct a
division operator of the desired flavor. This simple technique can be used to convert Forth-79 and
Forth-83 programs to ANS Forth without any analysis of the original programs.

A.3.2.2.2 Other integer operations

Whether underflow occurs depends on the data-type of the result. For example, thé phrase
underflows if the result is unsigned and produces the valid signed result -1.

Page 136 X3J14 dpANS-6 Document

A.3.2.3 Stacks

The only data type in Forth which has concrete rather than abstract existence is the stack entry. Even this
primitive typing Forth only enforces by the hard reality of stack underflow or overflow. The programmer
must have a clear idea of the number of stack entries to be consumed by the execution of a word and the
number of entries that will be pushed back to a stack by the execution of a word. The observation of
anomalous occurrences on the data stack is the first line of defense whereby the programmer may
recognize errors in an application program. It is also worth remembering that multiple stack errors caused
by erroneous application code are frequently of equal and opposite magnitude, causing complementary
(and deceptive) results.

For these reasons and a host of other reasons, the one unambiguous, uncontroversial, and indispensable
programming discipline observed since the earliest days of Forth is that of providing a stack diagram for
all additions to the application dictionary with the exception of static constructs sU&iR&BLEs and
CONSTANS.

A.3.2.2.2 Control-flow stack
The simplest use of control-flow words is to implement the basic control structures sHguneii\.1.

IF BEGIN BEGIN

THEN UNTIL AGAIN

Figure A.1 — The basic control-flow patterns.

In control flow every branch, or transfer of control, must terminate at some destination. A natural
implementation uses a stack to remember the origin of forward branches and the destination of backward
branches. At a minimum, only the location of each origin or destination must be indicated, although other
implementation-dependent information also may be maintained.

An origin is the location of the branch itself. A destination is where control would continue if the branch
were taken. A destination is needed to resolve the branch address for each origin, and conversely, if every
control-flow path is completed no unused destinations can remain.

With the addition of just three word8KIEAD CS-ROLL andCS-PICK), the basic control-flow words

supply the primitives necessary to compile a variety of transportable control structures. The abilities
required are compilation of forward and backward conditional and unconditional branches and compile-
time management of branch origins and destinatidiakle A.1 shows the desired behavior.

Table A.1 - Compilation behavior of control-flow words
at compile time,

word: supplies: resolves: is used to:

IF orig mark origin of forward conditional branch
THEN orig resolvelF or AHEAD
BEGIN dest mark backward destination
AGAIN dest resolve with backward unconditional branch
UNTIL dest resolve with backward conditional branch
AHEAD orig mark origin of forward unconditional branch
CS-PICK copy item on control-flow stack
CS-ROLL reorder items on control-flow stack

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 137

The requirement that control-flow words are properly balanced by other control-flow words makes
reasonable the description of a compile-time implementation-deforgdol-flowstack There is no
prescription as to how the control-flow stack is implemented, e.g., data stack, linked list, special array.
Each element of the control-flow stack mentioned above is the same size.

With these tools, the remaining basic control-structure elements, shdigursA.2, can be defined.
The stack notation used here for immediate wordsasn(pilation/ execution).

: WHILE (dest -- orig dest / flag --)
\ conditional exit from loops
POSTPONE IF \ conditional forward branch
1 CS-ROLL ; \ keep dest on top

IMMEDIATE

: REPEAT (orig dest--/--)
\ resolve a single WHILE and return to BEGIN
POSTPONE AGAIN \uncond. backward branch to dest
POSTPONE THEN ; \ resolve forward branch from orig
IMMEDIATE
: ELSE (origl -- orig2 / --)
\ resolve IF supplying alternate execution
POSTPONE AHEAD \ unconditional forward branch orig2
1 CS-ROLL \ put origl back on top
POSTPONE THEN ; \ resolve forward branch from origl

IMMEDIATE
IF BEGIN
ELSE WHILE
THEN REPEAT

Figure A.2 — Additional basic control-flow patterns.

Forth control flow provides a solution for well-known problems with strictly structured programming.

The basic control structures can be supplemented, as shown in the exarfigles .3, with additional
WHILEs inBEGIN ... UNTIL andBEGIN ... WHILE ... REPEAT structures. However, for
each additionalWHILE there must be @HENat the end of the structur@ HENcompletes the syntax with
WHILE and indicates where to continue execution wheWhkRLE transfers control. The use of more
than one additionalVHILE is possible but not common. Note that if the user finds this uBHBRN
undesirable, an alias with a more likable name could be defined.

Additional actions may be performed between the control flow worcRERREATor UNTIL) and the
THENthat matches the additionaHILE Further, if additional actions are desired for normal
termination and early termination, the alternative actions may be separated by the ordinadgy $Brth
The termination actions are all specified after the body of the loop.

Page 138 X3J14 dpANS-6 Document

BEGIN BEGIN

WHILE WHILE

WHILE UNTIL

REPEAT ELSE
L —

THEN THEN

Figure A.3 — Extended control-flow pattern examples.

Note thatREPEATcreates an anomaly when matching\tidILE with ELSE or THEN most notable
when compared with tHBEGIN...UNTIL case. That is, there will be one |€sSE or THENthan
there araVHILEs becaus®EPEATresolves ondHEN As above, if the user finds this count mismatch
undesirableREPEATcould be replaced in-line by its own definition.

Other loop-exit control-flow words, and even other loops, can be defined. The only requirements are that
the control-flow stack is properly maintained and manipulated.

The simple implementation of the ANS Fo@ASEstructure below is an example of control structure
extension. Note the maintenance of the data stack to prevent interference with the possible control-flow
stack usage.

0 CONSTANT CASE IMMEDIATE (init count of OFs)

: OF (#of -- orig #of+1/x --)
1+ (countOFs)
>R ('move off the stack in case the control-flow)
(stack is the data stack.)
POSTPONE OVER POSTPONE = (copy and test case value)
POSTPONE IF (add orig to control flow stack)
POSTPONE DROP (discards case value if =)
R>; (we can bring count back now)
IMMEDIATE

: ENDOF (origl #of -- orig2 #of)
>R (move off the stack in case the control-flow)
(stack is the data stack.)
POSTPONE ELSE
R>; (we can bring count back now)
IMMEDIATE

: ENDCASE (origl..orign #of --)

POSTPONE DROP (discard case value)
0 ?DO
POSTPONE THEN
LOOP ;
IMMEDIATE

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”*_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 139

A.3.2.3.3 Return stack

The restrictions in sectia®2.3.3 Return stackare necessary if implementations are to be allowed to
place loop parameters on the return stack.

A.3.2.6 Environmental queries

The size in address units of various data types may be determined by phrased sTiHARS.
Similarly, alignment may be determined by phrases su¢h*a4GN .

The environmental queries are divided into two groups: those that always produce the same value and
those that might not. The former groups include entries suRAXsN This information is fixed by the
hardware or by the design of the Forth system; a user is guaranteed that asking the question once is
sufficient.

The other group of queries are for things that may legitimately change over time. For example an
application might test for the presence of the Double Number word set using an environment query. If it
is missing, the system could invoke a system-dependent process to load the word set. The system is
permitted to changeNVIRONMENT® database so that subsequent queries about it indicate that it is
present.

Note that a query that returns an “unknown” response could produce a “known” result on a subsequent
query.

A.3.3 The Forth dictionary

A Standard Program may redefine a standard word with a non-standard definition. The program is still
Standard (since it can be built on any Standard System), but the effect is to make the combined entity
(Standard System plus Standard Program) a non-standard system.

A.3.3.1 Name space

A.3.3.1.2 Definition names

The language in this section is there to ensure the portability of Standard Programs. If a program uses
something outside the Standard that it does not provide itself, there is no guarantee that another
implementation will have what the program needs to run. There is no intent whatsoever to imply that all
Forth programs will be somehow lacking or inferior because they are not standard; some of the finest
jewels of the programmer’s art will be non-standard. At the same time, the committee is trying to ensure
that a program labeled “Standard” will meet certain expectations, particularly with regard to portability.

In many system environments the input source is unable to supply certain non-graphic characters due to
external factors, such as the use of those characters for flow control or editing. In addition, when
interpreting from a text file, the parsing function specifically treats non-graphic characters like spaces;
thus words received by the text interpreter will not contain embedded non-graphic characters. To allow
implementations in such environments to call themselves Standard, this minor restriction on Standard
Programs is necessary.

A Standard System is allowed to permit the creation of definition names containing non-graphic
characters. Historically, such names were used for keyboard editing functions and “invisible” words.

A.3.3.2 Code space

A.3.3.3 Data space

The words#TIB , >IN, BASE BLK, SCR SOURCESOURCE-ID, STATE andTIB contain information

used by the Forth system in its operation and may be of use to the application. Any assumption made by
the application about data available in the Forth system it did not store other than the data just listed is an
environmental dependency.

Page 140 X3J14 dpANS-6 Document

There is no point in specifying (in the Standard) both what is and what is not addressable.
A Standard Program may NOT address:

— Directly into the data or return stacks;
— Into a definition’s data field if not stored by the application.

The read-only restrictions arise because some Forth systems run from ROM and some share 1/O buffers
with other users or systems. Portable programs cannot know which areas are affected, hence the general
restrictions.

A.3.3.3.1 Address alignment

Many processors have restrictions on the addresses that can be used by memory access instructions. For
example, on a Motorola 68000, 16-bit or 32-bit data can be accessed only at even addresses. Other
examples include RISC architectures where 16-bit data can be loaded or stored only at even addresses and
32-bit data only at addresses that are multiples of four.

An implementor of ANS Forth can handle these alignment restrictions in one of two ways. Forth’s
memory access word@y! , +! , etc.) could be implemented in terms of smaller-width access instructions
which have no alignment restrictions. For example, on a 68000 Forth with 16-bi@elidd be

implemented with two 68000 byte-fetch instructions and a reassembly of the bytes into a 16-bit cell.
Although this conceals hardware restrictions from the programmer, it is inefficient, and may have
unintended side effects in some hardware environments. An alternate implementation of ANS Forth could
define each memory-access word using the native instructions that most closely match the word’s
function. On a 68000 Forth with 16-bit cel@would use the 68000’s 16-bit move instruction. In this

case, responsibility for givin@a correctly-aligned address falls on the programmer. A portable ANS

Forth program must assume that alignment may be required and follow the requirements of this section.

A.3.3.3.2 Contiguous regions

The data space of a Forth system comes in discontinuous regions! The location of some regions is
provided by the system, some by the program. Data space is contiguous within regions, allowing address
arithmetic to generate valid addresses only within a single region. A Standard Program cannot make any
assumptions about the relative placement of multiple regions in memory.

Section3.3.3.2does prescribe conditions under which contiguous regions of data space may be obtained.
For example:

CREATE TABLE 1C, 2C, ALIGN 1000, 2000,
makes a table whose address is returnéBABLE. In accessing this table,

TABLE C@ will return1

TABLE CHAR+ C@ will return 2

TABLE 2 CHARS + ALIGNED @ will return 1000

TABLE 2 CHARS + ALIGNED CELL+ @ will return 2000 .
Similarly,

CREATE DATA 1000 ALLOT

makes an array 1000 address units in size. A more portable strategy would define the array in application
units, such as:

500 CONSTANT NCELLS
CREATE CELL-DATA NCELLS CELLS ALLOT

This array can be indexed like this:
: LOOK NCELLS 0 DO CELL-DATA | CELLS +? LOOP;

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 141

A.3.3.3.6 Other transient regions
In many existing Forth systems, these areas ai&REor just beyond it, hence the many restrictions.

(2*n)+2 is the size of a character string containing the unpunctuated binary representation of the
maximum double number with a leading minus sign and a trailing space.

Implementation note: Since the minimum value of n is 16, the absolute minimum size of the pictured
numeric output string is 34 characters. But if your implementation has a larger n, you must also increase
the size of the pictured numeric output string.

A.3.4 The Forth text interpreter

A.3.4.3 Semantics

The “initiation semantics” correspond to the code that is executed upon entering a definition, analogous to
the code executed IBXIT upon leaving a definition. The “run-time semantics” correspond to code
fragments, such as literals or branches, that are compiled inside colon definitions by words with explicit
compilation semantics.

In a Forth cross-compiler, the execution semantics may be specified to occur in the host system only, the
target system only, or in both systems. For example, it may be appropriate for wordsGHth &0

execute on the host system returning a value describing the target, for colon definitions to execute only on
the target, and faCONSTANBNAVARIABLE to have execution behaviors on both systems. Details of
cross-compiler behavior are beyond the scope of this Standard.

A.3.4.3.2 Interpretation semantics

For a variety of reasons, this Standard does not define interpretation semantics for every word. Examples
of these words areR, ." , DQ andIF . Nothing in this Standard precludes an implementation from
providing interpretation semantics for these words, such as interactive control-flow words. However, a
Standard Program may not use them in interpretation state.

A.3.4.5 Compilation

Compiler recursion at the definition level consumes excessive resources, especially to support locals. The
Technical Committee does not believe that the benefits justify the costs. Nesting definitions is also not
common practice and won’t work on many systems.

A.4 Documentation requirements
A.4.1 System documentation

A.4.2 Program documentation

A.5 Compliance and labeling

A.5.1 ANS Forth system

Section5.1 defines the criteria that a system must meet in order to justify the label “ANS Forth System.”
Briefly, the minimum requirement is that the system must “implement” the Core word set. There are

several ways in which this requirement may be met. The most obvious is that all Core words may be in a
pre-compiled kernel. This is not the only way of satisfying the requirement, however. For example, some
words may be provided in source blocks or files with instructions explaining how to add them to the

system if they are needed. So long as the words are provided in such a way that the user can obtain access
to them with a clear and straightforward procedure, they may be considered to be present.

Page 142 X3J14 dpANS-6 Document

A Forth cross-compiler has many characteristics in common with an ANS Forth System, in that both use
similar compiling tools to process a program. However, in order to fully specify an ANS Forth cross
compiler it would be necessary to address complex issues dealing with compilation and execution
semantics in both host and target environments as well as ROMability issues. The level of effort to do this
properly has proved to be impractical at this time. As a result, although it may be possible for a Forth
cross-compiler to correctly prepare an ANS Forth program for execution in a target environment, it is
inappropriate for a cross-compiler to be labeled an ANS Forth System.

A.5.2 ANS Forth programs

A.5.2.2 Program labeling

Declaring an environmental dependency should not be considered undesirable, merely an
acknowledgment that the author has taken advantage of some assumed architecture. For example, most
computers in common use are based on two’'s complement binary arithmetic. By acknowledging an
environmental dependency on this architecture, a programmer becomes entitled to use the number -1 to
represent all bits set without significantly restricting the portability of the program.

Because all programs require space for data and instructions, and time to execute those instructions, they
depend on the presence of an environment providing those resources. It is impossible to predict how little
of some of these resources (e.g. stack space) might be necessary to perform some task, so this Standard
does not do so.

On the other hand, as a program requires increasing levels of resources, there will probably be sucessively
fewer systems on which it will execute sucessfully. An algorithm requiring an arra§ oftes might
run on fewer computers than one requiring only. 10

Since there is also no way of knowing what minimum level of resources will be implemented in a system
useful for at least some tasks, any program performing real work labeled simply an “ANS Forth Program”
is unlikely to be labeled correctly.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 143

A.6 Glossary

In this and following sections we present rationales for the handling of specific words: why we included
them, why we placed them in certain word sets, or why we specified their names or meaning as we did.

Words in this section are organized by word set, retaining their index numbers for easy cross-referencing
to the glossary.

Historically, many Forth systems have been written in Forth. Many of the words in Forth originally had

as their primary purpose support of the Forth system itself. For exaMPRRNdFIND are often used

as the principle instruments of the Forth text interpreter GRIBATEN many systems is the primitive

for building dictionary entries. In defining words such as these in a standard way, we have endeavored
not to do so in such a way as to preclude their use by implementors. One of the features of Forth that has
endeared it to its users is that the same tools that are used to implement the system are available to the

application programmer — a result of this approach is the compactness and efficiency that characterizes
most Forth implementations.

A.6.1 Core words

A.6.1.0070
Typical use:... ' name .
Many Forth systems use a state-smart tick. Many do not. ANS Forth follows the usage of Forth 83.
SeeA.3.4.2.2 Interpretation semanticsA.6.1.1550FIND.

A.6.1.0080 (

Typical use:... (ccc) ...

A.6.1.0140 +LOOP

Typical use:
: X ... limit first DO ... step +LOOP ;
A.6.1.0150 ,

The use of (comma) for compiling execution tokens is not portable.
See6.2.0945COMPILE,,.

A.6.1.0190 ."
Typical use:: X" ccc” ... ;

An implementation may define interpretation semantics'foif desired. In one plausible
implementation, interpreting would display the delimited message. In another plausible
implementation, interpreting would compile code to display the message later. In still another
plausible implementation, interpretig would be treated as an exception. Given this variation a
Standard Program may not uSe while interpreting. Similarly, a Standard Program may not compile
POSTPONE ." inside a new word, and then use that word while interpreting.

A.6.1.0320 2*

Historically,2* has been implemented on two’s-complement machines as a logical left-shift instruction.
Multiplication by two is an efficient side-effect on these machines. However, shifting implies a knowledge
of the significance and position of bits in a cell. While the name implies multiplication, most
implementors have used a hardware left shift to imple2rent

Page 144 X3J14 dpANS-6 Document

A.6.1.0330 2/

This word has the same common usage and misnaming implicati@hs &isis often implemented on
two’s-complement machines with a hardware right shift that propagates the sign bit.

A.6.1.0350 2@
With 2@the storage order is specified by the Standard.

A.6.1.0450
Typical use: ‘name ... ;

In Forth 83, this word was specified to alter the search order. This specification is explicitly removed in
this Standard. We believe that in most cases this has no effect; however, systems that allow many search
orders found the Forth-83 behavior of colon very undesirable.

Note that colon does not itself invoke the compiler. Colon sets compilation state so that later words in the
parse area are compiled.

A.6.1.0460 ;
Typical use:: name ... ;

One function performed by bothand;CODE s to allow the current definition to be found in the
dictionary. If the current definition was created:NYDNAMEhe current definition has no definition
name and thus cannot be found in the dictionaryN@INAMESs implemented the Forth compiler must
maintain enough information about the current definition to ajlcand;CODEto determine whether or
not any action must be taken to allow it to be found.

A.6.1.0550 >BODY

a-addris the address thedEREwould have returned had it been executed immediately after the execution
of theCREATRhat definedt.

A.6.1.0680 ABORT"
Typical use:: X ... test ABORT" ccc" ... ;

A.6.1.0695 ACCEPT

Previous standards specified that collection of the input string terminates when either a “return” is
received or whern, characters have been received. Terminating wingrcharacters have been

received is difficult, expensive, or impossible to implement in some system environments. Consequently,
a number of existing implementations do not comply with this requirement. Since line-editing and
collection functions are often implemented by system components beyond the control of the Forth
implementation, this Standard imposes no such requirement. A Standard Program may only assume that
it can receive an input string wikCCEPTor EXPECT The detailed sequence of user actions necessary

to prepare and transmit that line are beyond the scope of this Standard.

Specification of a non-zero, positive integer coumt,j for ACCEPTallows some implementors to

continue their practice of using a zero or negative value as a flag to trigger special behavior. Insofar as
such behavior is outside the Standard, Standard Programs cannot depend upon it, but the Technical
Committee doesn’t wish to preclude it unnecessarily. Since actual values are almost always small
integers, no functionality is impaired by this restriction.

ACCEPTandEXPECTperform similar functionsACCEPTis recommended for new programs, and future
use ofEXPECTis discouraged.

Collating Sequence: ! "#3$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 145

It is recommended that all non-graphic characters be reserved for editing or control functions and not be
stored in the input string.

Commonly, when the user is preparing an input string to be transmitted to a program, the system allows
the user to edit that string and correct mistakes before transmitting the final version of the string. The
editing function is supplied sometimes by the Forth system itself, and sometimes by external system
software or hardware. Thus, control characters and functions may not be available on all systems. In the
usual case, the end of the editing process and final transmission of the string is signified by the user
pressing a “Return” or “Enter” key.

As in previous standardEXPECTreturns the input string immediately after the requested number of
characters are entered, as well as when a line terminator is received. The “automatic termination after
specified count of characters have been entered” behavior is widely considered undesirable because the
user “loses control” of the input editing process at a potentially unknown time (the user does not
necessarily know how many characters were requestedBKPECT. ThusEXPECTandSPANhave

been made obsolescent and exist in the Standard only as a concession to existing implementations. |If
EXPECTexists in a Standard System it must have the “automatic termination” behavior.

ACCEPTdoes not have the “automatic termination” behavideXPECT However, because external
system hardware and software may performAB8€EPTfunction, when a line terminator is received the
action of the cursor, and therefore the display, is implementation-defined. It is recommended that the
cursor remain immediately following the entered text after a line terminator is received.

A.6.1.0705 ALIGN

In this Standard we have attempted to provide transportability across various CPU architectures. One of
the frequent causes of transportability problems is the requirement of cell-aligned addresses on some
CPUs. On these systemd,IGN andALIGNED may be required to build and traverse data structures
built with C, . Implementors may define these words as no-ops on systems for which they aren’t
functional.

A.6.1.0706 ALIGNED

SeeA.6.1.0705ALIGN.

A.6.1.0760 BEGIN
Typical use:

: X ... BEGIN ... test UNTIL ;
or

: X ... BEGIN ... test WHILE ... REPEAT ;

A.6.1.0770 BL

Because space is used throughout Forth as the standard delimiter, this word is the only way a program has
to find and use the system value of “space”. The value of a space character can not be obtained with
CHARfor instance.

A.6.1.0880 CELL+

As with ALIGN andALIGNED, the word<CELL andCELL+ were added to aid in transportability across
systems with different cell sizes. They are intended to be used in manipulating indexes and addresses in
integral numbers of cell-widths.

Example:
2VARIABLE DATA

Page 146 X3J14 dpANS-6 Document

0 100 DATA 2!
DATA @ . 100
DATACELL+ @ . O
A.6.1.0890 CELLS
See:A.6.1.0880CELL+.
Example: CREATE NUMBERS 100 CELLS ALLOT
(Allots space in the arradyUMBER$or 100 cells of data.)

A.6.1.0895 CHAR
Typical use:... CHAR A CONSTANT "A" ...

A.6.1.0950 CONSTANT
Typical use:... DECIMAL 10 CONSTANT TEN ...

A.6.1.1000 CREATE

The data-field address of a word defineddEATHS given by the data-space pointer immediately
following the execution oEREATE

Reservation of data field space is typically done With OT.
Typical use:... CREATE SOMETHING ...

A.6.1.1240 DO
Typical use:
: X ... limit first DO ... LOOP ;
or
: X ... limit first DO ... step +LOOP ;

A.6.1.1250 DOES>
Typical use:: X ... DOES> ... ;

Following DOES> a Standard Program may not make any assumptions regarding the ability to find either
the name of the definition containing tBR®ES>or any previous definition whose nhame may be concealed
by it. DOES>effectively ends one definition and begins another as far as local variables and control-flow
structures are concerned. The compilation behavior makes it clear that the user is not entitled to place
DOES>inside any control-flow structures.

A.6.1.1310 ELSE
Typical use:: X ... test IF ... ELSE ... THEN ;

A.6.1.1345 ENVIRONMENT?

In a Standard System that contains only the CORE word set, effective i IRONMENT Pequires
either its use within a definition, or the use of user-supplied auxiliary definitions. The CORE word set
lacks both a direct method for collecting a string in interpretation sthté.{.2165" is in an optional
word set) and also a means to test the returned flag in interpretation state (e.g. the optional
15.6.2.2533IF]).

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 147

The combination 06.1.1345ENVIRONMENT211.6.1.2165", 15.6.2.2532IF]
15.6.2.2531ELSE] , and15.6.2.2533THEN] constitutes an effective suite of words for conditional
compilation that works in interpretation state.

A.6.1.1360 EVALUATE

The Technical Committee is aware that this function is commonly sgelléd. However, there exist
implementations that could suffer by defining the word as is done here. We al&vAntJATEO be

more readable and explicit. There was some sentiment for callingTfERPRET, but that too would

have undesirable effects on existing code. The longer spelling was not deemed significant since this is not
a word that should be used frequently in source code.

A.6.1.1380 EXIT
Typical use:: X ... test IF ... EXIT THEN ... ;

A.6.1.1550 FIND

One of the more difficult issues which the Committee took on was the problem of divorcing the
specification of implementation mechanisms from the specification of the Forth language. Three basic
implementation approaches can be quickly enumerated:

1) Threaded code mechanisms. These are the traditional approaches to implementing Forth, but other
techniques may be used.

2) Subroutine threading with “macro-expansion” (code copying). Short routines, like the c@d#for
are copied into a definition rather than compiling a JSR reference.

3) Native coding with optimization. This may include stack optimization (replacing such phrases as
SWAP ROT + with one or two machine instructions, for example), parallelization (the trend in the
newer RISC chips is to have several functional subunits which can execute in parallel), and so on.

The initial requirement (inherited from Forth 83) that compilation addresses be compiled into the
dictionary disallowed type 2 and type 3 implementations.

Type 3 mechanisms and optimizations of type 2 implementations were hampered by the explicit
specification of immediacy or non-immediacy of all standard woR3STPONHllowed de-specification
of immediacy or non-immediacy for all but a few Forth words whose behavior mS§AEE
independent.

One type 3 implementation, Charles Moore’s cmForth, has both compiling and interpreting versions of
many Forth words. At the present, this appears to be a common approach for type 3 implementations.
The Committee felt that this implementation approach must be allowed. Consequently, it is possible that
words without interpretation semantics can be found only during compilation, and other words may exist
in two versions: a compiling version and an interpreting version. Hence the values returiéD by

may depend oBTATE and' and[] may be unable to find words without interpretation semantics.

A.6.1.1561 FM/MOD

By introducing the requirement for “floored” division, Forth 83 produced much controversy and concern
on the part of those who preferred the more common practice followed in other languages of
implementing division according to the behavior of the host CPU, which is most often symmetric (rounded
toward zero). In attempting to find a compromise position, this Standard provides primitives for both
common varieties, floored and symmetric (S8/REM. FM/MOD:s the floored version.

The Technical Committee considered providing two complete sets of explicitly named division operators,
and declined to do so on the grounds that this would unduly enlarge and complicate the Standard.
Instead, implementors may define the normal division words in terms of ENiBTODor SM/REM

providing they document their choice. People wishing to have explicitly named sets of operators are
encouraged to do s¢=-M/MODmay be used, for example, to define:

Page 148 X3J14 dpANS-6 Document

:/_MOD (n1n2--n3n4) >R S>D R> FM/MOD ;
:/_ (n1n2--n3) /_MOD SWAP DROP ;

: _MOD (n1n2--n3) /_ MOD DROP;

:*/_MOD (nl n2 n3 -- n4 n5) >R M* R> FM/MOD ;
:*_ (n1n2n3--n4) *_MOD SWAP DROP

A.6.1.1700 IF
Typical use:
:X...testIF ... THEN ...;
or
:X..testlF ... ELSE ... THEN ...;

A.6.1.1710 IMMEDIATE
Typical use:: X ... ; IMMEDIATE

A.6.1.1720 INVERT

The wordNOTwas originally provided in Forth as a flag operator to make control structures readable.
Under its intended usage the following two definitions would produce identical results:
: ONE (flag --)
IF ." true" ELSE ." false" THEN ;
: TWO (flag --)
NOT IF ." false" ELSE ." true" THEN ;

This was common usage prior to the Forth-83 Standard which redditd&ads a cell-wide one’s-

complement operation, functionally equivalent to the phwh3®R . At the same time, the data type
manipulated by this word was changed from a flag to a cell-wide collection of bits and the standard value
for true was changed from “1” (rightmost bit only set) to “-1” (all bits set). As these definitidriRUE
andNOTwere incompatible with their previous definitions, many Forth users continue to rely on the old
definitions. Hence both versions are in common use.

