
Tcl(3) Tcl(3)

NAME
Tcl − overview of tool command language facilities

INTRODUCTION
Tcl stands for ‘‘tool command language’’ and is pronounced ‘‘tickle.’’ It is actually two things: a language
and a library. First, Tcl is a simple textual language, intended primarily for issuing commands to interac-
tive programs such as text editors, debuggers, illustrators, and shells. It has a simple syntax and is also pro-
grammable, so Tcl users can write command procedures to provide more powerful commands than those in
the built-in set.

Second, Tcl is a library package that can be embedded in application programs. The Tcl library consists of
a parser for the Tcl language, routines to implement the Tcl built-in commands, and procedures that allow
each application to extend Tcl with additional commands specific to that application. The application pro-
gram generates Tcl commands and passes them to the Tcl parser for execution. Commands may be gener-
ated by reading characters from an input source, or by associating command strings with elements of the
application’s user interface, such as menu entries, buttons, or keystrokes. When the Tcl library receives
commands it parses them into component fields and executes built-in commands directly. For commands
implemented by the application, Tcl calls back to the application to execute the commands. In many cases
commands will invoke recursive inv ocations of the Tcl interpreter by passing in additional strings to
execute (procedures, looping commands, and conditional commands all work in this way).

An application program gains three advantages by using Tcl for its command language. First, Tcl provides
a standard syntax: once users know Tcl, they will be able to issue commands easily to any Tcl-based appli-
cation. Second, Tcl provides programmability. All a Tcl application needs to do is to implement a few
application-specific low-level commands. Tcl provides many utility commands plus a general program-
ming interface for building up complex command procedures. By using Tcl, applications need not re-
implement these features. Third, Tcl can be used as a common language for communicating between appli-
cations. Inter-application communication is not built into the Tcl core described here, but various add-on
libraries, such as the Tk toolkit, allow applications to issue commands to each other. This makes it possible






for applications to work together in much more powerful ways than was previously possible.

This manual page focuses primarily on the Tcl language. It describes the language syntax and the built-in
commands that will be available in any application based on Tcl. The individual library procedures are
described in more detail in separate manual pages, one per procedure.

INTERPRETERS
The central data structure in Tcl is an interpreter (C type ‘‘Tcl_Interp’’). An interpreter consists of a set of
command bindings, a set of variable values, and a few other miscellaneous pieces of state. Each Tcl com-
mand is interpreted in the context of a particular interpreter. Some Tcl-based applications will maintain
multiple interpreters simultaneously, each associated with a different widget or portion of the application.
Interpreters are relatively lightweight structures. They can be created and deleted quickly, so application
programmers should feel free to use multiple interpreters if that simplifies the application. Eventually Tcl
will provide a mechanism for sending Tcl commands and results back and forth between interpreters, even
if the interpreters are managed by different processes.

DATA TYPES
Tcl supports only one type of data: strings. All commands, all arguments to commands, all command
results, and all variable values are strings. Where commands require numeric arguments or return numeric
results, the arguments and results are passed as strings. Many commands expect their string arguments to
have certain formats, but this interpretation is up to the individual commands. For example, arguments
often contain Tcl command strings, which may get executed as part of the commands. The easiest way to
understand the Tcl interpreter is to remember that everything is just an operation on a string. In many cases

1

Tcl(3) Tcl(3)

Tcl constructs will look similar to more structured constructs from other languages. However, the Tcl con-
structs are not structured at all; they are just strings of characters, and this gives them a different behavior
than the structures they may look like.

Although the exact interpretation of a Tcl string depends on who is doing the interpretation, there are three
common forms that strings take: commands, expressions, and lists. The major sections below discuss these
three forms in more detail.

BASIC COMMAND SYNTAX
The Tcl language has syntactic similarities to both the Unix shells and Lisp. However, the interpretation of
commands is different in Tcl than in either of those other two systems. A Tcl command string consists of
one or more commands separated by newline characters or semi-colons. Each command consists of a col-
lection of fields separated by white space (spaces or tabs). The first field must be the name of a command,
and the additional fields, if any, are arguments that will be passed to that command. For example, the com-
mand

set a 22

has three fields: the first, set, is the name of a Tcl command, and the last two, a and 22, will be passed as
arguments to the set command. The command name may refer either to a built-in Tcl command, an appli-
cation-specific command bound in with the library procedure Tcl_CreateCommand, or a command proce-
dure defined with the proc built-in command. Arguments are passed literally as text strings. Individual
commands may interpret those strings in any fashion they wish. The set command, for example, will treat
its first argument as the name of a variable and its second argument as a string value to assign to that vari-
able. For other commands arguments