Therefore, usage &§OTcannot be standardized at this time. The two traditional meanilN@Gf that
of negating the sense of a flag and that of doing a one’s complement operation — are made av@iable by
andINVERT, respectively.

A.6.1.1730 J

J may only be used with a neste@..LOOR DQ..+LOOR ?DQ..LOOR or ?DQ..+LOOR for example, in
the form:

:X..DO..DO..J..LOOP ... +LOOP ...;

A.6.1.1760 LEAVE

Note thal EAVEimmediately exits the loop. No words followib&AVEwithin the loop will be
executed. Typical use:

:X...DO ... IF... LEAVE THEN ... LOOP ...;

A.6.1.1780 LITERAL
Typical use:: X ... [X] LITERAL ... ;

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 149

A.6.1.1800 LOOP
Typical use:

: X ... limit first DO ... LOOP ...;
or

: X ... limit first ?DO ... LOOP ...;
A.6.1.1810 M*

This word is a useful early step in calculation, going to extra precision conveniently. It has been in use
since the Forth systems of the early 1970's.

A.6.1.1900 MOVE

CMOVENdCMOVE:are the primary move operators in Forth 83. They specify a behavior for moving

that implies propagation if the move is suitably invoked. In some hardware, this specific behavior cannot
be achieved using the best move instruction. Fur@dQVEBndCMOVE>nove characters; ANS Forth

needs a move instruction capable of dealing with address units.MMEhas been defined and added

to the Core word set, at@MOVEINdCMOVEHave been moved to the String word set.

A.6.1.2033 POSTPONE
Typical use:

: ENDIF POSTPONE THEN ; IMMEDIATE
: X ... IF ... ENDIF ...;

POSTPONEeplaces most of the functionality GOMPILEand[COMPILE] . COMPILEand

[COMPILE] are used for the same purpose: postpone the compilation behavior of the next word in the
parse areaCOMPILEwas designed to be applied to non-immediate word$GOWPILE] to

immediate words. This burdens the programmer with needing to know which words in a system are
immediate. Consequently, Forth standards have had to specify the immediacy or non-immediacy of all
words covered by the Standard. This unnecessarily constrains implementors.

A second problem wit@ROMPILEis that some programmers have come to expect and exploit a particular
implementation, namely:

: COMPILE R> DUP @ , CELL+ >R ;

This implementation will not work on native code Forth systems. In a native code Forth using inline code
expansion and peephole optimization, the size of the object code produced varies; this information is
difficult to communicate to a “dumbiCOMPILE A “smart” (i.e., immediateLOMPILEwould not have

this problem, but this was forbidden in previous standards.

For these reason€OMPILEhas not been included in the Standard [@@MPILE] has been moved in
favor of POSTPONE Additional discussion can be found in Hayes, J.R., “Postp&neteeding®of the
1989Rochesteforth Conference

A.6.1.2120 RECURSE
Typical use:: X ... RECURSE ... ;

This is Forth’s recursion operator; in some implementations it is dsSELFE The usual example is
the coding of the factorial function.

: FACTORIAL (+nl1 -- +n2) DUP 2 > IF DUP 1-
RECURSE * THEN ;

Page 150 X3J14 dpANS-6 Document

n2 = n1(nl1-1)(n1-2)...(2)(1), the product of n1 with all positive integers less than itself. While beloved of
computer scientists, recursion makes unusually heavy use of both stacks and should therefore be used with
caution. See alternate definitionAn6.1.2140REPEAT

A.6.1.2140 REPEAT
Typical use:

: FACTORIAL (+nl -- +n2) DUP
BEGIN DUP 2 > WHILE
1- SWAP OVER * SWAP
REPEAT DROP ;

A.6.1.2165 S"
Typical use:: X ... S"ccc" ... ;

This word is found in many systems under the nanjguote). However, current practice is almost evenly
divided on the use df, with many systems using the execution semantics given here, while others return
the address of a counted string. We attempt here to satisfy both camps by providing tw&‘vants,

the Core Extension wor@" so that users may have whichever behavior they expect with a simple
renaming operation.

A.6.1.2214 SM/REM

See the previous discussion of division urfele’MOD SM/REMis the symmetric-division primitive,
which allows programs to define the following symmetric-division operators:

:/-REM (n1n2--n3n4) >R S>D R>SM/REM;

/- (n1n2--n3) /-REM SWAP DROP ;

:-REM (nln2--n3) /-REM DROP ;

:*/-REM (n1n2n3--n4n5) >R M* R>SM/REM ;

:*/- (n1n2n3--n4) *-REM SWAP DROP ;

A.6.1.2216 SOURCE

SOURCEimplifies the process of directly accessing the input buffer by hiding the differences between its
location for different input sources. This also gives implementors more flexibility in their implementation
of buffering mechanisms for different input sources. The committee moved away from an input buffer
specification consisting of a collection of individual variables, declarliBg and#TIB obsolescent.

SOURCEHn this form exists in F83, PolyFORTH, LMI's Forths and others. In conventional systems it is
equivalent to the phrase

BLK @ IF BLK @ BLOCK 1024 ELSE TIB #TIB @ THEN.

A.6.1.2250 STATE

AlthoughEVALUATE LOAD INCLUDE-FILE , andINCLUDEDare not listed as words which alter
STATE the text interpreted by any one of these words could include one or more words which explicitly
alterSTATE EVALUATE LOAD INCLUDE-FILE , andINCLUDEDdo not in themselves alt&TATE

STATEdoes not nest with text interpreter nesting. For example, the code sequence:

:FOO S"]"EVALUATE ; FOO

will leave the system in compilation state. Similarly, alft®ADNg a block containing, the system will
be in compilation state.

Collating Sequence: '"#3$% & '() *+,-./digits: ;<=>? @ ALPHA[\]~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 151

Note thafl does not affect the parse area and that the only effect tiest on the parse area is to parse a
word. This entitles a program to use these words to set the state with known side-effects on the parse area.
For example:

:NOP : POSTPONE ; IMMEDIATE ;
NOP ALIGN NOP ALIGNED

Some non-ANS Forth compliant systems hhavavoke a compiler loop in addition to settiBg ATE
Such a system would inappropriately attempt to compile the second N&#of

Also note that nothing in the Standard prevents a program from finding the execution tgkem$ of
and using these to affeSTATE These facts suggest that implementatioriswill do nothing but set
STATEand a single interpreter/compiler loop will moni®FATE

A.6.1.2270 THEN
Typical use:

:X...testIF ... THEN ...;
or

:X..testIF ... ELSE ... THEN ...;

A.6.1.2380 UNLOOP
Typical use:
XL
limit first DO
... test IF ... UNLOOP EXIT THEN ...
LOOP ...;

UNLOORillows the use dEXIT within the context oDO ... LOOP and related do-loop constructs.
UNLOORs a function has been calldlDO UNLOORs more indicative of the action: nothing gets
undone -- we simply stop doing it.

A.6.1.2390 UNTIL

Typical use:: X ... BEGIN ... test UNTIL ... ;

A.6.1.2410 VARIABLE
Typical use:... VARIABLE XYZ ...

A.6.1.2430 WHILE
Typical use:: X ... BEGIN ... test WHILE ... REPEAT ...;

A.6.1.2450 WORD
Typical use:char WORBcc<char>

A.6.1.2500 [
Typical use:: X ...[4321] LITERAL ...;

A.6.1.2510 [7]
Typical use:: X ... [1name ...;
See: A.6.1.1550FIND.

Page 152 X3J14 dpANS-6 Document

A.6.1.2520 [CHAR]
Typical use:: X ... [CHAR]ccc ... ;

A.6.1.2540]
Typical use:: X ...[1234] LITERAL ... ;

A.6.2 Core extension words

The words in this collection fall into several categories:

Words that are in common use but are deemed less essential than Core woédsfe.g.,

Words that are in common use but can be trivially defined from Core word$£d.§E);

Words that are primarily useful in narrowly defined types of applications or are in less frequent use
(e.g.,PARSE;

Words that are being deprecated in favor of new words introduced to solve specific problems (e.g.,
CONVERY

Because of the varied justifications for inclusion of these words, the Technical Committee does not
encourage implementors to offer the complete collection, but to select those words deemed most valuable
to their clientele.

A.6.2.0060 #TIB
The function of#TIB has been superseded®QPURCE

A.6.2.0200 .(

Typical use:.(ccc)

A.6.2.0210 .R
In.R, “R” is short for RIGHT.

A.6.2.0340 2>R
Historically, 2>R has been used to implemé&f® Hence the order of parameters on the return stack.

The primary advantage @PR is that it puts the top stack entry on the top of the return stack. For
instance, a double-cell number may be transferred to the return stack and still have the most significant
cell accessible on the top of the return stack.

A.6.2.0410 2R>
Note tha2R> is not equivalent tR> R>. Instead, it mirrors the action B8R (seeA.6.2.0340.

A.6.2.0455 :NONAME

:NONAMEallows a user to create an execution token with the semantics of a colon definition without an
associated name. Previously, onlycolon) could create an execution token with these semantics. Thus,
Forth code could only be compiled using the syntax, ¢hat is:

: NAME ... ;
:NONAMEemoves this constraint and places the Forth compiler in the hands of the programmer.
:NONAMEcan be used to create application-specific programming languages. One technique is to mix

Forth code fragments with application-specific constructs. The application-specific constructs use
:NONAMEo compile the Forth code and store the corresponding execution tokens in data structures.

Collating Sequence: ' "#$% &' () *+,-./digits:; <=>?2 @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 153

The functionality o NONAMEcan be built on any Forth system. For years, expert Forth programmers
have exploited intimate knowledge of their systems to generate unnamed code fragments. Now, this
function has been named and can be used in a portable program.

For example;NONAMEcan be used to build a table of code fragments where indexing into the table
allows executing a particular fragment. The declaration syntax of the table is:

:NONAME .. code for command 0..; 0 CMD'!

:NONAME .. code forcommand 1..; 1 CMD!

:NONAME .. code for command 99 .. ; 99 CMD !

... 5CMD @ EXECUTE ...
The definitions of the table building words are:

CREATE CMD-TABLE \ table for command execution tokens
100 CELLS ALLOT

: CMD (' n -- a-addr) \ nth element address in table
CELLS CMD-TABLE +;

As a further example, a defining word can be created to allow performance monitoring. In the example
below, the number of times a word is executed is countedust first be renamed to allow the definition
of the new; .

: DOCOLON (--)
\ Modify CREATEd word to execute like a colon def
DOES> (i*x a-addr -- j*x)

1 OVER +! \ count executions
CELL+ @ EXECUTE ; \ execute :NONAME definition
: OLD: :; \ just an alias

OLD: : ("name" -- a-addr xt colon-sys)
\ begins an execution-counting colon definition
CREATE HERE 0, \ storage for execution counter

0, \ storage for execution token
DOCOLON \ set run time for CREATEd word
:NONAME ; \ begin unnamed colon definition

(Note the placement @OES> DOES>must modify theCREATHE word and not theNONAME
definition, soDOES>must execute befor&lONAME)

OLD: ; (a-addr xt colon-sys --)
\ ends an execution-counting colon definition)

POSTPONE ; \ complete compilation of colon def
SWAP CELL+!; \save execution token
IMMEDIATE

The new. and; are used just like the standard ones to define words:

e DXXX) e XXX
Now however, these words may be “ticked” to retrieve the count (and execution token):

... ' Xxx >BODY ? ...

A.6.2.0620 ?DO
Typical use:: X ... limit first ?DO ... LOOP ... ;

Page 154 X3J14 dpANS-6 Document

This word was added in response to many requests for a resolution of the difficulty introduced by
Forth-83'sDQ which on a 16-bit system will loop 65,535 times if given equal arguments. As this
Standard also encourages 32-bit systems, this behavior can be intolerable. The Technical Committee
considered applying these semanticB@ but declined on the grounds that it might break existing code.

A.6.2.0700 AGAIN
Typical use:: X ... BEGIN ... AGAIN ...;

Unless word-sequence has a way to terminate, this is an endless loop.

A.6.2.0855 C"
Typical use:: X ... C"ccc" ... ;

It is easy to convert counted strings to pointer/length but hard to do the op@sitethe only new word

that uses the “address of counted string” stack representation. It is provided as an aid to porting existing
programs to ANS Forth systems. It is relatively difficult to implen@hin terms of other standard

words, considering its “compile string into the current definition” semantics.

Users ofC" are encouraged to migrate their application code toward the consistent use of the preferred
“c-addru” stack representation with the alternate wfd This may be accomplished by converting
application words with counted string input arguments to use the preferesttif u” representation, thus
eliminating the need faZ" .

See: A.3.1.3.4 Counted strings

A.6.2.0873 CASE
Typical use:
X
CASE
testl OF ... ENDOF
testn OF ... ENDOF

... (default)
ENDCASE ... ;

A.6.2.0945 COMPILE,

COMPILE, is the compilation equivalent &XECUTE In many cases, it is possible to compile a word by
usingPOSTPONRvithout resorting to the use GIOMPILE,. However, the use 6fOSTPONEequires

that the name of the word must be known at compile time, wh€@BHPILE, allows the word to be
located at any time. Itis sometime possible toEMALUATEO compile a word whose name is not
known until run time. This has two possible problems:

— EVALUATES slower thartCOMPILE, because a dictionary search is required.
— The current search order affects the outconie&/éfLUATE

In traditional threaded-code implementations, compilation is performed&ymma). This usage is not
portable; it doesn’t work for subroutine-threaded, native code, or relocatable implementations. Use of
COMPILE, is portable.

In most systems it is possible to implem&@MPILE, so it will generate code that is optimized to the
same extent as code that is generated by the normal compilation process. However, in some
implementations there are two different “tokens” corresponding to a particular definition name: the
normal “execution token” that is used while interpreting or EX¥ECUTEand another “compilation
token” that is used while compiling. It is not always possible to obtain the compilation token from the
execution token. In these implementatidd®MPILE, might not generate code that is as efficient as
normally compiled code.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 155

A.6.2.0970 CONVERT
CONVERay be defined as follows:
: CONVERT CHAR+ 65535 >NUMBER DROP ;

A.6.2.1342 ENDCASE
Typical use:
X
CASE
testl OF ... ENDOF
testn OF ... ENDOF

... (default)
ENDCASE ... ;

A.6.2.1343 ENDOF
Typical use:
X
CASE
testl OF ... ENDOF
testn OF ... ENDOF

... (default)
ENDCASE ... ;

A.6.2.1390 EXPECT

Specification of positive integer countan(for EXPECTallows some implementors to continue their

practice of using a zero or negative value as a flag to trigger special behavior. Insofar as such behavior is
outside the Standard, Standard Programs cannot depend upon it, but the Technical Committee doesn’t
wish to preclude it unnecessarily. Since actual values are almost always small integers, no functionality is
impaired by this restriction.

A.6.2.1850 MARKER

As dictionary implementations have gotten more elaborate and in some cases have used multiple address
spacesFORGEThas become prohibitively difficult or impossible to implement on many Forth systems.
MARKERyreatly eases the problem by making it possible for the system to remember “landmark
information” in advance that specifically marks the spots where the dictionary may at some future time
have to be rearranged.

A.6.2.1950 OF
Typical use:
X
CASE
testl OF ... ENDOF
testn OF ... ENDOF

... (default)
ENDCASE ... ;

A.6.2.2000 PAD

PADhas been available as scratch storage for strings since the earliest Forth implementations. It was
brought to our attention that many programmers are reluctant @A3dearing incompatibilities with

Page 156 X3J14 dpANS-6 Document

system usesPADis specifically intended as a programmer convenience, however, which is why we
documented the fact that no standard words use it.

A.6.2.2008 PARSE
Typical use:char PARSEccc<char>
The traditional Forth word for parsingi 8§ ORDPARSEsolves the following problems witWORD

1. WORDRIways skips leading delimiters. This behavior is appropriate for use by the text interpreter,
which looks for sequences of non-blank characters, but is inappropriate for use by wdrds(like
and." . Consider the following (flawed) definition df :

:.([CHAR]) WORD COUNT TYPE ; IMMEDIATE
This works fine when used in a line like:
(HELLO) 5.
but consider what happens if the user enters an empty string:

() 5.
The definition of.(shown above would treat theas a leading delimiter, skip it, and continue
consuming characters until it located anodhénat followed a non- character, or until the parse
area was empty. In the example shownp5the would be treated as part of the string to be printed.

With PARSE we could write a correct definition df :
:.([CHAR]) PARSE TYPE ; IMMEDIATE
This definition avoids the “empty string” anomaly.

2. WORIDeturns its result as a counted string. This has four bad effects:

a) The characters acceptedW¥DRnust be copied from the input buffer into a temporary buffer, in
order to make room for the count character that must be at the beginning of the counted string. The
copy step is inefficient, comparedRARSE which leaves the string in the input buffer and doesn't
need to copy it anywhere.

b) WORDnust be careful not to store too many characters into the temporary buffer, thus overwriting
something beyond the end of the buffer. This adds to the overhead of the cop\WsdEIInay have
to scan a lot of characters before finding the trailing delimiter.)

c) The count character limits the length of the string returnaf®RBo 255 characters (longer
strings can easily be stored in blocks!). This limitation does not exiBARRGE

d) The temporary buffer is typically overwritten by the next us&@®RD This introduces a

temporal dependency; the value returned\YRIs only valid for a limited durationPARSEhas a
temporal dependency, too, related to the lifetime of the input buffer, but that is less severe in most
cases thalVORDB temporal dependency.

The behavior o'WORMvith respect to skipping leading delimiters is useful for parsing blank-delimited
names. Many system implementations include an additional word for this purpose, siPd&S&with
respect to thec-addru” return value, but without an explicit delimiter argument (the delimiter set is
implicitly “white space”), and which does skip leading delimiters. A common description for this word is:

PARSE-WORL “<spaces>name-- c-addru)

Skip leading spaces and parsemedelimited by a spacec-addris the address within the input
buffer andu is the length of the selected string. If the parse area is empty, the resulting string has a
zero length.

If both PARSEandPARSE-WORBre present, the need MWORID> largely eliminated.

A.6.2.2030 PICK
0 PICK is equivalent tddUPandl1 PICK is equivalent t©VER

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 157

A.6.2.2040 QUERY
The function 0fQUERYmay be performed witACCEPTandEVALUATE

A.6.2.2125 REFILL

This word is a useful generalizationQUERY Re-definingQUERMYo0 meet this specification would have
broken existing codeREFILL is designed to behave reasonably for all possible input sources. If the
input source is coming from the user, as VIiERYREFILL could still return a false value if, for

instance, a communication channel closes so that the system knows that no more input will be available.

A.6.2.2150 ROLL
2 ROLL is equivalent t&ROT, 1 ROLL is equivalent t&WAPRandO ROLL is a null operation.

A.6.2.2182 SAVE-INPUT

SAVE-INPUT andRESTORE-INPUTallow the same degree of input source repositioning within a text

file as is available witlBLOCKinput. SAVE-INPUT andRESTORE-INPUT"hide the details” of the
operations necessary to accomplish this repositioning, and are used the same way with all input sources.
This makes it easier for programs to reposition the input source, because they do not have to inspect
several variables and take different action depending on the values of those variables.

SAVE-INPUT andRESTORE-INPUTare intended for repositioning within a single input source; for
example, the following scenario is NOT allowed for a Standard Program:
: XX
SAVE-INPUT CREATE

S" RESTORE-INPUT" EVALUATE
ABORT" couldn't restore input" ;

This is incorrect because, at the tiRESTORE-INPUTIs executed, the input source is the string via
EVALUATE which is not the same input source that was in effect BB&E-INPUT was executed.

The following code is allowed:
: XX
SAVE-INPUT CREATE

S" .(Hello)" EVALUATE
RESTORE-INPUT ABORT" couldn't restore input" ;

After EVALUATEreturns, the input source specification is restored to its previous stat8 AMEs
INPUT andRESTORE-INPUTare called with the same input source in effect.

In the above examples, tB& ALUATEphrase could have been replaced by a phrase invdN®gUDE-
FILE and the same rules would apply.

The Standard does not specify what happens if a program violates the above rules. A Standard System
might check for the violation and return an exception indication R&BTORE-INPUT or it might fail
in an unpredictable way.

The return value frolRESTORE-INPUTIs primarily intended to report the case where the program
attempts to restore the position of an input source whose position cannot be restored. The keyboard might
be such an input source.

Nesting ofSAVE-INPUT andRESTORE-INPUTis allowed. For example, the following situation works
as expected:
: XX
SAVE-INPUT
S" f1" INCLUDED

Page 158 X3J14 dpANS-6 Document

\ The file "f1" includes:
\ ... SAVE-INPUT ... RESTORE-INPUT ...
\ End of file "f1"
RESTORE-INPUT ABORT" couldn't restore input” ;

In principle,RESTORE-INPUTcould be implemented to “always fail”, e.g.:

: RESTORE-INPUT (x1...xnn--flag)
0 ?DO DROP LOOP TRUE ;

Such an implementation would not be useful in most cases. It would be preferable for a system to leave
SAVE-INPUT andRESTORE-INPUTundefined, rather than to create a useless implementation. In the
absence of the words, the application programmer could choose whether or not to create “dummy”
implementations or to work-around the problem in some other way.

Examples of how an implementation might use the return valuesSfiE-INPUT to accomplish the
save/restore function:

Input Source possible stack values

block >IN@ BLK@ 2
EVALUATE >SIN@ 1

keyboard >SIN@ 1

text file >IN @ lo-pos hi-pos 3

These are examples only; a Standard Program may not assume any particular meaning for the individual
stack items returned BAVE-INPUT.

A.6.2.2290 TIB
The function ofTIB has been superseded®QURCE

A.6.2.2295 TO

Historically, some implementations ©O have not explicitly parsed. Instead, they set a mode flag that is
tested by the subsequent execution of name. ANS Forth explicitly requir@©timatst parse, so that
TOs effect on the parse area will be predictable when it is used at the end of a line.

Typical use:x TO name

A.6.2.2298 TRUE
TRUEis equivalent to the phragg0= .

A.6.2.2405 VALUE
Typical use:0 VALUE DATA

: EXCHANGE (nl1--n2) DATA SWAP TO DATA
EXCHANGEeaves, in DATAand returns the prior valug.

A.6.2.2440 WITHIN

We describ&ITHIN without mentioning circular number spaces (an undefined term) or providing the
code. Here is a number line with the overflow point (o) at the far right and the underflow point (u) at the
far left:

u (0]

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 159

There are two cases to consider: eithemtjig,..n;|u; range straddles the overflow/underflow points or it
does not. Lets examine the non-straddle case first:

U--mmmmmmmmmmmmmeee [,) 0

The [denotes,|u,, the) denotesg|us, and the dots and [are numb&/ETHIN the range.ng|ug is
greater tham,|u,, so the following tests will determinenf|u; is WITHIN n,|u, andns|us:

nolu, < nyu; andng|uy <nglug.
In the case where the comparison range straddles the overflow/underflow points:

Nalus is less tham,|u, and the following tests will determinerifju, is WITHIN n,|u, andns|us:
No|u, < Nnyjuy orngJuy < nglus.

WITHIN must work for both signed and unsigned arguments. One obvious implementation does not
work:

:WITHIN (test low high -- flag)
>R OVER < 0= (testflag)
SWAP R>< AND ;

Assume two’s-complement arithmetic on a 16-bit machine, and consider the following test:

33000 32000 34000 WITHIN

The above implementation returfadsefor that test, even though the unsigned number 33000 is clearly
within the range {{32000 .. 34000}}.

The problem is that, in the incorrect implementation, the signed compsargggas the wrong answer
when 32000 is compared to 33000, because when those numbers are treated as signed numbers, 33000 is
treated as negative 32536, while 32000 remains positive.

Replacing< with U<in the above implementation makes it work with unsigned numbers, but causes
problems with certain signed number ranges; in particular, the test:

1 -55 WITHIN
would give an incorrect answer.

For two’s-complement machines that ignore arithmetic overflow (most machines), the following
implementation works in all cases:

: WITHIN (testlow high--) OVER->R-R> U< ;
A.6.2.2530 [COMPILE]
Typical use:: name2 ... [COMPILE] namel ... ; IMMEDIATE

A.6.2.2535 \
Typical use:5 CONSTANT THAT \ THIS IS A COMMENT ABOUT THAT

Page 160 X3J14 dpANS-6 Document

A.7 The Block word set

A7.2

A.7.6

Early Forth systems ran stand-alone, with no host OS. Blocks of 1024 bytes were designed as a
convenient unit of disk, and most native Forth systems still use them. It is relatively easy to write a native
disk driver that maps head/track/sector addresses to block numbers. Such disk drivers are extremely fast
in comparison with conventional file-oriented operating systems, and security is high because there is no
reliance on a disk map.

Today many Forth implementations run under host operating systems, because the compatibility they offer
the user outweighs the performance overhead. Many people who use such systems prefer using host OS
files only; however, people who use both native and non-native Forths need a compatible way of accessing
disk. The Block Word set includes the most common words for accessing program source and data on
disk.

In order to guarantee that Standard Programs that need access to mass storage have a mechanism
appropriate for both native and non-native implementations, ANS Forth requires that the Block word set
be available if any mass storage facilities are provided. On non-native implementations, blocks normally
reside in host OS files.

Additional terms

block

Many Forth systems use blocks to contain program source. Conventionally such blocks are formatted for
editing as 16 lines of 64 characters. Source blocks are often referred to as “screens”.

Glossary

A.7.6.2.2190 SCR

SCRis short for screen.

A.8 The Double-Number word set

A.8.6

Forth systems on 8-bit and 16-bit processors often find it necessary to deal with double-length numbers.
But many Forths on small embedded systems do not, and many users of Forth on systems with a cell size
of 32-bits or more find that the necessity for double-length numbers is much diminishedoréhere

have factored the words that manipulate double-length entities into this optional word set.

Please note that the naming convention used in this word set conveys some important information:

1. Words whose names are of the form 2xxx deal with cell pairs, where the relationship between the
cells is unspecified. They may be two-vectors, double-length numbers, or any pair of cells that it is
convenient to manipulate together.

2. Words with names of the form Dxxx deal specifically with double-length integers.

3. Words with names of the form Mxxx deal with some combination of single and double integers. The
order in which these appear on the stack is determined by long-standing common practice.

Refer toA.3.1for a discussion of data types in Forth.

Glossary

A.8.6.1.0360 2CONSTANT

Typical use:x1 x2 2CONSTANT name

A.8.6.1.0390 2LITERAL

Typical use:: X ... [x1 x2] 2LITERAL ...;

Collating Sequence: ! "#$% &' () *+,-./digits:; <=>? @ ALPHA[\]~ _ " alpha{|}~

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 161

A.8.6.1.0440 2VARIABLE
Typical use:2VARIABLE name

A.8.6.1.1070 D.R
In D.R, the “R” is short for RIGHT.

A.8.6.1.1090 D2*
SeeA.6.1.03202* for applicable discussion.

A.8.6.1.1100 D2/
SeeA.6.1.03302/ for applicable discussion.

A.8.6.1.1140 D>S

There exist number representations, e.g., the sign-magnitude representation, where reduction from double-
to single-precision cannot simply be done ViROP This word, equivalent tDROFon two’s
complement systems, desensitizes application code to number representation and facilitates portability.

A.8.6.1.1820 M*/

M*/ was once described by Chuck Moore as the most useful arithmetic operator in Forth. It is the main
workhorse in most computations involving double-cell numbers. Note that some systems allow signed
divisors. This can cost a lot in performance on some CPUs. The requirement for a positive divisor has
not proven to be a problem.

A.8.6.1.1830 M+

M+is the classical method for integrating.

A.9 The Exception word set

CATCHandTHROWrovide a reliable mechanism for handling exceptions, without having to propagate
exception flags through multiple levels of word nesting. It is similar in spirit to the “non-local return”
mechanisms of many other languages, such asafjimp() andlongjmp() , and LISP’SCATCHand
THROWIn the Forth contexf HROWhay be described as a “multi-le\&XIT 7, with CATCHmarking a
location to which &HROWhay return.

Several similar Forth “multi-leveEXIT ” exception-handling schemes have been described and used in
past years. It is not possible to implement such a scheme using only standard words (o@¥eT @tdn
andTHROVYY because there is no portable way to “unwind” the return stack to a predetermined place.

THROVdlIso provides a convenient implementation technique for the standard AR®d#sTand
ABORT!, allowing an application to define, through the us€ATCH the behavior in the event of a
systemABORT

This sample implementation GATCHandTHROWses the non-standard words described below. They
or their equivalents are available in many systems. Other implementation strategies, including directly
saving the value dDEPTH are possible if such words are not available.

SP@/(--addr) returns the address corresponding to the top of data stack.

SP! (addr--) sets the stack pointeraddr, thus restoring the stack depth to the same depth that
existed just beforaddrwas acquired by executirgP @

RP@(--addr) returns the address corresponding to the top of return stack.

Page 162 X3J14 dpANS-6 Document

RP! (addr--) sets the return stack pointeraiddr, thus restoring the return stack depth to the same
depth that existed just befoaeldr was acquired by executirRP@

VARIABLE HANDLER O HANDLER'! \ last exception handler

: CATCH (xt -- exception# | 0) \ return addr on stack
SP@ >R (xt) \ save data stack pointer
HANDLER @ >R (' xt)\ and previous handler
RP@ HANDLER'! (xt)\ set current handler
EXECUTE () \execute returns if no THROW
R>HANDLER! () \restore previous handler
R> DROP () \discard saved stack ptr
0; (0) \'normal completion

: THROW (??7? exception# -- ??? exception#)

?DUP IF (exc#)\ 0 THROW is no-op
HANDLER @ RP ! (exc#) \ restore prev return stack
R>HANDLER ! (exc#) \restore prev handler
R>SWAP >R (saved-sp) \ exc# on return stack
SP! DROP R> (exc#) \restore stack
\ Return to the caller of CATCH because return
\ stack is restored to the state that existed
\ when CATCH began execution

THEN ;

In a multi-tasking system, tHéANDLERvariable should be in the per-task variable area (i.e., a user
variable).

This sample implementation does not explicitly handle the case in @ATCHhas never been called
(i.e., theABORTbehavior). One solution is to add the following code aftetRhan THROW

HANDLER @ 0= IF (empty the stack) QUIT THEN

Another solution is to execu@ATCHwithin QUIT, so that there is always an “exception handler of last
resort” present. For example:

:QUIT
(empty the return stack and)
(set the input source to the user input device)
POSTPONE [
BEGIN
REFILL
WHILE
[1INTERPRET CATCH
CASE
0 OF STATE @ 0= IF ." OK" THEN CR ENDOF
-1 OF (Aborted) ENDOF
-2 OF (display message from ABORT") ENDOF
(default) DUP ." Exception # " .
ENDCASE
REPEAT BYE ;
This example assumes the existance of a system-implementatioiNV&RPRETthat embodies the text
interpreter semantics describeddid The Forth text interpreter. Note that this implementation of
QUIT automatically handles the emptying of the stack and return stack, GLROV inherent
restoration of the data and return stacks. Given this definitiQUeT, it's easy to define:

: ABORT -1 THROW ;

In systems with other stacks in addition to the data and return stacks, the implement2&diCbind
THROWhust save and restore those stack pointers as well. Such an “extended version” can be built on top

Collating Sequence: '"#$% & ' () *+,-./digits: ; <=>? @ ALPHA[\]”~ _"alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 163

of this basic implementation. For example, with another stack pointer accesset@andFP! only
CATCHneeds to be redefined:

: CATCH (xt -- exception#|0)
FP@ >R CATCH R> OVER IF FP! ELSE DROP THEN ;
No change tGHROWs necessary in this case. Note that, as with all redefinitions, the redefined version of
CATCHWwill only be available to definitions compiled after the redefinitioCAfTCH

CATCHandTHROWrovide a convenient way for an implementation to “clean up” the state of open files if

an exception occurs during the text interpretation of a file W@LUDE-FILE . The implementation of
INCLUDE-FILE may guard (witlCATCH the word that performs the text interpretation, ar@AfTCH

returns an exception code, the file may be closed and the excetitiR@&Yso that the files being

included at an outer nesting level may be closed also. Note that the Standard allows, but does not require,
INCLUDE-FILE to close its open files if an exception occurs. However, it does réN@GteJDE-FILE

to unnest the input source specification if an exceptigiHROW.

A.9.3 Additional usage requirements

One important use of an exception handler is to maintain program control under many conditions which
ABORT This is practicable only if a range of codes is reserved. Note that an application may overload
many standard words in such a way asHROVEmMbiguous conditions not normalHROWby a

particular system.

A.9.3.6 Exception handling

The method of accomplishing this coupling is implementation dependent. For exia@izcould

“know” aboutCATCHandTHROWby usingCATCHitself, for example), o€CATCHandTHROWeould

“know” aboutLOAD(by maintaining input source nesting information in a data structure known to
THROWor example). Under these circumstances it is not possible for a Standard Program to define
words such asOADiIn a completely portable way.

A.9.6 Glossary

A.9.6.1.2275 THROW

If THROVi5 executed with a non zero argument, the effect is as if the corresp@#ii@Hhad returned

it. In that case, the stack depth is the same as it was just B&d@Hbegan execution. The values of
thei*x stack arguments could have been modified arbitrarily during the execusibnlofgeneral,

nothing useful may be done with those stack items, but since their number is known (because the stack
depth is deterministic), the application malRORhem to return to a predictable stack state.

Typical use:

: could-fail (-- char)
KEY DUP [CHAR] Q = IF 1 THROW THEN ;
:do-it(ab--c) 2DROP could-fail ;
s try-it (--)
12[]do-it CATCH IF
(x1 x2) 2DROP ." There was an exception” CR
ELSE ." The character was " EMIT CR
THEN ;
s retry-it (--)
BEGIN 1 2 [] do-it CATCH WHILE
(x1 x2) 2DROP ." Exception, keep trying" CR
REPEAT (char)
." The character was " EMIT CR ;

Page 164 X3J14 dpANS-6 Document

A.10 The Facility word set
A.10.6 Glossary

A.10.6.1.0742 AT-XY

Most implementors supply a method of positioning a cursor on a CRT screen, but there is great variance
in names and stack arguments. This version is supported by at least one major vendor.

A.10.6.1.1755 KEY?

The Technical Committee has gone around several times on the stack effects. Whatever is decided will
violate somebody’s practice and penalize some machine. This way doesn’t interfere with type-ahead on
some systems, while requiring the implementation of a single-character buffer on machines where polling
the keyboard inevitably results in the destruction of the character.

Use ofKEY or KEY?indicates that the application does not wish to bother with non-character events, so
they are discarded, in anticipation of eventually receiving a valid character. Applications wishing to
handle non-character events must BE&YandEKEY? It is possible to mix uses BEY?/KEY and
EKEY?/ EKEYwithin a single application, but the application mustkKIE& ? andKEY only when it

wishes to discard non-character events until a valid character is received.

A.10.6.2.1305 EKEY

EKEYprovides a standard word to access a system-dependent set of “raw” keyboard events, including
events corresponding to members of the standard character set, events corresponding to other members of
the implementation-defined character set, and keystrokes that do not correspond to members of the
character set.

EKEYassumes no particular numerical correspondence between particular event code values and the
values representing standard characters. On some systems, this may allow two separate keys that
correspond to the same standard character to be distinguished from one another.

In systems that combine both keyboard and mouse events into a single “event stream”, the single number
returned byEKEYmay be inadequate to represent the full range of input possibilities. In such systems, a
single “event record” may include a time stamp, the x,y coordinates of the mouse position, the keyboard
state, and the state of the mouse buttons. In such systems, it might be approfElEeyforreturn the
address of an “event record” from which the other information could be extracted.

Also, consider a hypothetical Forth system running under MS-DOS on a PC-compatible computer.
Assume that the implementation-defined character set is the “normal” 8-bit PC character set. In that
character set, the codes from 0 to 127 correspond to ASCII characters. The codes from 128 to 255
represent characters from various non-English languages, mathematical symbols, and some graphical
symbols used for line drawing. In addition to those characters, the keyboard can generate various other
“scan codes”, representing such non-character events as arrow keys and function keys.

There may be multiple keys, with different scan codes, corresponding to the same standard character. For
example, the character representing the number “1” often appears both in the row of number keys above
the alphabetic keys, and also in the separate numeric keypad.

When a program asks the MS-DOS operating system for a keyboard event, it receives either a single non-
zero byte, representing a character, or a zero byte followed by a “scan code” byte, representing a non-
character keyboard event (e.g., a function key).

EKEYrepresents each keyboard event as a single number, rather than as a sequence of numbers. For the
system described above, the following would be a reasonable implementdfiéB6&nd related words:

The MAX-CHARenvironmental query would return 255.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 165

Assume the existence of a wddDS-KEY(-- char) which executes the MS-DOS “Direct STDIN
Input” system call (Interrupt 21h, Function 07h) and a wo@5-KEY ?(-- flag) which executes the
MS-DOS “Check STDIN Status” system call (Interrupt 21h, Function 0Bh).

. EKEY? (--flag) DOS-KEY? 0<> :
EKEY (--u)
DOS-KEY ?DUP 0= IF
DOS-KEY 256 +
THEN ;

: EKEY>CHAR (u -- ufalse | char true)
DUP 256 >= IF (u)
DUP 259 = IF \ 259 is Ctrl-@ (ASCII NUL)
DROP 0 TRUE EXIT \so replace with character
THEN FALSE EXIT \ otherwise extended character

THEN TRUE ; \ normal extended ASCII char.
VARIABLE PENDING-CHAR -1 PENDING-CHAR'!
:KEY? (--flag)

PENDING-CHAR @ 0>= IF TRUE EXIT THEN
BEGIN EKEY? WHILE
EKEY EKEY>CHAR IF
PENDING-CHAR ! TRUE EXIT
THEN DROP
REPEAT FALSE;

: KEY (--char)
PENDING-CHAR @ 0>= IF
PENDING-CHAR @ -1 PENDING-CHAR'! EXIT
THEN
BEGIN EKEY EKEY>CHAR 0= WHILE
DROP
REPEAT ;

This is a full-featured implementation, providing the application program with an easy way to either
handle non-character events (WHKEY), or to ignore them and to only consider “real” characters (with
KEY).

Note thatEKEYmaps scan codes from 0 to 255 into numbers from 256 toEKEY maps the number

259, representing the keyboard combination Ctrl-Shift-@, to the character whose numerical value is 0
(ASCII NUL). Many ASCII keyboards generate ASCIlI NUL for Ctrl-Shift-@, so we use that key
combination for ASCIlI NUL (which is otherwise unavailable from MS-DOS, because the zero byte
signifies that another scan-code byte follows).

One consequence of using the “Direct STDIN Input” system call (function 7) instead of the “STDIN

Input” system call (function 8) is that the normal DOS “Ctrl-C interrupt” behavior is disabled when the
system is waiting for input (Ctrl-C would still cause an interrupt while characters are being output). On

the other hand, if the “STDIN Input” system call (function 8) were used to impldexesit, Ctrl-C

interrupts would be enabled, but Ctrl-Shift-@ would also cause an interrupt, because the operating system
would treat the second byte of the 0,3 sequence as a Ctrl-C, even though the 3 is really a scan code and not
a character. One “best of both worlds” solution is to use function 8 for the first byte receKé& Yy

and function 7 for the scan code byte. For example:

:EKEY (--u)
DOS-KEY-FUNCTION-8 ?DUP 0= IF
DOS-KEY-FUNCTION-7 DUP 3 = IF
DROP 0 ELSE 256 +

Page 166 X3J14 dpANS-6 Document

THEN
THEN ;

Of course, if the Forth implementor chooses to pass Ctrl-C through to the program, without using it for its
usual interrupt function, then DOS function 7 is appropriate in both cases (and some additional care must
be taken to prevent a typed-ahead Ctrl-C from interrupting the Forth system during output operations).

A Forth system might also choose a simpler implementati&Edf without implementindeKEY, as
follows:

:KEY (--char) DOS-KEY ;
: KEY? (--flag) DOS-KEY? 0<> ;
The disadvantages of the simpler version are:

a) An application program that us€gY, expecting to receive only valid characters, might receive a
sequence of bytes (e.g., a zero byte followed by a byte with the same numerical value as the letter “A”)
that appears to contain a valid character, even though the user pressed a key (e.g., function key 4) that
does not correspond to any valid character.

b) An application program that wishes to handle non-character events will have to &ute

twice if it returns zero the first time. This might appear to be a reasonable and easy thing to do.
However, such code is not portable to other systems that do not use a zero byte as an “escape” code.
Using theEKEYapproach, the algorithm for handling keyboard events can be the same for all
systems; the system dependencies can be reduced to a table or set of constants listing the system-
dependent key codes used to access particular application functions. \EKHEO(the algorithm,

not just the table, is likely to be system dependent.

Another approach tBKEYon MS-DOS is to use the BIOS “Read Keyboard Status” function (Interrupt

16h, Function 01h) or the related “Check Keyboard” function (Interrupt 16h, Function 11h). The
advantage of this function is that it allows the program to distinguish between different keys that
correspond to the same character (e.g. the two “1” keys). The disadvantage is that the BIOS keyboard
functions read only the keyboard. They cannot be “redirected” to another “standard input” source, as can
the DOS STDIN Input functions.

A.10.6.2.1306 EKEY>CHAR

EKEY>CHARranslates a keyboard event into the corresponding member of the character set, if such a
correspondence exists for that event.

It is possible that several different keyboard events may correspond to the same character, and other
keyboard events may correspond to no character.

A.10.6.2.1325 EMIT?

An indefinite delay is a device related condition, such as printer off-line, that requires operator
intervention before the device will accept new data.

A.10.6.2.1905 MS

Although their frequencies vary, every system has a clock. Since many programs need to time intervals,
this word is offered. Use of milliseconds as an internal unit of time is a practical “least common
denominator” external unit. It is assumed implementors will use “clock ticks” (whatever size they are) as
an internal unit and convert as appropriate.

A.10.6.2.2292 TIME&DATE

Most systems have a real-time clock/calendar. This word gives portable access to it.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 167

A.11 The File-Access word set

Many Forth systems support access to a host file system, and many of these support interpretation of Forth
from source text files. The Forth-83 Standard did not address host OS files. Nevertheless, a degree of
similarity exists among modern implementations.

For example, files must be opened and closed, created and deleted. Forth file-system implementations
differ mostly in the treatment and disposition of the exception codes, and in the format of the file-
identification strings. The underlying mechanism for creating file-control blocks might or might not be
visible. We have chosen to keep it invisible.

Files must also be read and written. Text files, if supported, must be read and written one line at a time.
Interpretation of text files implies that they are somehow integrated into the text interpreter input
mechanism. These and other requirements have shaped the file-access extensions word set.

Most of the existing implementations studied use simple English words for common host file functions:
OPENCLOSE READ etc. Although we would have preferred to do likewise, there were so many minor
variations in implementation of these words that adopting any particular meaning would have broken
much existing code. We have used names with a siifibE for most of these words. We encourage
implementors to conform their single-word primitives to the ANS behaviors, and hope that if this is done
on a widespread basis we can adopt better definition names in a future standard.

Specific rationales for members of this word set follow.
A.11.3 Additional usage requirements

A.11.3.2 Blocks in files

Many systems reuse file identifiers; when a file is closed, a subsequently opened file may be given the
same identifier. If the original file has blocks still in block buffers, these will be incorrectly associated
with the newly opened file with disastrous results. The block buffer system must be flushed to avoid this.

A.11.6 Glossary

A.11.6.1.0765 BIN

Some operating systems require that files be opened in a different mode to access their contents as an
unstructured stream of binary data rather than as a sequence of lines.

The arguments tREAD-FILE andWRITE-FILE are arrays of character storage elements, each

element consisting of at least 8 bits. The Technical Committee intends fBHY imode, the contents of

these storage elements can be written to a file and later read back without alteration. The Technical
Committee has declined to address issues regarding the impact of “wide” characters on the File and Block
word sets.

A.11.6.1.1010 CREATE-FILE

Typical use:

: X ... S"TEST.FTH" R/W CREATE-FILE
ABORT" CREATE-FILE FAILED" ... ;

A.11.6.1.1717 INCLUDE-FILE

Here are two implementation alternatives for saving the input source specification in the presence of text
file input:

1) Save the file position (as returnedfEyE-POSITION) of the beginning of the line being
interpreted. To restore the input source specification, seek to that position and re-read the line into
the input buffer.

Page 168 X3J14 dpANS-6 Document

2) Allocate a separate line buffer for each active text input file, using that buffer as the input buffer.
This method avoids the “seek and reread” step, and allows the use of “pseudo-files” such as pipes and
other sequential-access-only communication channels.

A.11.6.1.1718 INCLUDED
Typical use: ... S" filename" INCLUDED ...

A.11.6.1.1970 OPEN-FILE
Typical use:

: X ... S"TEST.FTH" R/W OPEN-FILE
ABORT" OPEN-FILE FAILED" ... ;

A.11.6.1.2080 READ-FILE
A typical sequential file-processing algorithm might look like:

BEGIN ()
... READ-FILE THROW (length)
?DUP WHILE (length)
. ()
REPEAT ()

In this exampleTHROWS used to handle (unexpected) exception conditions, which are reported as non-
zero values of ther return value fronREAD-FILE . End-of-file is reported as a zero value of the
“length” return value.

A.11.6.1.2090 READ-LINE

Implementations are allowed to store the line terminator in the memory buffer in order to allow the use of
line reading functions provided by host operating systems, some of which store the terminator. Without

this provision, a temporary buffer might be needed. The two-character limitation is sufficient for the vast
majority of existing operating systems. Implementations on host operating systems whose line terminator
sequence is longer than two characters may have to take special action to prevent the storage of more than
two terminator characters.

Standard Programs may not depend on the presence of any such terminator sequence in the buffer.

A typical line-oriented sequential file-processing algorithm might look like:

BEGIN ()

... READ-LINE THROW (length not-eof-flag)
WHILE (length)

. ()
REPEAT DROP ()

In this exampleTHROWS used to handle (unexpected) I/0 exception condition, which are reported as
non-zero values of thedt” return value fromREAD-LINE.

READ-LINE needs a separate end-of-file flag because empty (zero-length) lines are a routine occurrence,
so a zero-length line cannot be used to signify end-of-file.

A.11.6.1.2165 S"
Typical use:... S" ccc" ...

The interpretation semantics 8¢ are intended to provide a simple mechanism for entering a string in
the interpretation state. Since an implementation may choose to provide only one buffer for interpreted
strings, an interpreted string is subject to being overwritten by the next execusibinohterpretation

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 169

state. It is intended that no standard words other$hashould in themselves cause the interpreted
string to be overwritten. However, since words sucB\AALUATE LOAD INCLUDE-FILE and
INCLUDEDcan result in the interpretation of arbitrary text, possibly including instan&s tfie
interpreted string may be invalidated by some uses of these words.

When the possibility of overwriting a string can arise, it is prudent to copy the string to a “safe” buffer
allocated by the application.

Programs wishing to parse in the fashiorsbfare advised to us2ARSEor WORD COUNinstead ofS",
preventing the overwriting of the interpreted string buffer.

A.12 The Floating-Point word set

The Technical Committee has considered many proposals dealing with the inclusion and makeup of the
Floating-Point Word Sets in ANS Forth. Although it has been argued that ANS Forth should not address
floating-point arithmetic and numerous Forth applications do not need floating-point, there are a growing
number of important Forth applications from spread sheets to scientific computations that require the use
of floating-point arithmetic. Initially the Technical Committee adopted proposals that made the Forth
Vendors Group Floating-Point Standard, first published in 1984, the framework for inclusion of Floating-
Point in ANS Forth. There is substantial common practice and experience with the Forth Vendors Group
Floating-Point Standard. Subsequently the Technical Committee adopted proposals that placed the basic
floating-point arithmetic, stack and support words in the Floating-Point word set and the floating-point
transcendental functions in the Floating-Point Extensions word set. The Technical Committee also
adopted proposals that:

— Changed names for clarity and consistency; BBALSto FLOATS andREAL+to FLOAT+.
— Removed words; e.g=PICK .

— Added words for completeness and increased functionalityFSENCOS F~, DF@DF!, SF@and
SF!

Several issues concerning the Floating-Point word set were resolved by consensus in the Technical
Committee:

Floating-point stack: By default the floating-point stack is separate from the data and return stacks;
however, an implementation may keep floating-point numbers on the data stack. A program can
determine whether floating-point numbers are kept on the data stack by passing the string
FLOATING-STACKto ENVIRONMENTt is the experience of several members of the Technical
Committee that with proper coding practices it is possible to write floating-point code that will run
identically on systems with a separate floating-point stack and with floating-point numbers kept on
the data stack.

Floating-point input: The current base must BECIMAL Floating-point input is not allowed in an
arbitrary base. All floating-point numbers to be interpreted by an ANS Forth system must contain the
exponent indicatorE” (seel2.3.7 Text interpreter input number conversion. Consensus in the
Technical Committee deemed this form of floating-point input to be in more common use than the
alternative that would have a floating-point input mode that would allow numbers with embedded
decimal points to be treated as floating-point numbers.

Floating-point representation: Although the format and precision of the significand and the format and
range of the exponent of a floating-point number are implementation defined in ANS Forth, the
Floating-Point Extensions word set contains the wDEI®@ SF@DF!, andSF! for fetching and
storing double- and single-precision IEEE floating-point-format numbers to memory. The IEEE
floating-point format is commonly used by numeric math co-processors and for exchange of floating-
point data between programs and systems.

Page 170 X3J14 dpANS-6 Document

A.12.3 Additional usage requirements

A.12.3.5 Address alignment

In defining custom floating-point data structures, be awareQR&ATEJoesn’t necessarily leave the data
space pointer aligned for various floating-point data types. Programs may comply with the requirement
for the various kinds of floating-point alignment by specifying the appropriate alignment both at compile-
time and execution time. For example:

: FCONSTANT (F: r--)
CREATE FALIGN HERE 1 FLOATS ALLOT F!
DOES> (F: --r) FALIGNED F@ ;

A.12.3.7 Text interpreter input number conversion

The Technical Committee has more than once received the suggestion that the text interpreter in Standard
Forth systems should treat numbers that have an embedded decimal point, but no exponent, as floating-
point numbers rather than double cell numbers. This suggestion, although it has merit, has always been
voted down because it would break too much existing code; many existing implementations put the full

digit string on the stack as a double number and use other means to inform the application of the location
of the decimal point.

A.12.6 Glossary

A.12.6.1.0558 >FLOAT

>FLOATenables programs to read floating-point data in legible ASCII format. It accepts a much broader
syntax than does the text interpreter since the latter defines rules for composing source programs whereas
>FLOATdefines rules for accepting dataFLOAT is defined as broadly as is feasible to permit input of

data from ANS Forth systems as well as other widely used standard programming environments.

This is a synthesis of common FORTRAN practice. Embedded spaces are explicitly forbidden in much
scientific usage, as are other field separators such as comma or slash.

While >FLOATIs not required to treat a string of blanks as zero, this behavior is strongly encouraged,
since a future version of ANS Forth may include such a requirement.

A.12.6.1.1427 F.
For examplelE3 F. displays1000.

A.12.6.1.1492 FCONSTANT
Typical use:r FCONSTANT name

A.12.6.1.1552 FLITERAL
Typical use:: X ...[... (r)] FLITERAL ... ;

A.12.6.1.1630 FVARIABLE
Typical use:FVARIABLE name

A.12.6.1.2143 REPRESENT

This word provides a primitive for floating-point display. Some floating-point formats, including those
specified by IEEE-754, allow representations of numbers outside of an implementation-defined range.
These include plus and minus infinities, denormalized numbers, and others. In these cases we expect that

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 171

REPRESENTill usually be implemented to return appropriate character strings, such as “+infinity” or
“nan”, possibly truncated.

A.12.6.2.1489 FATANZ2

FSINCOSandFATAN2are a complementary pair of operators which convert angles to 2-vectors and
vice-versa. They are essential to most geometric and physical applications since they correctly and
unambiguously handle this conversion in all cases except null vectors, even when the tangent of the angle
would be infinite.

FSINCOSreturns a Cartesian unit vector in the direction of the given angle, measured counter-clockwise
from the positive X-axis. The order of results on the stack, namely y underneath x, permits the 2-vector
data type to be additionally viewed and used as a ratio approximating the tangent of the angle. Thus the
phrase=SINCOS F/ is functionally equivalent t6 TAN but is useful over only a limited and

discontinuous range of angles, where&NCOSandFATANZ2are useful for all angles. This ordering

has been found convenient for nearly two decades, and has the added benefit of being easy to remember.
A corollary to this observation is that vectors in general should appear on the stack in this order.

The argument order f&fATANZ2is the same, converting a vector in the conventional representation to a
scalar angle. Thus, for all angl&SINCOS FATAN2is an identity within the accuracy of the arithmetic
and the argument range BSINCOS Note that whil&=SINCOSalways returns a valid unit vector,
FATAN2will accept any non-null vector. An ambiguous condition exists if the vector argument to
FATANZ2has zero magnitude.

A.12.6.2.1516 FEXPM1

This function allows accurate computation when its arguments are close to zero, and provides a useful
base for the standard exponential functions. Hyperbolic functions such ag cashife efficiently and
accurately implemented by usifgEXPM1] accuracy is lost in this function for small valuex dffthe

word FEXPis used.

An important application of this word is in finance; say a loan is repaid at 15% per year; what is the daily
rate? On a computer with single precision (six decimal digit) accuracy:

1. UsingFLN andFEXP.

FLN of 1.15 = 0.139762,

divide by 365 = 3.82910E-4,

form the exponent usingeEXP= 1.00038, and

subtract one (1) and convert to percentage = 0.038%.

Thus we only have two digit accuracy.
2. UsingFLNP1 andFEXPM1

FLNP1 of 0.15 = 0.139762, (this is the same value as in the first example, although with the
argument closer to zero it may not be so)

divide by 365 = 3.82910E-4,

form the exponent and subtract one (1) usiBEg{PM1= 3.82983E-4, and

convert to percentage = 0.0382983%.

This is full six digit accuracy.

The presence of this word allows the hyperbolic functions to be computed with usable accuracy. For
example, the hyperbolic sine can be defined as:

“FSINH (r1--r2)
FEXPM1 FDUP FDUP 1.0EQ F+ F/ F+ 2.0EQ F/;

Page 172 X3J14 dpANS-6 Document

A.12.6.2.1554 FLNP1

This function allows accurate compilation when its arguments are close to zero, and provides a useful base
for the standard logarithmic functions. For exampleN can be implemented as:

:FLN 1.0EO F- FLNP1;
See:A.12.2.1516FEXPM1

A.12.6.2.1616 FSINCOS
See:A.12.2.1489FATAN2

A.12.6.2.1640 F~

This provides the three types of “floating point equality” in common use -- “close” in absolute terms, exact
equality as represented, and “relatively close”.

A.13 The Locals word set

The Technical Committee has had a problem with locals. It has been argued forcefully that ANS Forth
should say nothing about locals since:

— there is no clear accepted practice in this area;
— not all Forth programmers use them or even know what they are; and

— few implementations use the same syntax, let alone the same broad usage rules and general
approaches.

It has also been argued, it would seem equally forcefully, that the lack of any standard approach to locals

is precisely the reason for this lack of accepted practice since locals are at best non-trivial to implement in

a portable and useful way. It has been further argued that users who have elected to become dependent on
locals tend to be locked into a single vendor and have little motivation to join the group that it is hoped

will “broadly accept” ANS Forth unless the Standard addresses their problems.

Since the Technical Committee has been unable to reach a strong consensus on either leaving locals out or
on adopting any particular vendor’s syntax, it has sought some way to deal with an issue that it has been
unable to simply dismiss. Realizing that no single mechanism or syntax can simultaneously meet the
desires expressed in all the locals proposals that have been received, it has simplified the problem
statement to be to define a locals mechanism that:

— is independent of any particular syntax;

— is user extensible;

— enables use of arbitrary identifiers, local in scope to a single definition;
— supports the fundamental cell size data types of Forth; and

— works consistently, especially with respect to re-entrancy and recursion.

This appears to the Technical Committee to be what most of those who actively use locals are trying to
achieve with them, and it is at present the consensus of the Technical Committee that if ANS Forth has
anything to say on the subject this is an acceptable thing for it to say.

This approach is proposed as one that can be used with a small amount of user coding to implement some,
but not all, of the locals schemes in use. The following coding examples illustrate how it can be used to
implement two syntaxes.

1. A proposed syntax: LOCALname) with additional usage rules:

: LOCAL ("name") BL WORD COUNT (LOCAL) ; IMMEDIATE
: END-LOCALS 00 (LOCAL) ; IMMEDIATE

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 173

:EXAMPLE (n--nn2n3) LOCALN END-LOCALS
N DUP N * DUP N *;

2. The syntax used by systems of Creative Solutions, Inc.:

: LOCALS| ("name...name |"--)
BEGIN BL WORD COUNT OVER C@
[CHAR] | -OVER 1-0OR
WHILE (LOCAL)
REPEAT 2DROP 0 0 (LOCAL); IMMEDIATE

: EXAMPLE (n - n2n3)
LOCALS|N|N DUP N* DUP N *;

Other syntaxes can be implemented, although some will admittedly require considerably greater effort or

in some cases program conversion. Yet other approaches to locals are completely incompatible due to
gross differences in usage rules and in some cases even scope identifiers. For example, the complete local
scheme in use at Johns Hopkins had elaborate semantics that cannot be duplicated in terms of this model.

To reinforce the intent of sectidr8, here are two examples of actual use of locals. The first illustrates
correct usage:

(1.1) : { BEGIN BL WORD COUNT OVER C@
[CHAR] }- OVER 1 - OR
WHILE (LOCAL)
REPEAT 2DROP 0 0 (LOCAL) ; IMMEDIATE

(1.2) : JOE (abc--n)>R2*R>2DUP + 0
{ANS 2B+C C 2B A}
20DO 1ANS+1+TOANS ANS. LOOP
ANS .2B+C.C.2B.A.ANS;

(1.3) 100 300 10 JOE .

(1.1) defines a local declaration syntax that surrounds the list of locals with braces. It doesn’t do anything
fancy, such as reordering locals or providing initial values for some of them, so locals are initialized from
the stack in the default order. (1.2) illustrates a use of this syntax in the definil@tofNote that

work is performed at execution time in that definition before locals are declared. It's OK to use the return
stack as long as whatever is placed there is removed before the declarations begin.

Note that before declaring locaBjs doubled, a subexpressi@B(+C) is computed, and an initial value
(zero) forANSis provided. After locals have been declat®aE proceeds to use them. Note that locals
may be accessed and updated within do-loops. The effect of interpreting (1.3) is to display the following
values:

1 (ANSthe first time through the loop),

3 (ANSthe second time),

3 (ANS 610 B+C). 10 (©), 600 @B) 100 @), and
3 (ANSleft on the stack byOE).

Thenamesof the locals vanish aftdlOE has been compiled. Tiséorageand meaningof locals appear
whenJOESs locals are declared and vanishJ&E returns to its caller at (semicolon).

A second set of examples illustrates various things that break the rules. We assume that the definitions of
LOCALandEND-LOCALSabove are present, along wjtifrom the preceding example.

(2.1) : ZERO 0 POSTPONE LITERAL POSTPONE LOCAL ; IMMEDIATE

(2.2) : JOE (ab) ZERO TEMP LOCAL B 1+ LOCAL A+ ZERO ANSWER ;

(2.3):BOB (abcd) {DC} {BA};

Here are two definitions with various violations of rti&3.3(1). In (2.2) the declaration GEMPis
legal and creates a local whose initial value is zero. It's OK because the executable cigle@hat

Page 174 X3J14 dpANS-6 Document

generates precedes the first us@. @ICAL) in the definition. However, the+ preceding the declaration
of A+ is illegal. Likewise the use @EROto defineANSWERS illegal because it generates executable
code between uses @OCAL) . Finally,JOEterminates illegally (n&ND-LOCALS. BOBIn (2.3)
violates the rule against declaring two sets of locals.

(2.4) : ANN (ab --b) DUP>R DUPIF{BA}THEN R>;

(2.5) : JANE (ab--n) {BA} AB+>R AB- R>/;
ANNIn (2.4) violates two rules. THE ... THENaround the declaration of its locals violai&s3.3(2),
and the copy oB left on the return stack before declaring locals viola®8.3(3). JANEin (2.5)

violates13.3.3(4) by accessing locals after placing the surA ahdB on the return stack without first
removing that sum.

(2.6) : CHRIS (ab) {BA}[]AEXECUTE
5[1B>BODY! ['A]LITERAL LEE;
CHRISIn (2.6) illustrates three violations ©8.3.3(5). The attempt t& XECUTEhe local called\ is
inconsistent with some implementations. The storeBnt@a >BODYis likely to cause tragic results with
many implementations; moreover, if locals are in registers they can't be addressed as memory no matter
what is written.

The third violation, in which an execution token for a definition’s local is passed as an argument to the
word LEE would, if allowed, have the unpleasant implication tHaE couldEXECUTRhe token and
obtain a value foA from the particular execution @HRISthat called_EE this time.

A.13.3 Additional usage requirements

Rule13.3.3(4) could be relaxed without affecting the integrity of the rest of this struch®®&.3(3)
could not be.

13.3.3(2) forbids the use of the data stack for local storage because no usage rules have been articulated
for programmer users in such a case. Of course, if the data stack is somehow employed in such a way that
there are no usage rules, then the locals are invisible to the programmer, are logically not on the stack,

and the implementation conforms.

The minimum required number of locals can (and should) be adjusted to minimize the cost of compliance
for existing users of locals.

Access to previously declared local variables is prohibited by Sd&i8r34) until any data placed onto
the return stack by the application has been removed, due to the possible use of the return stack for storage
of locals.

Authorization for a Standard Program to manipulate the return stack (e gR ®Ra) while local

variables are active overly constrains implementation possibilities. The consensus of users of locals was
that Local facilities represent an effective functional replacement for return stack manipulation, and
restriction of standard usage to only one method was reasonable.

Access to Locals withiDO..LOOPs is expressly permitted as an additional requirement of conforming
systems by Sectiol3.3.37). Although words, such §sOCALS), written by a System Implementor,

may require inside knowledge of the internal structure of the return stack, such knowledge is not required
of a user of compliant Forth systems.

A.13.6 Glossary

A.13.6.1.2295 TO
Typical use:x TO name
See: A.6.2.2295TQ.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 175

A.13.6.2.1795 LOCALS|
A possible implementation of this word and an example of usage is giv¥eb3n It is intended as an
example only; any implementation yielding the described semantics is acceptable.
A.14 The Memory-Allocation word set

The Memory-Allocation word set provides a means for acquiring memory other than the contiguous data
space that is allocated By LOT. In many operating system environments it is inappropriate for a process
to pre-allocate large amounts of contiguous memory (as would be necessary for thelus@®f The
Memory-Allocation word set can acquire memory from the system at any time, without knowing in
advance the address of the memory that will be acquired.

A.15 The Programming-Tools word set
These words have been in widespread common use since the earliest Forth systems.

Although there are environmental dependencies intrinsic to programs using an assembler, virtually all
Forth systems provide such a capability. Insofar as many Forth programs are intended for real-time
applications and are intrinsically non-portable for this reason, the Technical Committee believes that
providing a standard window into assemblers is a useful contribution to Forth programmers.

Similarly, the programming aid3UMPetc., are valuable tools even though their specific formats will
differ between CPUs and Forth implementations. These words are primarily intended for use by the
programmer, and are rarely invoked in programs.

One of the original aims of Forth was to erase the boundary between “user” and “programmer” -- to give
all possible power to anyone who had occasion to use a computer. Nothing in the above labeling or
remarks should be construed to mean that this goal has been abandoned.

A.15.6 Glossary

A.15.6.1.0220 .S

.S is a debugging convenience found on almost all Forth systems. It is universally mentioned in Forth
texts.

A.15.6.1.2194 SEE

SEEacts as an on-line form of documentation of words, allowing modification of words by decompiling
and regenerating with appropriate changes.

A.15.6.1.2465 WORDS

WORDS$ a debugging convenience found on almost all Forth systems. It is universally referred to in
Forth texts.

A.15.6.2.0470 ;CODE
Typical use:: namex ... <create> ... ;CODE ...

wherenamex is a defining word, andcreate> is CREATEor any user defined word that calls
CREATE

A.15.6.2.0930 CODE

Some Forth systems implement the assembly function by addih§SBEMBLERvord list to the search
order, using the text interpreter to parse a postfix assembly language with lexical characteristics similar to
Forth source code. Typically, in such systems, assembly ends when BNNY@ODES interpreted.

Page 176 X3J14 dpANS-6 Document

A.15.6.2.1015 CS-PICK

The intent is to reiteratedeston the control-flow stack so that it can be resolved more than once. For
example:

\ Conditionally transfer control to beginning of loop

\ This is similar in spirit to C's "continue" statement.

: 7REPEAT (dest -- dest) \ Compilation
(flag--) \Execution
0 CS-PICK POSTPONE UNTIL ; IMMEDIATE

: XX (--)\ Example use of ?7REPEAT
BEGIN

flag ?7REPEAT (Go back to BEGIN if flag is false)
flag ?REPEAT (Go back to BEGIN if flag is false)

flag UNTIL (Go back to BEGIN if flag is false)

A.15.6.2.1020 CS-ROLL

The intent is to modify the order in which thegs anddestson the control-flow stack are to be resolved
by subsequent control-flow words. For exam{ILE could be implemented in termsiéf andCS-
ROLL, as follows:

: WHILE (dest -- orig dest)
POSTPONE IF 1 CS-ROLL ; IMMEDIATE

A.15.6.2.1580 FORGET
Typical use: ... FORGET name ...

FORGETassumes that all the information needed to restore the dictionary to its previous state is inferable
somehow from the forgotten word. While this may be true in simple linear dictionary models, it is
difficult to implement in other Forth systems; e.g., those with multiple address spaces. For example, if
Forth is embedded in ROM, how dde®RGETknow how much RAM to recover when an array is
forgotten? A general and preferred solution is provideMBRKER

A.15.6.2.2531 [ELSE]

Typical use:... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2532 [IF]
Typical use:... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2533 [THEN]
Typical use:... flag [IF] ... [ELSE] ... [THEN] ...

Software that runs in several system environments often contains some source code that is
environmentally dependent. Conditional compilation -- the selective inclusion or exclusion of portions of
the source code at compile time -- is one technique that is often used to assist in the maintenance of such
source code.

Conditional compilation is sometimes done with “smart comments” -- definitions that either skip or do not
skip the remainder of the line based on some test. For example:

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 177

\ If 16-Bit? contains TRUE, lines preceded by 16BIT\
\ will be skipped. Otherwise, they will not be skipped.

VARIABLE 16-BIT?
:16BIT\ 16-BIT? @ IF POSTPONE\ THEN ; IMMEDIATE
This technigue works on a line by line basis, and is good for short, isolated variant code sequences.

More complicated conditional compilation problems suggest a nestable method that can encompass more
than one source line at a time. The words included in the ANS Forth Programmers-Tool-kit extensions
word set are useful for this purpose. The implementation given below works with any input source
(keyboard EVALUATE BLOCK or text file).

:[ELSE] (--)
1 BEGIN \ level
BEGIN BL WORD COUNT DUP WHILE \level adr len
2DUP S"[IF]" COMPARE 0=IF \level adr len
2DROP 1+ \ level'
ELSE \ level adr len
2DUP S"[ELSE]" COMPARE 0= IF \ level adr len
2DROP 1- DUP IF 1+ THEN \level'
ELSE \ level adr len
S" [THEN]" COMPARE 0=IF \level
1- \ level'
THEN
THEN
THEN ?DUP 0= IF EXIT THEN \ level'
REPEAT 2DROP \ level
REFILL 0= UNTIL \ level
DROP ; IMMEDIATE
([IF] (flag --)
0= IF POSTPONE [ELSE] THEN ; IMMEDIATE

:[THEN] (-) ; IMMEDIATE
A.16 The Search-Order word set

Search-order specification and control mechanisms vary widely. The FIG-Forth, Forth-79, polyFORTH,
and Forth-83 vocabulary and search order mechanisms are all mutually incompatible. The complete list of
incompatible mechanisms, in use or proposed, is much longerAD$E@ONLYscheme described in a

Forth-83 Experimental Proposal has substantial community support. However, many consider it to be
fundamentally flawed, and oppose it vigorously.

Recognizing this variation, this Standard specifies a new “primitive” set of tools from which various
schemes may be constructed. This primitive search-order word set is intended to be a portable
“construction set” from which search-order words may be built, rather than a user int&it&@ONLY

or the various “vocabulary” schemes supported by the major Forth vendors can be defined in terms of the
primitive search-order word set.

The encoding for word list identifiergid might be a small-integer index into an array of word-list
definition records, the data-space address of such a record, a user-area offset, the execution token of a
Forth-83 style sealed vocabulary, the link-field address of the first definition in a word list, or anything
else. ltis entirely up to the system implementor.

In some systems the interpretation of numeric literals is controlled by including “pseudo word lists” that
recognize numbers at the end of the search order. This technique is accommodated by the “default search
order” behavior o SET-ORDERwhen given an argument of -1. In a system using the traditional
implementation 0ALSOQONLY, the minimum search order would be equivalent to the WwiNHY.

Page 178 X3J14 dpANS-6 Document

There has never been a portable way to restore a saved search order. F83 (not Forth 83) introduced the
word PREVIOUS, which almost made it possible to “unload” the search order by repeatedly executing the
phraseCONTEXT @ PREVIOUS The search order could be “reloaded” by repeatingO CONTEXT

I'. Unfortunately there was no portable way to determine how many word lists were in the search order.

ANS Forth has removed the woB@DNTEXTbecause in many systems its contents refer to more than one
word list, compounding portability problems.

Note that (colon) no longer affects the search order. The previous behavior, where the compilation word
list replaces the first word list of the search order, can be emulated with the following redefinition of
(colon).

: : GET-ORDER SWAP DROP GET-CURRENT SWAP SET-ORDER : ;
A.16.2 Additional terms

search order

Note that the use of the term “list” does not necessarily imply implementation as a linked list.

A.16.3.3 Finding definition names
In other words, the following is not guaranteed to work:
:FOO ...[... SET-CURRENT] ... RECURSE ...;
IMMEDIATE

RECURSE (semicolon), andMMEDIATE may or may not need information stored in the compilation
word list.

A.16.6 Glossary

A.16.6.1.2192 SEARCH-WORDLIST

The string argument SEARCH-WORDLISTS represented by-addru, rather than by just-addras

with FIND. The committee wishes to establisaddru as the preferred representation of a string on the
stack, and has adopted that representation for all new functions that accept string arguments. While this
decision may cause the implementatioSBIARCH-WORDLISTo be somewhat more difficult in existing
systems, the committee feels that the additional difficulty is minor.

WhenSEARCH-WORDLISTails to find the word, it does not return the string, as &®dB. This is in
accordance with the general principle that Forth words consume their arguments.

A.16.6.2.0715 ALSO
Here is an implementation 8. SQONLYin terms of the primitive search-order word set.

WORDLIST CONSTANT ROOT ROOT SET-CURRENT

: DO-VOCABULARY (--)\ Implementation factor

DOES> @ >R () (R: widnew)

GET-ORDER SWAP DROP (widl ... widn-1n)

R> SWAP SET-ORDER;;
: DISCARD (x1..xuu -)\Implementation factor

0 ?DO DROP LOOP; \ DROP u+1 stack items
CREATE FORTH FORTH-WORDLIST , DO-VOCABULARY
: VOCABULARY (name --)

WORDLIST CREATE , DO-VOCABULARY ;

:ALSO (--) GET-ORDER OVER SWAP 1+ SET-ORDER;

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 179

: PREVIOUS (--) GET-ORDER
SWAP DROP 1- SET-ORDER;

: DEFINITIONS (--) GET-ORDER
OVER SET-CURRENT DISCARD ;

:ONLY (--) ROOT ROOT 2 SET-ORDER;;

\ Forth-83 version; just removes ONLY
: SEAL (--) GET-ORDER 1- SET-ORDER DROP ;

\ F83 and F-PC version; leaves only CONTEXT

: SEAL (--) GET-ORDER OVER 1 SET-ORDER DISCARD ;
The preceding definition dNLYin terms of a ROOT word list follows F83 usage, and assumes that the
default search order just includ@®OTandFORTH A more portable definition FORTHandONLY,
without the assumptions, is:

<omit the ... WORDLIST CONSTANT ROOT ... line>
CREATE FORTH GET-ORDER OVER , DISCARD DO-VOCABULARY

:ONLY (--) -1 SET-ORDER;;
Here is a simple implementation GET-ORDERandSET-ORDERincluding a corresponding definition
of FIND. The implementations &¥ORDLISTSEARCH-WORDLISTGET-CURRENBNASET-
CURRENTepend on system details and are not given here.

16 CONSTANT #VOCS
VARIABLE #ORDER
CREATE CONTEXT #VOCS CELLS ALLOT

: GET-ORDER (-- wid1 .. widn n)
#ORDER @ 0 ?DO
#ORDER @ | - 1- CELLS CONTEXT + @
LOOP
#ORDER @ ;

: SET-ORDER (widl .. widn n --)
DUP-1=1IF
DROP <push system default word lists and n>
THEN
DUP #ORDER !
0 ?DO | CELLS CONTEXT +!LOOP ;
:FIND (c-addr--c-addrO|w1l|w-1)
0 (c-addr0)
#ORDER @ 0 ?DO
OVER COUNT (c-addr O c-addr' u)
| CELLS CONTEXT + @ (c-addr O c-addr' u wid)
SEARCH-WORDLIST (c-addrO;0|w1|w-1)

?DUP IF (c-addrO;wl|w-1)
2SWAP 2DROP LEAVE (w1 |w-1)

THEN (c-addr0)

LOOP ; (c-addrO|wil|w-1)

In an implementation where the dictionary search mechanism uses a hash table or lookup cache to reduce
the search time&SET-ORDERmight need to reconstruct the hash table or flush the cache.

Page 180 X3J14 dpANS-6 Document

A.17 The String word set
A.17.6 Glossary

A.17.6.1.0245 /STRING

/ISTRING is used to remove or add characters relative to the “left” end of the character string. Positive
values ofn will exclude characters from the string while negative valuesvafl include characters to the
left of the string./STRING is a natural factor dVOR@RNd commonly available.

A.17.6.1.0910 CMOVE

If c-addr, lies within the source region, memory propagation occursddgr, lies within the source
region ifc-addr, is not less than-addr; andc-addr, is less than the quantityaddr, u CHARSE).

Typical use: Assume a character string at address 100: “ABCD”. Then after
100 DUP CHAR+ 3 CMOVE the string at address 100 is “AAAA”.

Rationale folCMOVENdCMOVE*ollows MOVE

A.17.6.1.0920 CMOVE>

If c-addr, lies within the destination region, memory propagation occuarsddr, lies within the
destination region i€-addr, is greater than or equal ¢eaddr, and ifc-addr, is less than the quantity
addr; uCHARS +)

Typical use: Assume a character string at address 100: “ABCD”. Then after
100 DUP CHAR+ SWAP 3 CMOVE> the string at address 100 is “DDDD".

A.17.6.1.0935 COMPARE

Existing Forth systems perform string comparison operations using words that differ in spelling, input and
output arguments, and case sensitivity. One in widespread use was chosen.

A.17.6.1.2191 SEARCH

Existing Forth systems perform string searching operations using words that differ in spelling, input and
output arguments, and case sensitivity. One in widespread use was chosen.

A.17.6.1.2212 SLITERAL
The current functionality 06.1.2165S" may be provided by the following definition:

: §" ("cce<quote>" --)
[CHAR] " PARSE POSTPONE SLITERAL ; IMMEDIATE

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 181

B. Bibliography (informative annex)

Industry standards

Books

Forth-77 Standard Forth Users Group, FST-780314.
Forth-78 Standard Forth International Standards Team.
Forth-79 Standard Forth Standards Team.

Forth-83 Standardand Appendices, Forth Standards Team.

The standards referenced in this section were developed by the Forth Standards Team, a volunteer group
which included both implementors and users. This was a volunteer organization operating under its own
charter and without any formal ties to ANSI, IEEE or any similar standards body. Several members of the
Forth Standards Team have also been members of the X3J14 Technical Committee.

Brodie, L. StartingFORTH Englewood Cliffs, NJ: Prentice Hall, 1981.

Brodie, L. ThinkihngFORTH Englewood Cliffs, NJ: Prentice Hall, 1984.

Feierbach, G. and Thomas, Porth Tools& Applications Reston, VA: Reston Computer Books, 1985.
Haydon, Dr. Glen B.All AboutFORTH, Third Edition. La Honda, CA: 1990.

Kelly, Mahlon G. and Spies, NFORTH: A Textand Reference Englewood Cliffs, NJ: Prentice Hall,
1986.

Knecht, K. Introductionto Forth. Indiana: Howard Sams & Co., 1982.

Koopman, PStackComputersTheNewWave Chichester, West Sussex, England: Ellis Horwood Ltd.
1989

Martin, Thea, editor A Bibliographyof Forth Referencesrlhird Edition. Rochester, New York: Institute
of Applied Forth Research, 1987.

McCabe, C. K.Forth Fundamental¢2 volumes). Oregon: Dilithium Press, 1983.
Pountain, R.ObjectOrientedForth. New York: Academic Press, 1987.

Ouverson, Marlin, editorDr. DobbsToolbookof Forth. Redwood City, CA: M&T Press, Vol. 1, 1986;
Vol. 2, 1987.

Terry, J. D. Library of Forth Routinesand Utilities. New York: Shadow Lawn Press, 1986
Tracy, M. and Anderson, AMasteringForth (2nd ed). New York: Brady Books, 1989.
Winfield, A. TheCompleteForth. New York: Wiley Books, 1983.

Journals, magazines and newsletters

Forsley, Lawrence P., Conference ChairmRochesteforth Conferencé’roceedings Rochester, New
York: Institute of Applied Forth Research, 1981 to present.

Forsley, Lawrence P., Editor-in-ChieTheJournal of Forth Applicationand Research Rochester, New
York: Institute of Applied Forth Research, 1983 to present.

Frenger, Paul, editorSIGForthNewsletter New York, NY: Association for Computing Machinery,
1989 to present.

Ouverson, Marlin, editorForth Dimensions San Jose, CA: The Forth Interest Group, 1978 to present.

Page 182 X3J14 dpANS-6 Document

Reiling, Robert, editor FORML Conferencdroceedings San Jose, CA: The Forth Interest Group, 1980
to present.

Ting, Dr. C. H., editor. More on Forth Engines San Mateo, CA: Offete Enterprises, 1986 to present.

Selected articles

Kelly, Guy M. “Forth.” McGraw-Hill PersonalComputerProgrammingEncyclopedia- Languagesand
OperationSystems New York: McGraw-Hill, 1985.

Kogge, P. M. “An Architectural Trail to Threaded Code SysteniSEE Computer(March, 1982).
Moore, C. H. “The Evolution of FORTH — An Unusual Languaggyte (August 1980).

Rather, E. D. “Forth Programming Languagé&ificyclopediaof PhysicalScience& Technology
(Vol. 5). New York: Academic Press, 1987.

Rather, E. D. “FORTH."ComputerProgrammingManagement Auerbach Publishers, Inc., 1985.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 183

C. Perspective (informative annex)

The purpose of this section is to provide an informal overview of Forth as a language, illustrating its
history, most prominent features, usage, and common implementation techniques. Nothing in this section
should be considered as binding upon either implementors or users. A list of books and articles is given in
AnnexB for those interested in learning more about Forth.

C.1 Features of Forth

Forth provides an interactive programming environment. Its primary uses have been in scientific and
industrial applications such as instrumentation, robotics, process control, graphics and image processing,
artificial intelligence and business applications. The principal advantages of Forth include rapid,
interactive software development and efficient use of computer hardware.

Forth is often spoken of as a language because that is its most visible aspect. But in fact, Forth is both
more and less than a conventional programming language: more in that all the capabilities normally
associated with a large portfolio of separate programs (compilers, editors, etc.) are included within its
range and less in that it lacks (deliberately) the complex syntax characteristic of most high-level
languages.

The original implementations of Forth were stand-alone systems that included functions normally
performed by separate operating systems, editors, compilers, assemblers, debuggers and other utilities. A
single simple, consistent set of rules governed this entire range of capabilities. Today, although very fast
stand-alone versions are still marketed for many processors, there are also many versions that run co-
resident with conventional operating systems such as MS-DOS and UNIX.

Forth is not derived from any other language. As a result, its appearance and internal characteristics may
seem unfamiliar to new users. But Forth’s simplicity, extreme modularity, and interactive nature offset

the initial strangeness, making it easy to learn and use. A new Forth programmer must invest some time
mastering its large command repertoire. After a month or so of full-time use of Forth, that programmer
could understand more of its internal working than is possible with conventional operating systems and
compilers.

The most unconventional feature of Forth isitsensibility The programming process in Forth consists

of defining new “words” — actually new commands in the language. These may be defined in terms of
previously defined words, much as one teaches a child concepts by explaining them in terms of previously
understood concepts. Such words are called “high-level definitions.” Alternatively, new words may also
be defined in assembly code, since most Forth implementations include an assembler for the host
processor.

This extensibility facilitates the development of special application languages for particular problem areas
or disciplines.

Forth’s extensibility goes beyond just adding new commands to the language. With equivalent ease, one
can also add newindsof words. That is, one may create a word which itself will define words. In

creating such a defining word the programmer may specify a specialized behavior for the words it will
create which will be effective at compile time, at run-time, or both. This capability allows one to define
specialized data types, with complete control over both structure and behavior. Since the run-time
behavior of such words may be defined either in high-level or in code, the words created by this new
defining word are equivalent to all other kinds of Forth words in performance. Moreover, it is even easy
to add newcompilerdirectivesto implement special kinds of loops or other control structures.

Most professional implementations of Forth are written in Forth. Many Forth systems include a “meta-
compiler” which allows the user to modify the internal structure of the Forth system itself.

Page 184 X3J14 dpANS-6 Document

C.2 History of Forth

Forth was invented by Charles H. Moore. A direct outgrowth of Moore’s work in the 1960’s, the first
program to be called Forth was written in about 1970. The first complete implementation was used in
1971 at the National Radio Astronomy Observatory’s 11-meter radio telescope in Arizona. This system
was responsible for pointing and tracking the telescope, collecting data and recording it on magnetic tape,
and supporting an interactive graphics terminal on which an astronomer could analyze previously
recorded data. The multi-tasking nature of the system allowed all these functions to be performed
concurrently, without timing conflicts or other interference — a very advanced concept for that time.

The system was so useful that astronomers from all over the world began asking for copies. Its use spread
rapidly, and in 1976 Forth was adopted as a standard language by the International Astronomical Union.

In 1973, Moore and colleagues formed FORTH, Inc. to explore commercial uses of the language.

FORTH, Inc. developed multi-user versions of Forth on minicomputers for diverse projects ranging from
data bases to scientific applications such as image processing. In 1977, FORTH, Inc. developed a version
for the newly introduced 8-bit microprocessors called “microFORTH,” which was successfully used in
embedded microprocessor applications in the United States, Britain and Japan.

Stimulated by the volume marketing of microFORTH, a group of computer hobbyists in Northern
California became interested in Forth, and in 1978 formed the Forth Interest Group (FIG). They
developed a simplified model which they implemented on several microprocessors and published listings
and disks at very low cost. Interest in Forth spread rapidly, and today there are chapters of the Forth
Interest Group throughout the U.S. and in over fifteen countries.

By 1980, a number of new Forth vendors had entered the market with versions of Forth based upon the
FIG model. Primarily designed for personal computers, these relatively inexpensive Forth systems have
been distributed very widely.

C.3 Hardware implementations of Forth

The internal architecture of Forth simulates a computer with two stacks, a set of registers, and other
standardized features. As a result, it was almost inevitable that someone would attempt to build a
hardware representation of an actual Forth computer.

In the early 1980’s, Rockwell produced a 6502-variant with Forth primitives in on-board ROM, the
Rockwell 65F11. This chip has been used successfully in many embedded microprocessor applications.
In the mid-1980’s Zilog developed the z8800 (Super8) which offered ENTER (nest), EXIT (unnest) and
NEXT in microcode.

In 1981, Moore undertook to design a chip-level implementation of the Forth virtual machine. Working
first at FORTH, Inc. and subsequently with the start-up company NOVIX, formed to develop the chip,
Moore completed the design in 1984, and the first prototypes were produced in early 1985. More recently,
Forth processors have been developed by Harris Semiconductor Corp., Johns Hopkins University, and
others.

C.4 Standardization efforts

The first major effort to standardize Forth was a meeting in Utrecht in 1977. The attendees produced a
preliminary standard, and agreed to meet the following year. The 1978 meeting was also attended by
members of the newly formed Forth Interest Group. In 1979 and 1980 a series of meetings attended by
both users and vendors produced a more comprehensive standard called Forth 79.

Although Forth 79 was very influential, many Forth users and vendors found serious flaws in it, and in
1983 a new standard called Forth 83 was released.

Encouraged by the widespread acceptance of Forth 83, a group of users and vendors met in 1986 to
investigate the feasibility of an American National Standard. The X3J14 Technical Committee for ANS
Forth held its first meeting in 1987. This Standard is the result.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 185

C.5 Programming in Forth

C51

Forth is an English-like language whose elements (called “words”) are named data items, procedures, and
defining words capable of creating data items with customized characteristics. Procedures and defining
words may be defined in terms of previously defined words or in machine code, using an embedded
assembler.

Forth “words” are functionally analogous to subroutines in other languages. They are also equivalent to
commands in other languages — Forth blurs the distinction between linguistic elements and functional
elements.

Words are referred to either from the keyboard or in program source by name. As a result, the term

“word” is applied both to program (and linguistic) units and to their text names. In parsing text, Forth
considers a word to be any string of characters bounded by spaces. There are a few special characters that
cannot be included in a word or start a word: space (the universal delimiter), CR (which ends terminal
input), and backspace or DEL (for backspacing during keyboard input). Many groups adopt naming
conventions to improve readability. Words encountered in text fall into three categories: defined words

(i.e., Forth routines), numbers, and undefined words. For example, here are four words:

HERE DOES> | 8493

The first three are standard-defined words. This means that they have entries in Forth’s dictionary,
described below, explaining what Forth is to do when these words are encountered. The number “8493”
will presumably not be found in the dictionary, and Forth will convert it to binary and place it on its push-
down stack for parameters. When Forth encounters an undefined word and cannot convert it to a number,
the word is returned to the user with an exception message.

Architecturally, Forth words adhere strictly to the principles of “structured programming”:

— Words must be defined before they are used.

— Logical flow is restricted to sequential, conditional, and iterative patterns. Words are included to
implement the most useful program control structures.

— The programmer works with many small, independent modules (words) for maximum testability and
reliability.

Forth is characterized by five major elements: a dictionary, two push-down stacks, interpreters, an
assembler, and virtual storage. Although each of these may be found in other systems, the combination
produces a synergy that yields a powerful and flexible system.

The Forth dictionary

A Forth program is organized into a dictionary that occupies most of the memory used by the system.
This dictionary is a threaded list of variable-length items, each of which defines a word. The content of
each definition depends upon the type of word (data item, constant, sequence of operations, etc.). The
dictionary is extensible, usually growing toward high memory. On some multi-user systems individual
users have private dictionaries, each of which is connected to a shared system dictionary.

Words are added to the dictionary by “defining words”, of which the most commonly usébisn).

When: is executed, it constructs a definition for the word that follows it. In classical implemeriations
the content of this definition is a string of addresses of previously defined words which will be executed in
turn whenever the word being defined is invoked. The definition is terminateddeynicolon). For

example, here is a definition:

: RECEIVE (--addrn) PAD DUP 32 ACCEPT ;

The name of the new word RECEIVE The comment (in parentheses) indicates that it requires no
parameters and will return an address and count on the data stack. RBBEIVE is executed, it will

1
Other common implementation techniques include direct translation to code and other types of tokens.

Page 186 X3J14 dpANS-6 Document

C.b5.2

C.5.3

perform the words in the remainder of the definition in sequence. TheRaddlaces on the stack the
address of a scratch pad used to handle stringd2duplicates the top stack item, so we now have two

copies of the address. The number 32 is also placed on the stack. THEOE&HE Ttakes an address

(provided byPAD and length (32) on the stack, accepts from the keyboard a string of up to 32 characters
which will be placed at the specified address, and returns the number of characters received. The copy of
the scratch-pad address remains on the stack below the count so that the routine tHRECHI®E can

use it to pick up the received string.

Push-down stacks

The example above illustrates the use of push-down stacks for passing parameters between Forth words.
Forth maintains two push-down stacks, or LIFO lists. These provide communication between Forth words
plus an efficient mechanism for controlling logical flow. A stack contains 16-bit items on 8-bit and 16-bit
computers, and 32-bit items on 32-bit processors. Double-cell numbers occupy two stack positions, with
the most-significant part on top. Items on either stack may be addresses or data items of various kinds.
Stacks are of indefinite size, and usually grow towards low memory.

Although the structure of both stacks is the same, they have very different uses. The user interacts most
directly with the Data Stack, which contains arguments passed between words. This function replaces the
calling sequences used by conventional languages. It is efficient internally, and makes routines
intrinsically re-entrant. The second stack is called the Return Stack, as its main function is to hold return
addresses for nested definitions, although other kinds of data are sometimes kept there temporarily.

The use of the Data Stack (often called just “the stack”) leads to a notation in which operands precede
operators. The wordCCEPTIin the example above took an address and count from the stack and left
another address there. Similarly, a word caBedNKexpects an address and count, and will place the
specified number of space characters (20H) in the region starting at that address. Thus,

PAD 25 BLANK

will fill the scratch region whose address is pushed on the staelbyvith 25 spaces. Application
words are usually defined to work similarly. For example,

100 SAMPLES
might be defined to record 100 measurements in a data array.

Arithmetic operators also expect values and leave results on the stack. For exaugéethe top two
numbers on the stack, replacing them both by their sum. Since results of operations are left on the stack,
operations may be strung together without a need to define variables to use for temporary storage.

Interpreters

Forth is traditionally an interpretive system, in that program execution is controlled by data items rather
than machine code. Interpreters can be slow, but Forth maintains the high speed required of real-time
applications by having two levels of interpretation.

The first is the text interpreter, which parses strings from the terminal or mass storage and looks each
word up in the dictionary. When a word is found it is executed by invoking the second level, the address
interpreter.

The second is an “address interpreter.” Although not all Forth systems are implemented in this way, it
was the first and is still the primary implementation technology. For a small cost in performance, an
address interpreter can yield a very compact object program, which has been a major factor in Forth’s
wide acceptance in embedded systems and other applications where small object size is desirable.

The address interpreter processes strings of addresses or tokens compiled in definitions created by
(colon), by executing the definition pointed to by each. The content of most definitions is a sequence of
addresses of previously defined words, which will be executed by the address interpreter in turn. Thus,
when the wordRECEIVE (defined above) is executed, the w&&D the wordDUR the literal 32, and the

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~

WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 187

C54

C55

word ACCEPTwill be executed in sequence. The process is terminated by the semicolon. This execution
requires no dictionary searches, parsing, or other logic, becausdrEEVE wascompiledthe

dictionary was searched for each word, and its address (or other token) was placed in the next successive
cell of the entry. The text was not stored in memory, even in condensed form.

The address interpreter has two important properties. First, it is fast. Although the actual speed depends
upon the specific implementation, professional implementations are highly optimized, often requiring only
one or two machine instructions per address. On most benchmarks, a good Forth implementation
substantially out-performs interpretive languages such as BASIC or LISP, and will compare favorably

with other compiled high-level languages.

Second, the address interpreter makes Forth definitions extremely compact, as each reference requires
only one cell. In comparison, a subroutine call constructed by most compilers involves instructions for
handling the calling sequence (unnecessary in Forth because of the stack) before and after a CALL or JSR
instruction and address.

Most of the words in a Forth dictionary will be defined:bgcolon) and interpreted by the address
interpreter. Most of Forth itself is defined this way.

Assembler

Most implementations of Forth include a macro assembler for the CPU on which they run. By using the
defining wordCODEhe programmer can create a definition whose behavior will consist of executing
actual machine instruction€€ODHEdefinitions may be used to do I/O, implement arithmetic primitives,

and do other machine-dependent or time-critical processing. WhenG@Dghe programmer has full
control over the CPU, as with any other assemblerCidEdefinitions run at full machine speed.

This is an important feature of Forth. It permits explicit computer-dependent code in manageable pieces
with specific interfacing conventions that are machine-independent. To move an application to a different
processor requires re-coding only tB®@DEwords, which will interact with other Forth words in exactly

the same manner.

Forth assemblers are so compact (typically a few Kbytes) that they can be resident in the system (as are the
compiler, editor, and other programming tools). This means that the programmer can typeQOS§HDrt
definitions and execute them immediately. This capability is especially valuable in testing custom
hardware.

Virtual memory

The final unique element of Forth is its way of using disk or other mass storage as a form of “virtual
memory” for data and program source. As in the case of the address interpreter, this approach is
historically characteristic of Forth, but is by no means universal. Disk is divided into 1024-byte blocks.
Two or more buffers are provided in memory, into which blocks are read automatically when referred to.
Each block has a fixed block number, which in native systems is a direct function of its physical location.
If a block is changed in memory, it will be automatically written out when its buffer must be reused.
Explicit reads and writes are not needed; the program will find the data in memory whenever it accesses
it.

Block-oriented disk handling is efficient and easy for native Forth systems to implement. As a result,
blocks provide a completely transportable mechanism for handling program source and data across both
native and co-resident versions of Forth on different host operating systems.

Definitions in program source blocks are compiled into memory by the WA Most

implementations include an editor, which formats a block for display into 16 lines of 64 characters each,
and provides commands modifying the source. An example of a Forth source block is given in Fig. C.1
below.

Source blocks have historically been an important element in Forth style. Just as Forth definitions may be
considered the linguistic equivalent of sentences in natural languages, a block is analogous to a paragraph.

Page 188 X3J14 dpANS-6 Document

A block normally contains definitions related to a common theme, such as “vector arithmetic.” A
comment on the top line of the block identifies this theme. An application may selectively load the blocks
it needs.

Blocks are also used to store data. Small records can be combined into a block, or large records spread
over several blocks. The programmer may allocate blocks in whatever way suits the application, and on
native systems can increase performance by organizing data to minimize disk head motion. Several Forth
vendors have developed sophisticated file and data base systems based on Forth blocks.

Versions of Forth that run co-resident with a host OS often implement blocks in host OS files. Others use
the host files exclusively. The Standard requires that blocks be available on systems providing any disk
access method, as they are the only means of referencing disk that can be transportable across both native
and co-resident implementations.

C.5.6 Programming environment

Although this Standard does not require it, most Forth systems include a resident editor. This enables a
programmer to edit source and recompile it into executable form without leaving the Forth environment.
As it is easy to organize an application into layers, it is often possible to recompile only the topmost layer
(which is usually the one currently under development), a process which rarely takes more than a few
seconds.

Most Forth systems also provide resident interactive debugging aids, not only including words such as
those in15. The optional Programming-Tools word setbut also having the ability to examine and
change the contents YWARIABLEs and other data items and to execute from the keyboard most of the
component words in both the underlying Forth system and the application under development.

The combination of resident editor, integrated debugging tools, and direct executability of most defined
words leads to a very interactive programming style, which has been shown to shorten development time.

C.5.7 Advanced programming features

One of the unusual characteristics of Forth is that the words the programmer defines in building an
application become integral elements of the language itself, adding more and more powerful application-
oriented features.

For example, Forth includes the woMBRIABLE and2VARIABLE to name locations in which data may

be stored, as well &ZONSTANBNd2CONSTANTo name single and double-cell values. Suppose a
programmer finds that an application needs arrays that would be automatically indexed through a number
of two-cell items. Such an array might be caB&RRAY The prefix “2” in the name indicates that each
element in this array will occupy two cells (as would the contentU#d&RIABLE or 2CONSTAN)L

The prefix “2”, however, has significance only to a human and is ho more significant to the text

interpreter than any other character that may be used in a definition name.

Such a definition has two parts, as there are two “behaviors” associated with this ne2ARBAY one

at compile time, and one at run or execute time. These are best understood if we looRARRAYiS

used to define its arrays, and then how the array might be used in an application. In fact, this is how one
would design and implement this word.

Beginning the top-down design process, here’s how we would like RARBAY

100 2ARRAY RAW 50 2ARRAY REFINED

In the first case, we are defining an array 100 elements long, whose A\ il the second, the array

is 50 elements long, and is nanREFINED. In each case, a size parameter is suppliedRRAYon

the data stack (Forth’s text interpreter automatically puts numbers there when it encounters them), and the
name of the word immediately follows. This order is typical of Forth defining words.

When we us&AWor REFINED, we would like to supply on the stack the index of the element we want,
and get back the address of that element on the stack. Such a reference would characteristically take place

Collating Sequence: ' "#$% &' () *+,-./digits:; <=>?2 @ ALPHA[\]"_ "alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 189

C5.8

in a loop. Here’s a representative loop that accepts a two-cell value from a hypothetical application word
DATAand stores it in the next elementroAW

ACQUIRE 100 0 DO DATA | RAW 2! LOOP ;

The name of this definition KCQUIRE The loop begins witBQ ends withLOOR and will execute
with index values running from 0 through 99. Within the |IdDATAgets a value. The wotdreturns
the current value of the loop index, which is the argumeR¥d/ The address of the selected element,
returned byRAWand the value, which has remained on the stack BIAG&\ are passed to the wo2dl
(pronounced “two-store”), which stores two stack items in the address.

Now that we have specified exactly w2&RRAYdoes and how the words it defines are to behave, we are
ready to write the two parts of its definition:

: 2ARRAY (n--) CREATE 2* CELLS ALLOT
DOES> (ia--a) SWAP 2* CELLS +;

The part of the definition before the wdbdES>specifies the “compile-time” behavior, that is, what the
2ARRAYwill do when it us used to define a word sucliR@&8V The comment indicates that this part
expects a number on the stack, which is the size parameter. ThE€RBAI Econstructs the definition

for the new word. The phrags CELLS converts the size parameter from two-cell units to the internal
addressing units of the system (normally charactéxk).OT then allocates the specified amount of
memory to contain the data to be associated with the newly defined array.

The second line defines the “run-time” behavior that will be shared by all words defi@ddRRAY such
asRAVANdREFINED. The wordDOES>terminates the first part of the definition and begins the second
part. A second comment here indicates that this code expects an index and an address on the stack, and
will return a different address. The index is supplied on the stack by the calR&\dr the example),

while the address of the content of a word defined in this wayAlLth®Tied region) is automatically

pushed on top of the stack before this section of the code is to be executed. This code works as follows:
SWAReverses the order of the two stack items, to get the index o21@ELLS converts the index to

the internal addressing units as in the compile-time section, to yield an offset from the beginning of the
array. The word- then adds the offset to the address of the start of the array to give the effective address
which is the desired result.

Given this basic definition, one could easily modify it to do more sophisticated things. For example, the
compile-time code could be changed to initialize the array to zeros, spaces, or any other desired initial
value. The size of the array could be compiled at its beginning, so that the run-time code could compare
the index against it to ensure it is within range. Or the entire array could be made to reside on disk
instead of main memoryNoneof thesechangesvould affectthe run-timeusagewe havespecifiedn any

way. This illustrates a little of the flexibility available with these defining words.

A programming example

Figure C.1 contains a typical block of Forth source. It represents a portion of an application that controls
a bank of eight LEDs used as indicator lamps on an instrument, and indicates some of the ways in which
Forth definitions of various kinds combine in an application environment. This example was coded for a
STD-bus system with an 8088 processor and a millisecond clock, which is also used in the example.

The LEDs are interfaced through a single 8-bit port whose address is 40H. This location is defined as a
CONSTANDN Line 1, so that it may be referred to by name; should the address change, one need only
adjust the value of this constant. The wbl@HTS returns this address on the stack. The definition

LIGHT takes a value on the stack and sends it to the device. The nature of this value is a bit mask, whose
bits correspond directly to the individual lights. Thus, the command:

255 LIGHT
will turn on all lights, while:
0 LIGHT

Page 190 X3J14 dpANS-6 Document

will turn them all off.

180
0. (LED control)
1. HEX 40 CONSTANT LIGHTS DECIMAL
2. :LIGHT (n) LIGHTS OUTPUT ;
3.
4. VARIABLE DELAY
5. :SLOW 500 DELAY!;
6. :FAST 100 DELAY!;
7. :COUNTS 256 0 DO | LIGHT DELAY @ MS LOORP ;
8.
9. :LAMP (n) CREATE, DOES>(a--n) @ ;
10. 1LAMP POWER 2LAMP HV 4 LAMP TORCH
11. 8 LAMP SAMPLING 16 LAMP IDLING
12.
13. VARIABLE LAMPS
14. : TOGGLE (n) LAMPS @ XOR DUP LAMPS ! LIGHT ;
15.

Figure C.1 - Forth source block containing words that control a set of LEDs.

Lines 4 - 7 contain a simple diagnostic of the sort one might type in from the terminal to confirm that
everything is working. The variabBELAYcontains a delay time in milliseconds — execution of the

word DELAYreturns the address of this variable. Two valud3ElfAYare set by the definitiorSLOW

andFAST, using the Forth operatbr (pronounced “store”) which takes a value and an address, and

stores the value in the address. The definl@@UNTSuns a loop from O through 255 (Forth loops of

this type are exclusive at the upper end of the range), sending each value to the lights and then waiting for
the period specified BRELAY. The word@(pronounced “fetch”) fetches a value from an address, in this
case the address suppliedgLAY. This value is passed kS which waits the specified number of
milliseconds. The result of executi@PUNTSs that the lights will count from 0 to 255 at the desired

rate. To run this, one would type:

SLOW COUNTS or FAST COUNTS
at the terminal.

Line 9 provides the capability of naming individual lamps. In this application they are being used as
indicator lights. The word AMPis a defining word which takes as an argument a mask which represents

a particular lamp, and compiles it as a named entity. Lines 10 and 11 contain five lu&kEtd name
particular indicators. When one of these words su¢tOWER executed, the mask is returned on the

stack. In fact, the behavior of defining a value such that when the word is invoked the value is returned, is
identical to the behavior of a FOBONSTANT We created a new defining word here, however, to

illustrate how this would be done.

Finally, on lines 13 and 14, we have the words that will control the light paAMPSis a variable that
contains the current state of the lamps. The W@&GLHEakes a mask (which might be supplied by one
of theLAMPwords) and changes the state of that particular lamp, saving the rdsAiMRS

In the remainder of the application, the lamp namesT@@GLEare probably the only words that will be
executed directly. The usage there will be, for example:

POWER TOGGLE or SAMPLING TOGGLE
as appropriate, whenever the system indicators need to be reset.

Collating Sequence: " #$% &' () *+,-./digits: ; <=>7? @ ALPHA[\]~_ "alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 191

The time to compile this block of code on that system was about half a second, including the time to fetch
it from disk. So it is quite practical (and normal practice) for a programmer to simply type in a definition
and try it immediately.

In addition, one always has the capability of communicating with external devices directly. The first thing
one would do when told about the lamps would be to type:

HEX FF 40 OUTPUT

and see if all the lamps come on. If not, the presumption is that something is amiss with the hardware,
since this phrase directly transmits the “all ones” mask to the device. This type of direct interaction is
useful in applications involving custom hardware, as it reduces hardware debugging time.

C.6 Multiprogrammed systems

Multiprogrammed Forth systems have existed since about 1970. The earliest public Forth systems
propagated the “hooks” for this capability despite the fact that many did not use them. Nevertheless the
underlying assumptions have been common knowledge in the community, and there exists considerable
common ground among these multiprogrammed systems. These systems are not just language processors,
but contain operating system characteristics as well. Many of these integrated systems run entirely stand-
alone, performing all necessary operating system functions.

Some Forth systems are very fast, and can support both multi-tasking and multi-user operation even on
computers whose hardware is usually thought incapable of such advanced operation. For example, one
producer of telephone switchboards is running over 50 tasks on a Z80. There are several
multiprogrammed products for PC’s, some of which even support multiple users. Even on computers that
are commonly used in multi-user operations, the number of users that can be supported may be much
larger than expected. One large data-base application running on a single 68000 has over 100 terminals
updating and querying its data-base, with no significant degradation.

Multi-user systems may also support multiple programmers, each of which has a private dictionary,
stacks, and a set of variables controlling that task. The private dictionary is linked to a shared, re-entrant
dictionary containing all the standard Forth functions. The private dictionary can be used to develop
application code which may later be integrated into the shared dictionary. It may also be used to perform
functions requiring text interpretation, including compilation and execution of source code.

C.7 Design and management considerations

Just as the choice of building materials has a strong effect on the design and construction of a building, the
choice of language and operating system will affect both application design and project management
decisions.

Conventionally, software projects progress through four stages: analysis, design, coding, and testing. A
Forth project necessarily incorporates these activities as well. Forth is optimized for a project-
management methodology featuring small teams of skilled professionals. Forth encourages an iterative
process of “successive prototyping” wherein high-level Forth is used as an executable design tool, with
“stubs” replacing lower-level routines as necessary (e.g., for hardware that isn’t built yet).

In many cases successive prototyping can produce a sounder, more useful product. As the project
progresses, implementors learn things that could lead to a better design. Wiser decisions can be made if
true relative costs are known, and often this isn’t possible until prototype code can be written and tried.

Using Forth can shorten the time required for software development, and reduce the level of effort
required for maintenance and modifications during the life of the product as well.

Page 192 X3J14 dpANS-6 Document

C.8 Conclusion

Forth has produced some remarkable achievements in a variety of application areas. In the last few years
its acceptance has grown rapidly, particularly among programmers looking for ways to improve their
productivity and managers looking for ways to simplify new software-development projects.

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 193

D. Compatibility analysis of ANS Forth (informative annex)

Prior to ANS Forth, there were several industry standards for Forth. The most influential are listed here
in chronological order, along with the major differences between ANS Forth and the most recent,
Forth 83.

D.1 FIG Forth (circa 1978)

FIG Forth was a “model” implementation of the Forth language developed by the Forth Interest Group
(FIG). In FIG Forth, a relatively small number of words were implemented in processor-dependent
machine language and the rest of the words were implemented in Forth. The FIG model was placed in the
public domain, and was ported to a wide variety of computer systems. Because the bulk of the FIG Forth
implementation was the same across all machines, programs written in FIG Forth enjoyed a substantial
degree of portability, even for “system-level” programs that directly manipulate the internals of the Forth
system implementation.

FIG Forth implementations were influential in increasing the number of people interested in using Forth.
Many people associate the implementation techniques embodied in the FIG Forth model with “the nature
of Forth”.

However, FIG Forth was not necessarily representative of commercial Forth implementations of the same
era. Some of the most successful commercial Forth systems used implementation techniques different
from the FIG Forth “model”.

D.2 Forth 79

The Forth-79 Standard resulted from a series of meetings from 1978 to 1980, by the Forth Standards
Team, an international group of Forth users and vendors. (Interim versions known as Forth 77 and Forth
78 were released by the group).

Forth 79 described a set of words defined on a 16-bit, twos-complement, unaligned, linear byte-addressing
virtual machine. It prescribed an implementation technique known as “indirect threaded code”, and used
the ASCII character set.

The Forth-79 Standard served as the basis for several public domain and commercial implementations,
some of which are still available and supported today.

D.3 Forth 83

The Forth-83 Standard, also by the Forth Standards Team, was released in 1983. Forth 83 attempted to
fix some of the deficiencies of Forth 79.

Forth 83 was similar to Forth 79 in most respects. However, Forth 83 changed the definition of several
well-defined features of Forth 79. For example, the rounding behavior of integer division, the base value
of the operands d?ICK andROLL the meaning of the address returned pthe compilation behavior of

', the value of a “true” flag, the meaningh®T and the “chaining” behavior of words defined by
VOCABULARWere all changed. Forth 83 relaxed the implementation restrictions of Forth 79 to allow
any kind of threaded code, but it did not fully allow compilation to native machine code (this was not
specifically prohibited, but rather was an indirect consequence of another provision).

Many new Forth implementations were based on the Forth-83 Standard, but few “strictly compliant”
Forth-83 implementations exist.

Although the incompatibilities resulting from the changes between Forth 79 and Forth 83 were usually
relatively easy to fix, a number of successful Forth vendors did not convert their implementations to be
Forth 83 compliant. For example, the most successful commercial Forth for Apple Macintosh computers
is based on Forth 79.

Page 194 X3J14 dpANS-6 Document

D.4 Recent developments

Since the Forth-83 Standard was published, the computer industry has undergone rapid and profound
changes. The speed, memory capacity, and disk capacity of affordable personal computers have increased
by factors of more than 100. 8-bit processors have given way to 16-bit processors, and now 32-bit
processors are commonplace.

The operating systems and programming-language environments of small systems are much more
powerful than they were in the early 80's.

The personal-computer marketplace has changed from a predominantly “hobbyist” market to a mature
business and commercial market.

Improved technology for designing custom microprocessors has resulted in the design of numerous “Forth
chips”, computers optimized for the execution of the Forth language.

The market for ROM-based embedded control computers has grown substantially.

In order to take full advantage of this evolving technology, and to better compete with other programming
languages, many recent Forth implementations have ignored some of the “rules” of previous Forth
standards. In particular:

— 32-bit Forth implementations are now common.
— Some Forth systems adopt the address-alignment restrictions of the hardware on which they run.

— Some Forth systems use native-code generation, microcode generation, and optimization techniques,
rather than the traditional “threaded code”.

— Some Forth systems exploit segmented addressing architectures, placing portions of the Forth
“dictionary” in different segments.

— More and more Forth systems now run in the environment of another “standard” operating system,
using OS text files for source code, rather than the traditional Forth “blocks”.

— Some Forth systems allow external operating system software, windowing software, terminal
concentrators, or communications channels to handle or preprocess user input, resulting in deviations
from the input editing, character set availability, and screen management behavior prescribed by
Forth 83.

Competitive pressure from other programming languages (predominantly “C”) and from other Forth
vendors have led Forth vendors to optimizations that do not fit in well with the “virtual machine model”
implied by existing Forth standards.

D.5 ANS Forth approach

The ANS Forth committee addressed the serious fragmentation of the Forth community caused by the
differences between Forth @@d Forth 83, and the divergence from either of these two industry standards
caused by marketplace pressures.

Consequently, the committee has chosen to base its compatibility decisions not upon a strict comparison
with the Forth-83 Standard, but instead upon consideration of the variety of existing implementations,
especially those with substantial user bases and/or considerable success in the marketplace.

The committee feels that, if ANS Forth prescribes stringent requirements upon the virtual machine model,
as did the previous standards, then many implementors will chose not to comply with ANS Forth. The
committee hopes that ANS Forth will serve to unify rather than to further divide the Forth community,

and thus has chosen to encompass rather than invalidate popular implementation techniques.

Many of the changes from Forth 83 are justified by this rationale. Most fall into the category that “an
ANS Forth Standard Program may not assume x”, where “X” is an entitlement resulting from the virtual
machine model prescribed by the Forth-83 Standard. The committee feels that these restrictions are
reasonable, especially considering that a substantial number of existing Forth implementations do not

Collating Sequence: ' "#$% &' () *+,-./digits:; <=>?2 @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 195

correctly implement the Forth-83 virtual model, thus the Forth-83 entitlements exist “in theory” but not
“in practice”.

Another way of looking at this is that while ANS Forth acknowledges the diversity of current Forth
practice, it attempts to document the similarity therein. In some sense, ANS Forth is thus a “description
of reality” rather than a “prescription for a particular virtual machine”.

Since there is no previous American National Standard for Forth, the action requirements prescribed by
section 3.4 of X3/SD-9, “Policy and Guidelines”, regarding previous standards do not apply.

The following discussion describes differences between ANS Forth and Forth 83. In most cases, Forth 83
is representative of Forth 79 and FIG Forth for the purposes of this discussion. In many of these cases,
however, ANS Forth is more representative of the existing state of the Forth industry than the previously-
published standards.

D.6 Differences from Forth 83

D.6.1 Stack width

D.6.2

Forth 83 specifies that stack items occupy 16 bits. This includes addresses, flags, and numbers. ANS
Forth specifies that stack items are at least 16 bits; the actual size must be documented by the
implementation.

Words affected: all arithmetic, logical and addressing operators

Reason:32-bit machines are becoming commonplace. A 16-bit Forth system on a 32-bit machine is not
competitive.

Impact: Programs that assume 16-bit stack width will continue to run on 16-bit machines; ANS Forth
does not require a different stack width, but simply allows it. Many programs will be unaffected (but see
“address unit”).

Transition/Conversion: Programs which use bit masks with the high bits set may have to be changed,
substituting either an implementation-defined bit-mask constant, or a procedure to calculate a bit mask in
a stack-width-independent way. Here are some procedures for constructing width-independent bit masks:

1 CONSTANT LO-BIT

TRUE 1 RSHIFT INVERT CONSTANT HI-BIT
:LO-BITS (n--mask)
0 SWAP 0?DO 1LSHIFT LO-BIT OR LOOP;
:HI-BITS (n--mask)
0 SWAP 0?DO 1 RSHIFT HI-BIT OR LOOP ;
Programs that depend upon the “modulo 65536” behavior implicit in 16-bit arithmetic operations will
need to be rewritten to explicitly perform the modulus operation in the appropriate places. The committee
believes that such assumptions occur infrequently. Examples: some checksum or CRC calculations, some
random number generators and most fixed-point fractional math.

Number representation

Forth 83 specifies two’s-complement number representation and arithmetic. ANS Forth also allows one’s-
complement and signed-magnitude.

Words affected: all arithmetic and logical operatotsQOR +LOOP

Reason: Some computers use one’s-complement or signed-magnitude. The committee did not
wish to force Forth implementations for those machines to emulate two’s-complement arithmetic, and thus
incur severe performance penalties. The experience of some committee members with such machines

Page 196 X3J14 dpANS-6 Document

indicates that the usage restrictions necessary to support their number representations are not overly
burdensome.

Impact: An ANS Forth Standard Program may declare an “environmental dependency on two’s-
complement arithmetic”. This means that the otherwise-Standard Program is only guaranteed to work on
two’s-complement machines. Effectively, this is not a severe restriction, because the overwhelming
majority of current computers use two’s-complement. The committee knows of no Forth-83 compliant
implementations for non-two’s-complement machines at present, so existing Forth-83 programs will still
work on the same class of machines on which they currently work.

Transition/Conversion: Existing programs wishing to take advantage of the possibility of ANS Forth
Standard Systems on non-two’s-complement machines may do so by eliminating the use of arithmetic
operators to perform logical functions, by deriving bit-mask constants from bit operations as described in
the section about stack width, by restricting the usage range of unsigned numbers to the range of positive
numbers, and by using the provided operators for conversion from single numbers to double numbers.

D.6.3 Address units

Forth 83 specifies that each unique address refers to an 8-bit byte in memory. ANS Forth specifies that
the size of the item referred to by each unique address is implementation-defined, but, by default, is the
size of one character. Forth 83 describes many memory operations in terms of a number of bytes. ANS
Forth describes those operations in terms of a number of either characters or address units.

Words affected: those with “address unit” arguments

Reason: Some machines, including the most popular Forth chip, address 16-bit memory locations
instead of 8-bit bytes.

Impact: Programs may choose to declare an environmental dependency on byte addressing, and
will continue to work on the class of machines for which they now work. In order for a Forth
implementation on a word-addressed machine to be Forth 83 compliant, it would have to simulate byte
addressing at considerable cost in speed and memory efficiency. The committee knows of no such
Forth-83 implementations for such machines, thus an environmental dependency on byte addressing does
not restrict a Standard Program beyond its current de facto restrictions.

Transition/Conversion: The newCHARSandCHAR+address arithmetic operators should be used for
programs that require portability to non-byte-addressed machines. The places where such conversion is
necessary may be identified by searching for occurrences of words that accept a number of address units as
an argument (e.gMOVE ALLOT).

D.6.4 Address increment for a cell is no longer two

As a consequence of Forth-83’s simultaneous specification of 16-bit stack width and byte addressing, the
number two could reliably be used in address calculations involving memory arrays containing items from
the stack. Since ANS Forth requires neither 16-bit stack width nor byte addressing, the number two is no
longer necessarily appropriate for such calculations.

Words affected: @ !+ 2+ 2* 2- +LOOP
Reason: See reasons for “Address Units” and “Stack Width”

Impact: In this respect, existing programs will continue to work on machines where a stack cell
occupies two address units when stored in memory. This includes most machines for which Forth 83
compliant implementations currently exist. In principle, it would also include 16-bit-word-addressed
machines with 32-bit stack width, but the committee knows of no examples of such machines.

Transition/Conversion: The newCELLS andCELL+ address arithmetic operators should be used for
portable programs. The places where such conversion is necessary may be identified by searching for the
character “2” and determining whether or not it is used as part of an address calculation. The following
substitutions are appropriate within address calculations:

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 197

(o]s New
2+ or 2+ CELL+
2* or 2* CELLS

2- or2- 1 CELLS -
2/ or2/ 1 CELLS/
2 1 CELLS

The number “2” by itself is sometimes used for address calculations as an argune€dO® when the
loop index is an address. When converting the 26ravhich operates on negative dividends, one should
be cognizant of the rounding method used.

D.6.5 Address alignment

Forth 83 imposes no restriction upon the alignment of addresses to any boundary. ANS Forth specifies
that a Standard System may require alignment of addresses for use with v@riauod “ ” operators.

Words Affected: I+12120 @ ?,

Reason: Many computers have hardware restrictions that favor the use of aligned addresses. On
some machines, the native memory-access instructions will cause an exception trap if used with an
unaligned address. Even on machines where unaligned accesses do not cause exception traps, aligned
accesses are usually faster.

Impact: All of the ANS Forth words that return addresses suitable for use with ali@hechd
“1 " words must return aligned addresses. In most cases, there will be no problem. Problems can arise
from the use of user-defined data structures containing a mixture of character data and cell-sized data.

Many existing Forth systems, especially those currently in use on computers with strong alignment
requirements, already require alignment. Much existing Forth code that is currently in use on such
machines has already been converted for use in an aligned environment.

Transition/Conversion: There are two possible approaches to conversion of programs for use on a
system requiring address alignment.

The easiest approach is to redefine the system’s alig@ethtl *! ” operators so that they do not require
alignment. For example, on a 16-bit little-endian byte-addressed machine, unat@jrsedi! ” could
be defined:

:@ (addr--x) DUP C@ SWAP CHAR+ C@ 8 LSHIFT OR ;
;1 (xaddr--) OVER 8 RSHIFT OVER CHAR+ C! C! ;

These definitions, and similar ones fet “, “2@, “2! *, “, ”, and “?” as needed, can be compiled before
an unaligned application, which will then work as expected.

This approach may conserve memory if the application uses substantial numbers of data structures
containing unaligned fields.

Another approach is to modify the application’s source code to eliminate unaligned data fields. The ANS
Forth wordsALIGN andALIGNED may be used to force alignment of data fields. The places where such
alignment is needed may be determined by inspecting the parts of the application where data structures
(other than simple variables) are defined, or by “smart compiler” techniques (see the “Smart Compiler”
discussion below).

This approach will probably result in faster application execution speed, at the possible expense of
increased memory utilization for data structures.

Page 198 X3J14 dpANS-6 Document

Finally, it is possible to combine the preceding techniques by identifying exactly those data fields that are
unaligned, and using “unaligned” versions of the memory access operators for only those fields. This
“hybrid” approach affects a compromise between execution speed and memory utilization.

D.6.6 Division/modulus rounding direction

Forth 79 specifies that division rounds toward 0 and the remainder carries the sign of the dividend.
Forth 83 specifies that division rounds toward negative infinity and the remainder carries the sign of the
divisor. ANS Forth allows either behavior for the division operators listed below, at the discretion of the
implementor, and provides a pair of division primitives to allow the user to synthesize either explicit

behavior.
Words Affected: / MOD /MOD */MOD */
Reason: The difference between the division behaviors in Forth 79 and Forth 83 was a point of

much contention, and many Forth implementations did not switch to the Forth 83 behavior. Both variants
have vocal proponents, citing both application requirements and execution efficiency arguments on both
sides. After extensive debate spanning many meetings, the committee was unable to reach a consensus for
choosing one behavior over the other, and chose to allow either behavior as the default, while providing a
means for the user to explicitly use both behaviors as needed. Since implementors are allowed to choose
either behavior, they are not required to change the behavior exhibited by their current systems, thus
preserving correct functioning of existing programs that run on those systems and depend on a particular
behavior. New implementations could choose to supply the behavior that is supported by the native CPU
instruction set, thus maximizing execution speed, or could choose the behavior that is most appropriate for
the intended application domain of the system.

Impact: The issue only affects programs that use a negative dividend with a positive divisor, or a
positive dividend with a negative divisor. The vast majority of uses of division occur with both a positive
dividend and a positive divisor; in that case, the results are the same for both allowed division behaviors.

Transition/Conversion: For programs that require a specific rounding behavior with division operands
of mixed sign, the division operators used by the program may be redefined in terms of one of the new
ANS Forth division primitiveSM/REM(symmetrical division, i.e., round toward zero}&i/MOD

(floored division, i.e., round toward negative infinity). Then the program may be recompiled without
change. For example, the Forth 83 style division operators may be defined by:

:/MOD (n1n2--n3n4) >R S>D R>FM/MOD ;
:MOD (ni1n2--n3) /MOD DROP ;

./ (nln2--n3) /MOD SWAP DROP ;
:*/MOD (n1n2n3--n4n5) >R M* R> FM/MOD ;
:* (nln2n3--n4n5) *MOD SWAP DROP ;

D.6.7 Immediacy

Forth 83 specified that a number of “compiling words” are “immediate”, meaning that they are executed
instead of compiled during compilation. ANS Forth is less specific about most of these words, stating that
their behavior is only defined during compilation, and specifying their results rather than their specific
compile-time actions.

To force the compilation of a word that would normally be executed, Forth 83 provided the words
COMPILE, used with non-immediate words, i@DOMPILE] , used with immediate words. ANS Forth
provides the single wordOSTPONEwhich is used with both immediate and non-immediate words,
automatically selecting the appropriate behavior.

Words Affected: COMPILE [COMPILE] []"

Reason: The designation of particular words as either immediate or not depends upon the
implementation technique chosen for the Forth system. With traditional “threaded code”

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 199

implementations, the choice was generally quite clear (with the single exception of tHeEAME), and

the standard could specify which words should be immediate. However, some of the currently popular
implementation techniques, such as native-code generation with optimization, require the immediacy
attribute on a different set of words than the set of immediate words of a threaded code implementation.
ANS Forth, acknowledging the validity of these other implementation techniques, specifies the immediacy
attribute in as few cases as possible.

When the membership of the set of immediate words is unclear, the decision about whether to use
COMPILEor [COMPILE] becomes unclear. Consequently, ANS Forth provides a “general purpose”
replacement wor@OSTPONEhat serves the purpose of the vast majority of uses ofG®MPILEand
[COMPILE] , without requiring that the user know whether or not the “postponed” word is immediate.

Similarly, the use of and[] with compiling words is unclear if the precise compilation behavior of
those words is not specified, so ANS Forth does not permit a Standard Prograrh tur [ifse with
compiling words.

The traditional (non-immediate) definition of the wa@®MPILEhas an additional problem. Its

traditional definition assumes a threaded code implementation technique, and its behavior can only be
properly described in that context. In the context of ANS Forth, which permits other implementation
techniques in addition to threaded code, it is very difficult, if not impossible, to describe the behavior of
the traditionalCOMPILE Rather than changing its behavior, and thus breaking existing code, ANS Forth
does not include the woOMPILE This allows existing implementations to continue to supply the

word COMPILEwith its traditional behavior, if that is appropriate for the implementation.

Impact: [COMPILE] remains in ANS Forth, since its proper use does not depend on knowledge
of whether or not a word is immediate. (Us¢@DMPILE] with a non-immediate word is and has

always been a no-op). Whether or not you need t§GBMPILE] requires knowledge of whether or not

its target word is immediate, but it is always safe to{@&MPILE] . [COMPILE] is no longer in the
(required) core word set, having been moved to the Core-Extensions word set, but the committee
anticipates that most vendors will supply it anyway.

In nearly all cases, it is correct to replace JGOMPILE] andCOMPILEwith POSTPONEUses of
[COMPILE] andCOMPILEthat are not suitable for “mindless” replacemenP®STPONEre quite
infrequent, and fall into the following two categories:

1) Use off COMPILE] with non-immediate words. This is sometimes done with the wo(tsk,
which was immediate in Forth 79 but not in Forth 83) BBAVE (which was immediate in Forth 83
but not in Forth 79), in order to force the compilation of those words without regard to whether you
are using a Forth 79 or Forth 83 system.

2) Use of the phraseCOMPILE [COMPILE] <immediate word> " to “doubly postpone” an
immediate word.

Transition/Conversion: Many ANS Forth implementations will continue to implement both
[COMPILE] andCOMPILEIn forms compatible with existing usage. In those environments, no
conversion is necessary.

For complete portability, uses GOMPILEand[COMPILE] should be changed ROSTPONE except in

the rare cases indicated above. Usd€GMPILE] with non-immediate words may be left as-is, and the
program may declare a requirement for the WQ@MPILE] from the Core Extensions word set, or the
[COMPILE] before the non-immediate word may be simply deleted if the target word is known to be non-
immediate.

Uses of the phrasecCOMPILE [COMPILE] <immediate-word> " may be handled by introducing an
“intermediate word” XXin the example below) and then postponing that word. For example:

: ABC COMPILE [COMPILE] IF ;
changes to:

: XX POSTPONE IF ;

Page 200 X3J14 dpANS-6 Document

:ABC POSTPONE XX ;

A non-standard case can occur with programs that “switch out of compilation state” to explicitly compile a
thread in the dictionary following @OMPILE. For example:

: XYZ COMPILE ['ABC,] ;

This depends heavily on knowledge of exactly li@@MPILEand the threaded-code implementation
works. Cases like this cannot be handled mechanically; they must be translated by understanding exactly
what the code is doing, and rewriting that section according to ANS Forth restrictions.

Use the phrasBOSTPONE [COMPILE] to replac§COMPILE] [COMPILE]

D.6.8 Input character set

Forth 83 specifies that the full 7-bit ASCII character set is available thigdyh ANS Forth restricts it
to the graphic characters of the ASCII set, with codes from hex 20 to hex 7E inclusive.

Words Affected: KEY

Reason: Many system environments “consume” certain control characters for such purposes as
input editing, job control, or flow control. A Forth implementation cannot always control this system
behavior.

Impact: Standard Programs which require the ability to receive particular control characters

throughKEY must declare an environmental dependency on the input character set.

Transition/Conversion: For maximum portability, programs should restrict their required input
character set to only the graphic characters. Control characters may be handled if available, but complete
program functionality should be accessible using only graphic characters.

As stated above, an environmental dependency on the input character set may be declared. Even so, itis
recommended that the program should avoid the requirement for particularly-troublesome control
characters, such as control-S and control-Q (often used for flow control, sometimes by communication
hardware whose presence may be difficult to detect), ASCII NUL (difficult to type on many keyboards),

and the distinction between carriage return and line feed (some systems translate carriage returns into line
feeds, or vice versa).

D.6.9 Shifting with UM/MOD

Given Forth-83’s two’s-complement nature, and its requirement for floored (round toward minus infinity)
division, shifting is equivalent to division. Also, two’s-complement representation implies that unsigned
division by a power of two is equivalent to logical right-shifting|d8/MODrould be used to perform a
logical right-shift.

Words Affected: UM/MOD

Reason: The problem witHJM/MODSs a result of allowing non-two’s-complement number
representations, as already described.

ANS Forth provides the wordsSHIFT andRSHIFT to perform logical shifts. This is usually more
efficient, and certainly more descriptive, than the udgMdfMODor logical shifting.

Impact: Programs running on ANS Forth systems with two’s-complement arithmetic (the

majority of machines), will not experience any incompatibility Witii/MOD Existing Forth-83

Standard programs intended to run on non-two’s-complement machines will not be abl&kt/Ms2D

for shifting on a non-two’s-complement ANS Forth system. This should not affect a significant number of
existing programs (perhaps none at all), since the committee knows of no existing Forth-83
implementations on non-two’s-complement machines.

Transition/Conversion: A program that requirddM/MODOo behave as a shift operation may declare an
environmental dependency on two’s-complement arithmetic.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_ "alpha{|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 201

A program that cannot declare an environmental dependency on two’s-complement arithmetic may
require editing to replace incompatible uses)Bf/MODwith other operators defined within the
application.

D.6.10 Vocabularies / wordlists

ANS Forth does not define the word® CABULARYCONTEXTandCURRENT which were present in
Forth 83. Instead, ANS Forth defines a primitive word set for search order specification and control,
including words which have not existed in any previous standard.

Forth-83’s ‘ALSOONLY experimental search order word set is specified for the most part as the
extension portion of the ANS Forth Search Order word set.

Words Affected: VOCABULARY CONTEXT CURRENT

Reason: Vocabularies are an area of much divergence among existing systems. Considering
major vendors’ systems and previous standards, there are at least 5 different and mutually incompatible
behaviors of words defined MOCABULARY Forth 83 took a step in the direction of “run-time search-
order specification” by declining to specify a specific relationship between the hierarchy of compiled
vocabularies and the run-time search order. Forth 83 also specified an experimental mechanism for run-
time search-order specification, tAeSQONLYscheme. . ALSOQONLYwas implemented in numerous
systems, and has achieved some measure of popularity in the Forth community.

However, several vendors refuse to implement it, citing technical limitations. In an effort to address those
limitations and thus hopefully makd SOONLYmore palatable to its critics, the committee specified a
simple “primitive word set” that not only fixes some of the objectionSUBQONLY, but also provides

sufficient power to implemetLSQONLYand all of the other search-order word sets that are currently
popular.

The Forth 83ALSOQONLYword set is provided as an optional extension to the search-order word set.
This allows implementors that are so inclined to provide this word set, with well-defined standard
behavior, but does not compel implementors to do so. Some vendors have publicly stated that they will
not implemenALSOQONLY, no matter what, and one major vendor stated an unwillingness to implement
ANS Forth at all IfALSQONLYis mandated. The committee feels that its actions are prudent, specifying
ALSQOONLYto the extent possible without mandating its inclusion in all systems, and also providing a
primitive search-order word set that vendors may be more likely to implement, and which can be used to
synthesizeALSOQONLY.

Transition/Conversion: Since Forth 83 did not mandate precise semanticé@@@ABULARYexisting

Forth-83 Standard programs cannot use it except in a trivial way. Programs can declare a dependency on
the existence of the Search Order word set, and can implement whatever semantics are required using that
word set’s primitives. Forth 83 programs that naE8QONLYcan declare a dependency on the Search

Order Extensions word set, or can implement the extensions in terms of the Search Order word set itself.

D.6.11 Multiprogramming impact

Forth 83 marked words with “multiprogramming impact” by the letter “M” in the first lines of their
descriptions. ANS Forth has removed the “M” designation from the word descriptions, moving the
discussion of multiprogramming impact to this non-normative annex.

Words affected: none

Reason: The meaning of “multiprogramming impact” is precise only in the context of a specific
model for multiprogramming. Although many Forth systems do provide multiprogramming capabilities
using a particular round-robin, cooperative, block-buffer sharing model, that model is not universal. Even
assuming the classical model, the “M” designations did not contain enough information to enable writing
of applications that interacted in a multiprogrammed system.

Page 202 X3J14 dpANS-6 Document

Practically speaking, the “M” designations in Forth 83 served to document usage rules for block buffer
addresses in multiprogrammed systems. These addresses often become meaningless after a task has
relinquished the CPU for any reason, most often for the purposes of performing 1/O, awaiting an event, or
voluntarily sharing CPU resources using the wefdUSE It was essential that portable applications

respect those usage rules to make it practical to run them on multiprogrammed systems; failure to adhere
to the rules could easily compromise the integrity of other applications running on those systems as well as
the applications actually in error. Thus, “M” appeared on all words that by design gave up the CPU, with
the understanding that other words NEVER gave it up.

These usage rules have been explicitly documented in the BLOCK word set where they are relevant. The
“M” designations have been removed entirely.

Impact: In practice, none.

In the sense that any application that depends on multiprogramming must consist of at least two tasks that
share some resource(s) and communicate between themselves, Forth 83 did not contain enough
information to enable writing of a standard program that DEPENDED on multiprogramming. This is also
true of ANS Forth.

Non-multiprogrammed applications in Forth 83 were required to respect usage rl8e©KKso that
they could be run properly on multiprogrammed systems. The same is true of ANS Forth.

The only difference is the documentation method used to defirl tB€Kusage rules. The Technical
Committee believes that the current method is clearer than the concept of “multiprogramming impact.”

Transition/Conversion: none needed.

D.6.12 Words not provided in executable form

ANS Forth allows an implementation to supply some words in source code or “load as needed” form,
rather than requiring all supplied words to be available with no additional programmer action.

Words affected: all

Reason: Forth systems are often used in environments where memory space is at a premium.
Every word included in the system in executable form consumes memory space. The committee believes
that allowing standard words to be provided in source form will increase the probability that implementors
will provide complete ANS Forth implementations even in systems designed for use in constrained
environments.

Impact: In order to use a Standard Program with a given ANS Forth implementation, it may be
necessary to precede the program with an implementation-dependent “preface” to make “source form”
words executable. This is similar to the methods that other computer languages require for selecting the
library routines needed by a particular application.

In languages like C, the goal of eliminating unnecessary routines from the memory image of an
application is usually accomplished by providing libraries of routines, using a “linker” program to
incorporate only the necessary routines into an executable application. The method of invoking and
controlling the linker is outside the scope of the language definition.

Transition/Conversion: Before compiling a program, the programmer may need to perform some action
to make the words required by that program available for execution.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 203

E. ANS Forth portability guide (informative annex)

E.1l

Introduction

The most popular architectures used to implement Forth have had byte-addressed memory, 16-bit
operations, and two’s-complement number representation. The Forth-83 Standard dictates that these
particular features must be present in a Forth-83 Standard system and that Forth-83 programs may exploit
these features freely.

However, there are many beasts in the architectural jungle that are bit addressed or cell addressed, or
prefer 32-bit operations, or represent numbers in one’s complement. Since one of Forth’s strengths is its
usefulness in “strange” environments on “unusual” hardware with “peculiar” features, it is important that
a Standard Forth run on these machines too.

A primary goal of the ANS Forth Standard is to increase the types of machines that can support a
Standard Forth. This is accomplished by allowing some key Forth terms to be implementation-defined
(e.g., how big is a cell?) and by providing Forth operators (words) that conceal the implementation. This
frees the implementor to produce the Forth system that most effectively utilizes the native hardware. The
machine independent operators, together with some programmer discipline, enable a programmer to write
Forth programs that work on a wide variety of machines.

The remainder of this Annex provides guidelines for writing portable ANS Forth programs. The first
section describes ways to make a program hardware independent. It is difficult for someone familiar with
only one machine architecture to imagine the problems caused by transporting programs between
dissimilar machines. Consequently, examples of specific architectures with their respective problems are
given. The second section describes assumptions about Forth implementations that many programmers
make, but can’t be relied upon in a portable program.

E.2 Hardware peculiarities

E.21

E.2.2

Data/memory abstraction

Data and memory are the stones and mortar of program construction. Unfortunately, each computer treats
data and memory differently. The ANS Forth Systems Standard gives definitions of data and memory that
apply to a wide variety of computers. These definitions give us a way to talk about the common elements
of data and memory while ignoring the details of specific hardware. Similarly, ANS Forth programs that
use data and memory in ways that conform to these definitions can also ignore hardware details. The
following sections discuss the definitions and describe how to write programs that are independent of the
data/memory peculiarities of different computers.

Definitions

Three terms defined by ANS Forth are address unit, cell, and character. The address space of an ANS
Forth system is divided into an array of address units; an address unit is the smallest collection of bits that
can be addressed. In other words, an address unit is the number of bits spanned by theaalthirsdes

addr+1. The most prevalent machines use 8-bit address units. Such “byte addressed” machines include
the Intel 8086 and Motorola 68000 families. However, other address unit sizes exist. There are machines
that are bit addressed and machines that are 4-bit nibble addressed. There are also machines with address
units larger than 8-bits. For example, several Forth-in-hardware computers are cell addressed.

The cell is the fundamental data type of a Forth system. A cell can be a single-cell integer or a memory
address. Forth’s parameter and return stacks are stacks of cells. Forth 83 specifies that a cell is 16-bits.
In ANS Forth the size of a cell is an implementation-defined number of address units. Thus, an ANS
Forth implemented on a 16-bit microprocessor could use a 16-bit cell and an implementation on a 32-bit
machine could use a 32-bit cell. Also 18-bit machines, 36-bit machines, etc., could support ANS Forth
systems with 18 or 36-bit cells respectively. In all of these sysi@dRgoes the same thing: it

Page 204 X3J14 dpANS-6 Document

duplicates the top of the data sta¢k(store) behaves consistently too: given two cells on the data stack it
stores the second cell in the memory location designated by the top cell.

Similarly, the definition of a character has been generalized to be an implementation-defined number of
address units (but at least eight bits). This removes the need for a Forth implementor to provide 8-bit
characters on processors where it is inappropriate. For example, on an 18-bit machine with a 9-bit
address unit, a 9-bit character would be most convenient. Since, by definition, you can’t address anything
smaller than an address unit, a character must be at least as big as an address unit. This will result in big
characters on machines with large address units. An example is a 16-bit cell addressed machine where a
16-bit character makes the most sense.

E.2.3 Addressing memory

ANS Forth eliminates many portability problems by using the above definitions. One of the most common
portability problems is addressing successive cells in memory. Given the memory address of a cell, how
do you find the address of the next cell? In Forth 83 this is éasy:.. This code assumes that memory

is addressed in 8-bit units (bytes) and a cell is 16-bits wide. On a byte-addressed machine with 32-bit cells
the code to find the next cell would #e- . The code would bet+ on a cell-addressed processor &6d

+ on a bit-addressed processor with 16-bit cells. ANS Forth provides a next-cell operatoCiarhed

that can be used in all of these cases. Given an ad@tesls+ adjusts the address by the size of a cell
(measured in address units). A related problem is that of addressing an array of cells in an arbitrary order.
A defining word to create an array of cells using Forth 83 would be:

: ARRAY CREATE 2* ALLOT DOES> SWAP 2* +

Use of2* to scale the array index assumes byte addressing and 16-bit cells again. As in the example
above, different versions of the code would be needed for different machines. ANS Forth provides a
portable scaling operator nam@&LLS. Given a numbem, CELLSreturns the number of address units
needed to hold cells. A portable definition of array is:

:ARRAY CREATE CELLS ALLOT
DOES> SWAP CELLS +;

There are also portability problems with addressing arrays of characters. In Forth 83 (and in the most
common ANS Forth implementations), the size of a character will equal the size of an address unit.
Consequently addresses of successive characters in memory can be foutd asidgcaling indices

into a character array is a no-op (ix*). However, there are cases where a character is larger than an
address unit. Examples include (1) systems with small address units (e.g., bit- and nibble-addressed
systems), and (2) systems with large character sets (e.g., 16-bit characters on a byte-addressed machine).
CHAR+andCHARSoperators, analogous ®ELL+ andCELLS are available to allow maximum

portability.

ANS Forth generalizes the definition of some Forth words that operate on chunks of memory to use
address units. One exampleAisLOT. By prefixingALLOT with the appropriate scaling operator
(CELLS CHARSetc.), space for any desired data structure can be allocated (see definition of array
above). For example:

CREATE ABUFFER 5 CHARS ALLOT (allot 5 character buffer)
The memory-block-move word also uses address units:

source destination 8 CELLS MOVE (move 8 cells)

E.2.4 Alignment problems

Not all addresses are created equal. Many processors have restrictions on the addresses that can be used
by memory access instructions. This Standard does not require an implementor of an ANS Forth to make
alignment transparent; on the contrary, it requires (in Se8t®A.1 Address Alignmengtthat an ANS

Forth program assume that character and cell alignment may be required.

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 205

One of the most common problems caused by alignment restrictions is in creating tables containing both
characters and cells. Wher(comma) otC, is used to initialize a table, data is stored at the data-space
pointer. Consequently, it must be suitably aligned. For example, a non-portable table definition would be:

CREATE ATABLE 1C, X, 2C, Y,

On a machine that restricts 16-bit fetches to even addr&3RE#®\TE~vould leave the data space pointer
at an even address, the€C, would make the data space pointer odd,,afgbmma) would violate the
address restriction by storingat an odd address. A portable way to create the table is:

CREATE ATABLE 1C, ALIGN X, 2C, ALIGNY ,

ALIGN adjusts the data space pointer to the first aligned address greater than or equal to its current
address. An aligned address is suitable for storing or fetching characters, cells, cell pairs, or double-cell
numbers.

After initializing the table, we would also like to read values from the table. For example, assume we
want to fetch the first cell, from the table ATABLE CHAR+gives the address of the first thing after
the character. However this may not be the addressioice we aligned the dictionary pointer between
theC, and the . The portable way to get the addresX is:

ATABLE CHAR+ ALIGNED

ALIGNEDadjusts the address on top of the stack to the first aligned address greater than or equal to its
current value.

E.3 Number representation

E.3.1

Different computers represent numbers in different ways. An awareness of these differences can help a
programmer avoid writing a program that depends on a particular representation.

Big endian vs. little endian

The constituent bits of a number in memory are kept in different orders on different machines. Some
machines place the most-significant part of a number at an address in memory with less-significant parts
following it at higher addresses. Other machines do the opposite — the least-significant part is stored at
the lowest address. For example, the following code for a 16-bit 8086 “little endian” Forth would produce
the answer 34 (hex):

VARIABLE FOO HEX 1234 FOO! FOO C@

The same code on a 16-bit 68000 “big endian” Forth would produce the answer 12 (hex). A portable
program cannot exploit the representation of a number in memory.

A related issue is the representation of cell pairs and double-cell numbers in memory. When a cell pair is
moved from the stack to memory wizh, the cell that was on top of the stack is placed at the lower
memory address. It is useful and reasonable to manipulate the individual cells when they are in memory.

E.3.2 ALU organization

Different computers use different bit patterns to represent integers. Possibilities include binary
representations (two’s complement, one’s complement, sign magnitude, etc.) and decimal representations
(BCD, etc.). Each of these formats creates advantages and disadvantages in the design of a computer’s
arithmetic logic unit (ALU). The most commonly used representation, two’'s complement, is popular
because of the simplicity of its addition and subtraction algorithms.

Programmers who have grown up on two’s complement machines tend to become intimate with their
representation of numbers and take some properties of that representation for granted. For example, a
trick to find the remainder of a number divided by a power of two is to mask off some bifsNthA
common application of this trick is to test a number for oddness uskiND. However, this will not

work on a one’s complement machine if the number is negative (a portable tech@dd@© 3.

Page 206 X3J14 dpANS-6 Document

The remainder of this section is a (non-exhaustive) list of things to watch for when portability between
machines with binary representations other than two’s complement is desired.

To convert a single-cell number to a double-cell number, ANS Forth provides the ofefatofo

convert a double-cell number to single-cell, Forth programmers have traditionallpR&d?2 However,

this trick doesn’t work on sign-magnitude machines. For portabildy@operator is available.

Converting an unsigned single-cell number to a double-cell number can be done portably by pushing a
zero on the stack.

E.4 Forth system implementation

During Forth’s history, an amazing variety of implementation techniques have been developed. The ANS
Forth Standard encourages this diversity and consequently restricts the assumptions a user can make about
the underlying implementation of an ANS Forth system. Users of a particular Forth implementation
frequently become accustomed to aspects of the implementation and assume they are common to all

Forths. This section points out many of these incorrect assumptions.

E.4.1 Definitions

Traditionally, Forth definitions have consisted of the name of the Forth word, a dictionary search link,
data describing how to execute the definition, and parameters describing the definition itself. These
components are called the name, link, code, and parametet fightsmethod for accessing these fields

has been found that works across all of the Forth implementations currently in use. Therefore, ANS Forth
severely restricts how the fields may be used. Specifically, a portable ANS Forth program may not use the
name, link, or code field in any way. Use of the parameter field (renamed to data field for clarity) is

limited to the operations described below.

Only words defined witlCREATEor with other defining words that c&IREATEhave data fields. The
other defining words in the StandaMARIABLE, CONSTANT: , etc.) might not be implemented with
CREATE Consequently, a Standard Program must assume that words defWaRIABLE,

CONSTANT: , etc., may have no data fields. There is no way for a Standard Program to modify the
value of a constant or to change the meaning of a colon definitionDOBES>part of a defining word
operates on a data field. Since o68REATHE words have data fieldBOES>can only be paired with
CREATEor words that calCREATE

In ANS Forth,FIND, [] and' (tick) return an unspecified entity called an “execution token”. There
are only a few things that may be done with an execution token. The token may be paX&edd Eo
execute the word ticked or compiled into the current definition @MMPILE,. The token can also be
stored in a variable and used later. Finally, if the word ticked was defin@R&EATE >BODYconverts
the execution token into the word’s data-field address.

One thing that definitely cannot be done with an execution token Is osg to store it into the object

code of a Forth definition. This technique is sometimes used in implementations where the object code is
a list of addresses (threaded code) and an execution token is also an address. However, ANS Forth
permits native code implementations where this will not work.

E.4.2 Stacks

In some Forth implementations, it is possible to find the address of a stack in memory and manipulate the
stack as an array of cells. This technique is not portable, however. On some systems, especially Forth-in-
hardware systems, the stacks might be in a part of memory that can’'t be addressed by the program or
might not be in memory at all. Forth’s parameter and return stacks must be treated as stacks.

A Standard Program may use the return stack directly only for temporarily storing values. Every value
examined or removed from the return stack ugt@R>, or 2R> must have been put on the stack

1 These terms are not defined in the standard. They are mentioned here for historical continuity.

Collating Sequence: ! "#3$% &' () *+,-./digits: ;<=>? @ ALPHA[\]”~_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 207

explicitly using>R or 2>R. Even this must be done carefully since the system may use the return stack to
hold return addresses and loop-control parameters. S8cZidh3of the Standard has a list of
restrictions.

E.5 ROMed application disciplines and conventions

When a Standard System provides a data space which is uniformly readable and writeable we may term
this environment “RAM-only”.

Programs designed for ROMed application must divide data space into at least two parts: a writeable and
readable uninitialized part, called “RAM”, and a read-only initialized part, called “ROM”. A third
possibility, a writeable and readable initialized part, normally called “initialized RAM”, is not addressed

by this discipline. A Standard Program must explicitly initialize the RAM data space as needed.

The separation of data space into RAM and ROM is meaningful only during the generation of the ROMed
program. If the ROMed program is itself a standard development system, it has the same taxonomy as an
ordinary RAM-only system.

The words affected by conversion from a RAM-only to a mixed RAM and ROM environment are:

, (comma) ALIGN ALIGNED ALLOT C, CREATE HERE UNUSED
(VARIABLE always accesses the RAM data space.)
With the exception of (comma) andC, these words are meaningful in both RAM and ROM data space.

To select the data space, these words could be preceded by sBladlarslROM For example:

ROM CREATE ONES 32 ALLOT ONES 321 FILL RAM

would create a table of ones in the ROM data space. The storage of data into RAM data space when
generating a program for ROM would be an ambiguous condition.

A straightforward implementation of these selectors would maintain separate address counters for each
space. A counter value would be returnedHBBREand altered by (comma)C, , ALIGN, andALLOT,

with RAMandROMsimply selecting the appropriate address counter. This technique could be extended to
additional partitions of the data space.

E.6 Summary

The ANS Forth Standard cannot and should not force anyone to write a portable program. In situations
where performance is paramount, the programmer is encouraged to use every trick in the book. On the
other hand, if portability to a wide variety of systems is needed, ANS Forth provides the tools to
accomplish this. There is probably no such thing as a completely portable program. A programmer,
using this guide, should intelligently weigh the tradeoffs of providing portability to specific machines. For
example, machines that use sign-magnitude numbers are rare and probably don’t deserve much thought.
But, systems with different cell sizes will certainly be encountered and should be provided for. In general,
making a program portable clarifies both the programmer’s thinking process and the final program.

Page 208 X3J14 dpANS-6 Document

F. Alphabetic list of words (informative annex)

In the following list, the last, four-digit, part of the reference number establishes a sequence corresponding
to the alphabetic ordering of all standard words. The first two or three parts indicate the word set and
glossary section in which the word is defined.

6.1.0010 ! oo P (o] (PO USRS 01 ©] = { =S 25
6.1.0030 # oeeiieeii “NUMDbBEr-Sign”......ccoooiiiiiiiiiiiin e CORE......... 25
6.1.0040 #> oo “number-sign-greater’............ .ccceeeenne. CORE......... 25
6.1.0050 #S ..ooiiiiiiiiiii e AUMDET-SIGN-ST CORE......... 25
6.2.0060 HTIB ..oovviiiiiieeeieeeeiiiiiee e ‘number-t-i-b” ... e, CORE EXT......... 51
6.1.0070 " oo VHCK” e CORE......... 25
B.1.0080 (cirvrreeiiiiiii e B o T U= o PR CQRE......... 26
11.6.2.0080 (vevvvvvvenrnniiiiieeeeee e B L= U= 1 PR FILE..........82
13.6.1.0086 (LOCAL) .cccooveevevvevveeeeivvvnnnnnn - Raren-local-paren”.........cccve vevvvevevvennnnnns LOCAL 108
6.1.0090 * it S - S CORE......... 26
6.1.0100 */ i “star-slash”ccceeeeiiiiiiiis v, CORE......... 26
6.1.0110 */MODcoooiiiiiiiiiiiieee e ‘star-slash-mod..........cccccoves i, CORE......... 26
6.1.0120 + oriiiiiii UPIUS” e CORE......... 26
6.1.0130 +! oo PIUS=SEOTE . CORE......... 27
6.1.0140 +LOOPcooviiiiiiiiiiiieee e B o] LD IS (o To o CORE......... 27
6.1.0150 , i YCAMMA”. . e CORE......... 27
B.1.0160 - oo “MINUS”. ..o e CORE......... 27
17.6.1.0170 -TRAILING oooiiiiiiiiiiiiiee, “dash-trailing”ooovvvviiiinn v, STRING....... 126
B6.1.0180 . oo O e CORE......... 27
6.1.0190 ." e OEQUOTE s CQRE......... 28
6.2.0200 .(ceviireereeiineeeeee e AOPANENT CORE EXT......... 51
6.2.0210 R oo O i e CORE EXT......... 51
15.6.1.0220 .S .iiiiiiiieieieiieeii e 0TS L TOOLS....... 115
6.1.0230 / oo “SIAaSN” e CORE........ 28
6.1.0240 /MODoeviiiiiiiiiiiiiiiiiiee e tslash-mod™......oooooiii CORE......... 28
17.6.1.0245 /STRING .ccooiiiiieiiiiiiiieeeeiiiiin “slash-string”ccccvvvviiiiiir evvviiiiinns STRING....... 126
6.1.0250 0< oooiiiieiiiiiiiieiii e ZBPO-lESS CQRE......... 28
6.2.0260 0<> ..ooiiiiiiiiieeei e rzero-not-equals’........cccoevvees ceviiiieeenn, CORE EXT......... 51
6.1.0270 0= .ooeviiieeriei e ZBTO-EQUAIS e e JGORE.LL 28
6.2.0280 0> ..ooiiiiiii e ZBTO-OTEATE e CORE EXT......... 51
6.1.0290 1+ oot BRE-PIUS . e CORE......... 28
6.1.0300 1- oot ONEEMINUS . e CORE......... 29
6.1.0310 2! i DMO-STOTE™ . e CQORE......... 29
6.1.0320 2% ..o DNOSSEAI e e, CORE......... 29
6.1.0330 2/ cooiiiiiieieieeeee e DO-SIASHT CORE......... 29
6.2.0340 2>R ..oooiiiiiiei e 10 (0 CORE EXT......... 51
6.1.0350 2@ooeeeeeeeeeeeiiiiiiee e DMO-TEICH L, CQORE......... 29
8.6.1.0360 2CONSTANT......ccotviiriiiiiiiieeennn. “two-constant”............cccevevviin ceevviiin DOUBLE......... 68
6.1.0370 2DROPccovviiiiiiiiieee e WO-ArOP” ..o e CQORE......... 29
6.1.0380 2DUPeiiiiiiiiiiiiiiiiee e WO-AUPE™.....oeeviiiiee e e CQORE......... 29
8.6.1.0390 2LITERAL ...oovvvviiiiiieeeeeeeeeeee, wo-literal” ...) DOUBLE.......... 68
6.1.0400 20VERcooovviriiiiiiiieee e WO-OVEI ... e CQRE......... 29
6.2.0410 2R> ..o SWO-T-FIOM” Lo e CORE EXT......... 52
6.2.0415 2R@cvvvvvvneiieeeeeieeeeeii s wWo-r-fetCh” .o CORE EXT......... 52
8.6.2.0420 2ROT ..ovviiiiiieeeiiieeiiiieie e AWO-TOLE” ..o e DOUBLE EXT......... 71
6.1.0430 2SWAPoovviiiieii e, WO-SWAP" ..o e CORE......... 30
8.6.1.0440 2VARIABLEcoovvviiiiiieeeennn, “two-variable”............ccccciiieies DOUBLE......... 69

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 209

6.1.0450 @ oo ‘calon”......ciiiiieeeee e . GORE.L 30
6.2.0455 :NONAMEccovvvvrrrvnrnnnnniC0OlON-N0O-NAMET CORE EXT......... 52
6.1.0460 ; oriiiiii e YSEMICOION" ... e CORE......... 30
15.6.2.0470;CODEcccovviiiiiiiiiiiieeeeeeeeee, “semicolon-code’..........cccceees ciieennn. TOOLS EXT....... 116
6.1.0480 < oiiiiiiiiii e “less-than” ... e, CQORE......... 30
6.1.0490 <# .oieiiiiiiiiiieeeeeeeieeeedBSS-NUMbBET-SIGNT CORE......... 31
6.2.0500 <> i DEEQUAIS CORE EXT......... 52
6.1.0530 = oo YROUAIS" e CORE......... 31
6.1.0540 > i “greater-than”.........cccevvvvviiies i, CORE......... 31
6.1.0550 >BODY ...coooiiiiiiiiiiiiee QDoAY CORE......... 31
12.6.1.0558 >FLOAT ..coovviiiiiiieiiiiiiiieeee Mo-float” ..o FLOATING 93
6.1.0560 >IN ..oovviiiiiiiiiiiiieiiiieeeeeeee 0AINT L CORE......... 31
6.1.0570 >NUMBER.........cvvvviiviiiiiiiieene O-NUMDEI CORE......... 31
6.1.0580 >R ..ooiiiiiiiiiiiiiiiiee e B0R i CORE......... 32
15.6.1.0600 7 ovvvvviiiiiiiiiie e YQUESHION". et TOOLS....... 115
6.2.0620 ?DOceevviriiiiiiieeeeeeeeeeeeeeee QUESTION-O™ e, CORE EXT......... 53
6.1.0630 ?DUPoeviiiiiiiiiiiieiiiiiiiee e QUESHION-AUPE™......viiiiiieeeies e CORE......... 32
6.1.0650 @ ..o detch” . e GOREL 32
B.1.0670 ABORT ..ottt ettt e es bbbttt e e e e e e e teaaaaaaaaaaans CORE......... 32
9.6.2.0670 ABORT ...ttt e e e e e e e e e e e et a e e e e e e e e e e e e e e s EXCEPTION EXT......... 75
6.1.0680 ABORT"oiiiiiiiiieeiieii e ‘abort-qUOLE”.......ooe i CORE......... 32
9.6.2.0680 ABORT" ...oiviiiiiiiiiiiiiieeiie ‘abort-quote”...........ccceeeiieenn EXCEPTION EXT......... 75
6.1.0690 ABSooviiiiiiiiiiiiiiieeeeeeeen @S e CORE......... 32
B.1.0695 ACCEPRT .oeieeiiiiiiiiii it et s CORE......... 33
6.2.0700 AGAIN i ees ot e e ereeedd CORE EXT......... 53
15.6.2.0702 AHEAD ...ttt e eeees TOQLS EXT....... 116
B.1.0705 ALIGN .ottt et e e tarraaeaaeaaas CORE......... 33
6.1.0706 ALIGNEDooiiiiiiiiiiiiiiiiiiiiii e ettt aernenn e CORE......... 33
14.6.1.0707 ALLOCATE ...oiiiiiiiiiiiiiiiieiieeet ettt es ettt e e e e e e e e e e e e e snnnnnn eeeeeeees] MEMORY 111
B.1.0710 ALLOT it e trrraaeaaaaaan CORE......... 33
16.6.2.0715 ALSO .ooriiiiiiiiiii it e e SEARCH EXT....... 123
B.1.0720 AND ..ottt e e aan e CORE......... 33
15.6.2.0740 ASSEMBLER..........cooiiiiiiiiies e e LOQLS EXTLLLL 117
10.6.1.0742 AT-XY oo LAEXY" e EACILITY 77
B.1.0750 BASE ...ttt e e raa CQORE......... 34
B.1.0760 BEGIN ...ttt et e CORE......... 34
L1.6.1.0765 BIN ittt e oottt e e e e —erbb e E....FIL82
6.1.0770 BL .eeoiiiiiiiiiiiiiiiiiiiiiiinneeeeeeeeeeen DR CORE......... 34
17.6.1.0780 BLANK ...ttt ettt a s aaaaaaaaaas STRING....... 126
7.6.1.0790 BLK ..ccovviiiiiiiiiiiiieeiiiiiieeiieee DARKT BLOCK 63
7.6.1.0800 BLOGCK ...ttt ettt s BLOCK 63
7.6.1.0820 BUFFERouiiiiiiiiiiii e ettt e e e e e e e e eeaes ceeeeeennane BLOCK 64
15.6.2.0830 BYEoiiiiiiiiiieii ettt e een e TQOLS EXT....... 117
6.1.0850 C! oot CESTOT e e CORE......... 34
6.2.0855 C" ..ot CEUOEE . s e CORE EXT......... 53
6.1.0860 C, ..cooiiieeiiiiiiiiiiiiii et CECOMMA . e e CQORE......... 34
6.1.0870 C@ceeeveeveeeiiiiiiiinnieeeeeeeeeeeee e CFRICN CORE......... 34
B.2.0873 CASE ..o e e CORE EXT......... 54
9.6.1.0875 CATCH ...t et s EXCEPTION......... 74
6.1.0880 CELL+ ..coooeeeeiiiiiiiiiiiee YCelI-PIUST .o CQRE......... 35
6.1.0890 CELLS ...t ettt e CORE......... 35
6.1.0895 CHARooiiiiiiiiiiiiiiii e “CRAI (i CQRE......... 35
6.1.0897 CHARY* ... “char-plus”........ocooiit e, CORE......... 35

6.1.0898 CHARS ..., CCNAIS i CORE......... 35

Page 210 X3J14 dpANS-6 Document

121.6.1.0900 CLOSE-FILE ...ooiiiiiiiiiiiiie e e e FILE.......... 82
17.6.1.0910 CMOVE.........cccuviiiiiiiiiiiiiiiieeeeeeenn YCIMOVE” et e STRING....... 126
17.6.1.0920 CMOVE>.......c.ccovvieeiiiiiiiieee e YCTMOVE-UP .ttt e STRING....... 126
15.6.2.0930 CODEooiiiiiiiiiiiiiii e iiiiiiiis e iiiinrrnrennee e e e e e ee e e LOQLS EXTLL L 117
17.6.1.0935 COMPARE......coiiiiiiiiiii e et e e e e e e e e e ees bbbbeeeeees STRING....... 127
6.2.0945 COMPILE, ...ccooevviiiiiiiiiecee! ‘compile-comma”........ccoceees veeiieeanns CORE EXT......... 54
5.1.0950 CONSTANTetitiii ettt ettt e —etee e e e et re e e e e e ateeaeeeaeaannbareaaesaan 2eesannnnneeeess CORE......... 35
6.2.0970 CONVERToiiiiiiiitiii ettt ee et e e e e e s et e e e e e e abeee e e e e e annnee sanenees CQRE EXT......... 54
5.1.0980 COUNT ..coiiiiiiitiiitee ettt e e e ettt e es teeeeaasaastbeeeaaa s e e tbeeeeaesannbbeaaaes seeeaeesannnens CORE......... 36
6.1.0990 CRovviiiiieiiiiiiiee e RO U PPRP CORE......... 36
6.1.1000 CREATEcotiiiiiiittii ettt ee e eitte —aitbe et e e e e e e bbb et e e e e e s sabbbe e e e s aannbbees hrbeeeeasaanns CORE......... 36
11.6.1.1010 CREATE-FILE ...ettiiiiiii ittt ettt e e e sebbaeeeaeeaaanes FILE........ 83
15.6.2.1015 CS-PICK ..ot SCESPICK e e, TOOLS EXT....... 117
15.6.2.1020 CS-ROLL ..cooevviieeeeiiiiiiiieee eSS0 s e, TOOLS EXT....... 118
8.6.1.1040 D+ ..ooevveeiiiiiiiiieeeiiiiiieeee e e PIUS™ o DQUBLE......... 69
8.6.1.1050 D- .eoevvieeiiiiiiiiee e “A-MINUS” .o e DQUBLE.......... 69
8.6.1.1060 D. ..eovvveeiiiiiiiiieeeniiiieeee e =0T L DQUBLE.......... 69
8.6.1.1070 D.R iviviiieiiiiiiiieeeeniiiieeee e 20RO s e DQUBLE......... 69
8.6.1.1075 DOS .covvveiiiiiiiiiieeee e 0-Zero-less”. ... DOUBLE......... 69
8.6.1.1080 DO= ...covvvvviviiiiiieeeeieeeeeeiiiiei s ‘d-zero-equals’.....cccoeviiiieiiiis v DOUBLE......... 69
8.6.1.1090 D2%eviiiiiiiiiiiiiieee e LOAEWO-StAr ..o e DOUBLE.......... 70
8.6.1.1100 D2/ ...etviiiiieiiiiiiieee e LdAtwo-slash”.......ooo DOUBLE......... 70
8.6.1.1110 DS evviiiiiiiiiiieee e “d-less-than”........ccccceeiiiiiiies e DOUBLE.......... 70
8.6.1.1120 D= ...oevveeiiiiiiiiieeeiiiieeee e 2BQUAIS™ DOUBLE......... 70
12.6.1.1130 D>F ..ovviiiiiiiiiiiiieeeeeiiee ! SO0 e FLOATING 93
8.6.1.1140 D>S ...otviiiiiiiiiiiiieee e OA0-S" i e DQUBLE......... 70
8.6.1.1160 DABSccoiiiiiiiiiiieeeiiiiiee e 0=aDS e DQUBLE.......... 70
6.1.1170 DECIMAL ..otiiiiiiiiiitii ittt eee ettt e et e e e e e s aaies sennrreeeeeend CORE......... 36
16.6.1.1180 DEFINITIONS ..ottt ettt eesaenees SEARCH....... 122
11.6.1.1190 DELETE-FILE ...oiiiiiiiiiiiiee e ettt sriinnreeee e FILE........ 83
B.1.1200 DEPTH ..oiiiiiiiiitiiite ettt bttt e e ettt e ettt e e eeeeee s CORE......... 36
12.6.2.1203 DF! oovviiiiieiiiieee e LOAf-StOre” ..o FLOATING EXT 97
12.6.2.1204 DF@....evveeeeeiiiieiiiee e fd-f-feteh” e FLOATING EXT 98
12.6.2.1205 DFALIGNoccvvveeeeeiiiiieeeeen Md-f-aIGN FLOATING EXT 98
12.6.2.1207 DFALIGNEDccocoiiiiiiiiiiennnnd “d-f-aligned”........cocoviiins ol FLOATING EXT 98
12.6.2.1208 DFLOAT+ ..coovvvvvvveivieeeeeeeeeeeed-float-plus” oo ELOATING EXT......... 98
12.6.2.1209 DFLOATS ...oovvvvvvveeveeeeeeeeeeeid=-floats” oo FLOATING EXT 98
8.6.1.1210 DMAX ...ovtriiriiiiiiiiiieieeeeeeeaeaaaaeeens A MAX e e DQUBLE......... 70
8.6.1.1220 DMINttiiiiiiiiiiiiiiiieieeeeeeeee e “A-MIN" e s DOUBLE......... 70
8.6.1.1230 DNEGATEcoovvvvvvviiieeeeeeeeed-n€gAte” e e DOUBLE.......... 71
B.1.1240 DO .ooiiiiiiiieiee e es —aee et ettt e aeaeaaeeaeeaaas reeeeeeeeeeeaaaaaans E..COR37
6.1.1250 DOES> ...oooeeiiiiiiiieeee s eeiiieeee e B0 (01 CORE......... 37
B.1.1260 DROP ...ttt e e e e e e e et ettt ettt e e e e e e e e e e e e e e e teeaaaaaaaaaaas CQORE......... 37
8.6.2.1270 DUS ..iiiiiiiieeiiciiiicee e SOAU-1ESS il DOUBLE EXT......... 71
15.6.1.1280 DUMP ...ttt —eee e e e e e e e e bbb ee e e e e e aaaaaaes aaeebeeeeees TOOLS....... 115
6.1.1290 DUPouttiiiiiiiiiiiiieieiiieeeeee e AU e CORE......... 38
15.6.2.1300 EDITOR ..ciiiiiiiieeeeei oottt eee e e e e ettt ee e e e e e eaaaeaes eenees TOQLS EXT....... 118
10.6.2.1305 EKEY ..oviiiiiiiiiiiiiiiiieeed fe=KeY e FACILITY EXT 78
10.6.2.1306 EKEY>CHAR......ccooeiiiiiiiiiieeend “e-key-to-char!...............ocees FACILITY EXT 78
10.6.2.1307 EKEY? .ooiiiiiiiiieeteeeee e ‘e-key-question”............cccoes s FACILITY EXT 78
B.1.1310 ELSE ...ttt e 2aaaaaaaaaaaas CQORE......... 38
B.1.1320 EMIT ittt e e e e e e e e e e e e et te e et et e et e et e e e e e e e e e e e e e e e e 2aeaaaaaaaaaaas CQORE......... 38
10.6.2.1325 EMIT? .ooiiiiiiieeeeeeee e ‘emit-question”..........cccccvvinn oo FACILITY EXT 78
7.6.2.1330 EMPTY-BUFFERS........coiiiiiiiiiiiiies ittt aeeans BLOCK EXT 65

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 211

6.2.1342 ENDCASEccooiiiiiieeieeBNA-CASEY. e e, CORE EXT......... 54
6.2.1343 ENDOFcooiiiiiiiieeeiiiiieeeeeea, fend-of" .. CORE EXT......... 55
6.1.1345 ENVIRONMENT?.......cceeeiiinnnnn.ll! ‘environment-query’............ ceeeeeveeeeeeeennnn . GORE. L. 38
6.2.1350 ERASE ...t s s CORE EXT......... 55
6.1.1360 EVALUATE ...t et e e e e e eas eabtaeeeeenanns CORE......... 39
7.6.1.1360 EVALUATE ...ttt ettt e e e et e e e e e e s e aaas e eeesennes BLOCK......... 64
6.1.1370 EXECUTE ..ottt e e et e e e et e e s et e s e e e e et e ees eareraaneesseesd CORE......... 39

LT T T I = N TR CQRE......... 39
5.2.1390 EXPECT ettt ettt e e et e e e st es aeraaand CORE EXT......... 55
12.6.1.1400 F! oovenieeeee e B STOTE” e e ELOATING 93
S 0 0 1 O N R .~ - ST FLOATING 93
12.6.2.1415 F* oo “f-star-star’ ..o FLOATING EXT 98
12.6.1.1420 F+ .ooooiiiiiiiiiiieeiieeeeeeeeee B2 PIUST s FLOATING 93
12.6.1.1425 F- oo FENINUS” e ELOATING. 93
T N S o [0 | SRR ELOATING EXT 99
12.6.1.1430 F/ e F2S1ASH ELOATING 94
12.6.1.1440 FO< .iivvniiiiiiiiiieeeeeeeeeee e ‘f-zero-less-than™............ccc.o. oveiiiiens ELOATING 94
12.6.1.1450 FO= ..oovoiiiiiiiiiieeeeceeeeeee s ‘frzero-equals’...........ccoevviiiin e FLOATING 94
12.6.1.1460 F< covvvviiiiiieeeeiiieeeeeeee e fed@SSthan FLOATING 94
12.6.1.1470F>D oovvvneiiiie e Fato-d” o FLOATING 94
0 Ny (o S (= 1 1 (o1 § KSR ELOATING 94
12.6.2.1474 FABS ... Heabs . FELOATING EXT 99
12.6.2.1476 FACOS ..o, B - B o0 ELOATING EXT......... 99
12.6.2.1477 FACOSH......ccovveieiiiiiiieeeein, Ua-CoSN™..cccc e FLOATING EXT 99
12.6.1.1479 FALIGNooooviiiieiiiiiiieeeeein, align ool FLOATING 94
12.6.1.1483 FALIGNEDccoovviiviiieeeeeeinnnn “fraligned” ... FELOATING.......... 94
12.6.2.1484 FALOGoovvevviieeeeeeee e, ramlog” s ELOATING EXT......... 99
B.2.1485 FALSE ...t e aan s CORE EXT......... 55
12.6.2.1486 FASIN . ..oovoiiiiiiiiieeeeeeeeeeeeeen, Ha-SINE” e FLOATING EXT 99
12.6.2.1487 FASINH ...cooiiiiiieiiieeeeeeee fra-cinch” oo FLOATING EXT 99
12.6.2.1488 FATAN ..coovveieeiiiieeeeeeeeee e, rartan” ... FLOATING EXT....... 100
12.6.2.1489 FATANZ ..o fratan-two”.......eeeeiiieen ELOATING EXT....... 100
12.6.2.1491 FATANH ...ovoiiiiieiieeeeee e “f-a-tan-h"ooovveeeeeeiieeee FLOATING EXT....... 100
12.6.1.1492 FCONSTANTiiiiiieeeeeeiieeeeees econstant”.......oooeeveeiees e, FLOATING 95
12.6.2.1493 FCOSoveeeeeeeeeee e 008 e FLOATING EXT....... 100
12.6.2.1494 FCOSHoovoeiiieiiieeeeieeeeeeen, oS e ELOATING EXT....... 100
12.6.1.1497 FDEPTHovviiieiieceeeveee, fedepth” ..o ELOATING 95
12.6.1.1500 FDROPovviiiieiiieeeeieeeeeeen, drop” e FLOATING 95
12.6.1.1510 FDUPeviiiiiiieeeeeeiee e i dUPE” e FLOATING 95
12.6.2.1513FE. oo EmedOt FELOATING EXT....... 100
12.6.2. 1515 FEXP ..ovviiiiiieeeeeeiee e X e FELOATING EXT....... 100
12.6.2. 1516 FEXPM1coooviiiiiiiieeeeeeen. fr-X-P-M-0N€”....cccoeeeiiiiiiiins e, ELOATING EXT....... 101
11.6.1.1520 FILE-POSITION oottt oottt et et e et et e e e e eraannns EILE.........83
0 T O S e I] 4 EILE..........83
11.6.2. 1524 FILE-STATUS oot ettt e et eeeeeeend EILE.EXT......... 88
B.1.1540 FILL oiiiniiiiiii it et r e r e eeabeeraraee CQRE......... 39
B.1.1550 FIND .iiiniiiiiiiie ettt e e e e e e r e r e eeateeeaaae CORE......... 39
16.6.1. 1550 FIND oouuniiiiii et et s SEARCH....... 122
12.6.1.1552 FLITERALccoovviiieiiiiieeeeennn! daliteral” oo FLOATING 95
12.6.2.1553 FLN .coovviiiiiiiiiiciiieeieeeenn 2N FLOATING EXT 101
12.6.2. 1554 FLNPLcoooiiiiiiiiiiieiieeeeeeee, ‘el-n-p-one” e FLOATING EXT....... 101
12.6.1.1555 FLOATH .ovviiiiiiieieeeeeeee e float-plus™ooovvveiiiiiees e, FLOATING 95
12.6.1.1556 FLOATS .oueniiiiiii ettt ettt e ettt e e e e e e et e e e e eat e aaeeens FLQATING.......... 96

Page 212 X3J14 dpANS-6 Document

12.6.1.1558 FLOOR ...ttt ettt ettt s FLOATING 96
T.6. 11559 FLUSH ..ot ettt s BLOCK 64
11.6.2.1560 FLUSH-FILE ..coiiiiiiiiiii ettt et s FILE EXT 88
6.1.1561 FM/MODcoiiiieiiiiiiiiiiiiiiennn, ‘fem-slash-mod”........ooon i, CORE......... 40
12.6.1.1562 FMAX ..ooiiiiiiiiiiiiiiiiiiieeeeeee HEMAX" e FLOATING 96
12.6.1.1565 FMIN ..oooiiiiiiiiiiiiiiiiiiieeeee i) FLOATING 96
12.6.1.1567 FNEGATEcccooeevvenvnnnnnfanegate” o e, ELOATING 96
15.6.2.1580 FORGETciiiiiiiiiiii ettt ee ettt e e e e ee e e e e e e e e e a e eeeees TOQOLS EXT....... 118
16.6.2.1590 FORTHuiiiiiiiiiiiiiiiiiiie ettt ettt ettt e e e e e e e e e e e e e eaeees s SEARCH EXT....... 123
16.6.1.1595 FORTH-WORDLIST......uuttttiiiiiiiiies aoriiiiiiibbiebebee e eeeeeeeaaaaaaaaaeaas cerreeeeeees SEARCH....... 122
12.6.1.1600 FOVERccccuvviiiiiiiiiiiiiiieeeeeeen, OV e FLOATING 96
14.6.1.1605 FREEooiiiiiiiiiieii it et e e e e e e e e e e areeeeens MEMORY 112
12.6.1.1610 FROT ..oovviiiiiiiiiiiiiiiiieeeeeeeeee e rOte e FLOATING. 96
12.6.1.1612 FROUND..........ccceeeiiiiiiiiiiinins eround”...oo e e FELOATING 96
12.6.2.1613 FS. .o 2SO ELOATING EXT 101
12.6.2.1614 FSIN .oooiiiiiiiiiiiiiiiieeieeeeee HiSINE” L ELOATING EXT 101
12.6.2.1616 FSINCOSceeeevvvvvviiinniien f28INE-COS™ FLOATING EXT 102
12.6.2.1617 FSINH ..., deeinch” o FLOATING EXT 102
12.6.2.1618 FSQRT oot ‘fzsquare-root”...........ccceeeiiins e, ELOATING EXT 102
12.6.1.1620 FSWAPooviiiiiiiiiiiiiieiieeeieeeeeenn rSWAD e FLOATING 96
12.6.2.1625 FTAN ..ooiiiiiiiiiiiiiiiieeeeeeeeee s AN FLOATING EXT 102
12.6.2.1626 FTANHcccvviiiiiiiiiiiiiiiiiieeeeeeeen “f-tan-h" ... ELOATING EXT 102
12.6.1.1630 FVARIABLE ..o “favariable” ... FLOATING 97
12.6.2.1640 F~ .o f2RTOXIMALE ELOATING EXT 102
16.6.1.1643 GET-CURRENT ..ottt ees ittt e e e e e reeeeeeeeens SEARCH....... 122
16.6.1.1647 GET-ORDER........coii ittt oo e e e e e e eeaaes rennneeeees SEARCH....... 122
6.1.1650 HEREoitiiiiiiiiiiiiiiiiie e ettt CQORE......... 40
6.2.1660 HEXiiiiiiiiiiiiiiiiiii e eee e e e e e e e e e CORE EXT......... 55
B.1.1670 HOLDuttiiiiiiiieiiiiiiiieeee e ceee et et e e e e e e e e e e e s s e nnee oaraaaa e CQRE......... 40
B.1.1880 | ittt e rees 1raennnnnnnen ORE..C....40
B.1.0700 IF oo ettt e e rrrrr e et e e e aaaaaas E..CQR40
6.1.1710 IMMEDIATE ...oiiiiiiiiiee e ettt eee oaa e CQORE......... 41
11.6.1.2717 INCLUDE-FILE ... oo e e nnnnnnnnnnnnnenes] FILE......... 83
11.6.1. 2718 INCLUDEDottiiiiiiiiiiiiiiiiiieeeeeeiies ettt nnree weeessnans e FILE.........84
6.1.1720 INVERT oottt e e e e e et r e e e e e ee rnnnnrrnnnnnes CORE......... 41
B.1.0730 J ittt et e e e e e et et e e e et brbnan e eeesd ORE..C....41
B.1.1750 KEY ...iittiiiitiiiiii ettt e e et a e e e e e e eeeaaen teeernnnnnaannd CORE......... 41
10.6.2.1755 KEY? ooviiiiiiiiiieeeeiieeeeeiiii s ‘Key-question...........eiiiiies i, EACILITY 77
B.1.1760 LEAVE ...t et s CORE......... 41
T.6.2. 0770 LIST oo ettt e e e e e e e e aaee eeeas BLOCK EXT 65
B.1.1780 LITERAL oo e e e e e e e eeeaaaes cennrnnnnan] CORE......... 42
7.6.1.1790 LOAD ..ottt e e e e e cenennnaanns] BLOCK 64
13.6.2.1795 LOCALS| ..coovvvevvvvvvvvvviveeenddocals-bar. LOCAL EXT 109
B.1.1800 LOOP ...ttt e e e ottt aranaa CQORE......... 42
6.1.1805 LSHIFT ..ooviiiiiiiieeeiiiiieeiiiiiinn UShIft” Lo CORE......... 42
6.1.1810 M* i “MN=STAN e CORE......... 42
8.6.1.1820 M*/ iiiiiiiiii “m-star-slash”........cccooiiiin i DQUBLE......... 71
8.6.1.1830 M+ ..ooiiiiiiiiiiiiiiiiiii e EPIUST L DQUBLE......... 71
6.2.1850 MARKER......ceuiiiiiie s ettt es aeeaeas CORE EXT......... 56
B.1. 1870 IMAX ..ttt e e e e e e et e e e e nrann teeennnnanaasd CORE......... 42
B.1.1880 IMIN ittt ettt e e s o e e e et et e e e e et e e e eenrann ceeenrnnnnaasd CORE......... 42
B.1.1890 MOD.....oiiiiiiiieie ettt e s oo e et e e e e et e e eenraan eeerrnannna CORE......... 43
6.1.1900 MOVEouiiiiiie et e ettt oo e e ettt e e et e ettt ennaaa s CQORE......... 43
L10.6.2.2905 MS ..o e FACILITY EXT 78

Collating Sequence: ! "#$% &' ()*+,-./digits: ; <=>? @ ALPHA[\]"_"alpha{]|}~
WARNING: Preliminary Document Subject to change without notice

X3J14 dpANS-6 Document Page 213

B.1.1910 NEGATE ...ttt et ettt et e e e e e et terataeeaanes CORE......... 43
B.2.1930 NIP et e aeeaaas CORE EXT......... 56
B.2.1950 OF oot e aaeaaa CQRE EXT......... 56
16.6.2. 1965 ONLY oottt et aay e SEARCH EXT....... 124
T e @ T N e | EILE..........84
L0 e 1< 10 T | E..COR43
16.6.2.1985 ORDER.......uuuiiiiiiii ettt e et e SEARCH EXT....... 124
B.1.1990 OVER ..ottt e et e es taraaareaaaen CQRE......... 43
B.2.2000 PAD ...ttt e r e e aaaaaes CORE EXT......... 56
T10.6.1.2005 PAGEiiiiiiie ettt e ae aaaaaa FACILITY 77
6.2.2008 PARSE .. .oooiiii ettt e aans s CORE EXT......... 57
B.2.2030 PICK oottt ettt e e e e r s aeaaans CORE EXT......... 57
6.1.2033 POSTPONE.... oottt ettt e et e e e e e e e e e e s s e e eees cabbeeeseeannns CORE......... 43
12.6.2.2035 PRECISION ...ouuiiiiiiiiiiieie et e et e e e e et FLQATING EXT 102
16.6.2.2037 PREVIOUSooitiiiiii ettt ettt et e e s SEARCH EXT....... 124
6.2.2040 QUERY ...t e aaes aaaaand CORE EXT......... 57
6.1.2050 QUIT ooiiiiiiiii et e et e —ee et e e e e e e e e e s CQORE......... 44
11.6.1.2054 R/O covvveieeiieeeeeeeee e o o o L EILE 84
11.6.1.2056 RIW ..oivviiiiieeeeeeeeeeeeeeee e W s e FILE 85
6.1.2060 R> ...ooovviiiiiiiiiiiiieiineeeieeeeee FETOMYT L CORE......... 44
6.1.2070 R@cvvvveeeeevieeeieieeeeeeeeieeeee e FEBICN L e CORE......... 44
11.6.1.2080 READ-FILE ...ottiiiiiiiiie et e et e e s e e e et eees eereataeeeseeaans EILE..........85
11.6.1.2090 READ-LINE ..ottt et e e e e e e e e e es eeeerteeeeeeeaans EILE..........86
6.1.2120 RECURSE ... oottt et e e e e e e e e e es aaeeraraneeessd CORE......... 44
L 4 S Y = 4= | N CORE EXT......... 57

A I S Y = 4 = o | BLOCK EXT......... 65
ST B ==t | FILE.EXT......... 88
11.6.2.2130 RENAME-FILE ..ottt ettt ee e e e aas eeeeeed EILE.EXT......... 88
B.1.2140 REPEAT ..ottt et et aaae e e CORE......... 45
11.6.1.2142 REPOSITION-FILE .ooeiiiieiii et et e e e ee eeeeeeaaeeeeeeaaas FILE.......... 86
12.6.1.2143 REPRESENT ..ottt ittt ettt et e e e e e et e e e e e e e e e et ees aaeeeens ELOATING 97
I T N 7 1S =] 7 MEMORY 112
11.6.1.2147 RESIZE-FILE . oorei i ettt e e e e FILE......... 86
6.2.2148 RESTORE-INPUT ...ovviiiiiiiie et et es eeeeaaans CORE EXT......... 57
L R I = L@] I CORE EXT......... 58

T 2 10 I = N T o | = LA CORE......... 45
6.1.2162 RSHIFT ..oviiiiiiiiieeeeeeeeeeee B =Y 111 CORE......... 45
6.1.2165 S" i STOUOTE . s e CORE......... 45
11.6.1.2165 S" oot STOUOTE . s e EILE......... 87
6.1.2170 SSD ooviiiiiieeieeieeeee e SO e e CORE......... 45
7.6.1.2180 SAVE-BUFFERS oottt ettt eera e e e BLQCK......... 64
6.2.2182 SAVE-INPUT oot e e n e es aevneensd CORE EXT......... 58
7.6.2.2190 SCR ..o ST e e BLOCK EXT......... 65
A T R e Y = Y = STRING....... 127
16.6.1.2192 SEARCH-WORDLIST ...ttt et r e e eereaeeeans SEARCH....... 123
T O e Y R TOQLS....... 115
16.6.1.2195 SET-CURRENT ...ttt ettt e e e e e e e aas seereaaaeees SEARCH....... 123
16.6.1.2197 SET-ORDER ...ttt et e e e e eanaes SEARCH....... 123
12.6.2.2200 SET-PRECISION ...couuiiiiiiiiiiees et een FLOATING EXT....... 102
12.6.2.2202 SF! oo S FSTOTR FLOATING EXT 103
12.6.2.2203SF@.......cceveveveiieiiieiiineneee S fOtCh” FLOATING EXT 103
12.6.2.2204 SFALIGN ...ccoooooveeiiivivveiviveeSe-alIGNT FLOATING EXT 103
12.6.2.2206 SFALIGNEDccoovvvvieviienennn, “s-f-aligned” ..o ELOATING EXT 103

12.6.2.2207 SFLOATH ..ccoovivieiiviieiiiiiiieeendSEflOAE-PIUS FLOATING EXT 103

Page 214 X3J14 dpANS-6 Document

12.6.2.2208 SFLOATS ...coivviiviieeiieecvveee iSefl0ALS e, FLOATING EXT 104
B.1.2210 SIGN ittt e e e a s sraaeeeraeae CORE......... 46
T O Y I I = TR STRING....... 127
6.1.2214 SM/IREMcooviiiiiiiiiiiieei Yszm-slash-rem”cooooveviiin i, CORE......... 46
6.1.2216 SOURGCE........u it e eerae e, CORE......... 46
6.2.2218 SOURCE-IDccoevvveiiiieeiiis B0 10| (o< T B0 LR CORE EXT......... 58
11.6.1.2218 SOURCE-IDcccvvveviiiiiiienennn, B0 10 | (o< T o TR EILE 87
B.1.2220 SPACE .. .ot et e CORE......... 46
B.1.2230 SPACESot e e, CORE......... 46
B.2.2240 SPAN .ot s e CORE EXT......... 58
B.1.2250 ST ATE oeiiiiiiiii ettt cee et et e r e et areaaaa e CORE......... 46
15.6.2.2250 STATE ooniiiiiiiii et e aaaaa TOQLS EXT....... 118
B.1.2260 SWAP . .oeeiii ettt e e aeaaeaeraaaa CORE......... 46

LT A T I | = RPN CORE......... 47
9.6.1.2275 THROW. ... ittt et e e et e e e e eaas aeees EXCEPTION......... 75
7.6.2.2280 THRU .ouiiiiiiiii e ettt e e e e es aaes BLOCK EXT......... 65
6.2.2290 TIB .eviiiiieeieiieeee e oD CORE EXT......... 58
10.6.2.2292 TIME&DATEcocvvvieiiiieiiieeeeinnn, “time-and-date”...........ccccceeunnnn FACILITY EXT 78
B.2.2295 TIO ettt et aaeaaas CQRE EXT......... 59
T TR e 1 T O TP LOCAL 109
B.2.2298 TRUEouiiiiiiiiii ettt e e CORE EXT......... 59
B.2.2300 TUGCK .ottt ettt et e e e et e et e e e et e et aes eeaaans CORE EXT......... 59
B.1.2310 TY PE oot e ee e aeaeaaa CORE......... 47
6.1.2320 U. ooiiiiiiiiieieiieeeieeeeieeeeieeee e O i i . GORE.L 47
6.2.2330 U.R oo SOt L CORE EXT......... 59
6.1.2340 U< it “U-less-than”.........ccooeviiiiiiis e, CORE......... 47
6.2.2350 U> ..o “u-greater-than”..............cccceen e, CORE EXT......... 59
6.1.2360 UM* ..., “U-M-STAI s e, CQRE......... 47
6.1.2370 UM/MOD........oceeviieiiiiieiiieeeiiiees ‘Urm-slash-mod’...........ccoooeev i, CORE......... 48
B.1.2380 UNLOOP... ..ot ettt e e e e es eabeeeeriaeens CORE......... 48
B.1.2390 UNTIL iiiiiiiiiii ittt ce ettt e e e e e et e et e e et e e e et e e eteeees eeesbaeenens CORE......... 48
6.2.2395 UNUSED.......ui it et e e e e e aeraansd CORE EXT......... 59
7.6.1.2400 UPDATE .. oottt ettt et e e e e et e e e e e e et eaetaeeeaanns BLOCK 65
6.2.2405 VALUE ..ot e ee araens] CORE EXT......... 60
6.1.2410 VARIABLEcoiiiiiiii e ettt et ee e et CORE......... 48
11.6.1.2425WI/O ..cooeiiiiiiiiieeeeeee e ME0” e e EILE 87
B.1.2430 WHILE ..ot et e e e e e e e et e e s e e s e eee sabeseaneaens CORE......... 49
B.2.2440 WITHIN ooniii s e e et e e e e s e e et e s et e e ebaeeeets eeeeesd CORE EXT......... 60
B.1.2450 WORD ...ttt e et e et e et e e e e e r e es teateeeaaes CORE......... 49
16.6.1.2460 WORDLIST ..ovuiiiiiiiii et et e et e e e e e e e s e e st e e et e e e atn teeeernees SEARCH....... 123
15.6.1.24B85 WORDS......oitiiiiie et et et e e et e e e e et aeeere e TQOLS....... 116
11.6.1.2480 WRITE-FILE ..ot et e e e e et eeerate e e e eeens EILE.......... 87
11.6.1.2485 WRITE-LINE ... oot et e e e et eeeraaeeeeaaeeens EILE.......... 88
6.1.2490 XOR ..ouiiiiiiiiieiieeeeee e Xm0 s e CORE......... 49
6.1.2500 [coiiiiiiiie e Ueft-bracket”.......covvviiiiiiiis e, CORE......... 49
6.1.2510 [T .ervvveiiiiiiei e cbracket-tick™. .. GOREL 50
6.1.2520 [CHAR] .o, ‘hracket-char’.........cooviviiiiis i, CORE......... 50
6.2.2530 [COMPILE] .ccooviiieiiiiiiiiiiiiiin, “bracket-compile”............ccccev vrvriiiinnnnn. CORE EXT......... 60
15.6.2.2531 [ELSE] .ovvviiiiiiieeeiieeeeeiiiiiiinn ‘bracket-elsel.......ccooeviiiiiiies i, TOOLS EXT....... 119
15.6.2.2532[IF] worvieiiiieiiee e thracket-if" ..o TOOLS EXT....... 119
15.6.2.2533 [THEN] .oovvvvviiiiieeeiiiieeieiiiien ‘bracket-then”........ccoooovveeiiinn veviiieenns TOOLS EXT....... 119
6.2.2535 \ o Yhackslash.......ccocoveviiiiiiiiins ! CORE EXT......... 60
7.6.2.2535\ i, ‘backslash.........ccoovvviiiiiiiiins e, BLOCK EXT......... 66
B.1.2540] cooriiiiiieei e “right-bracket”.........cccccvvvvviin v CORE......... 50

Collating Sequence: ! "#$% &' () *+,-./digits: ; <=>? @ ALPHA[\]~_ "alpha{|}~
WARNING: Preliminary Document Subject to change without notice

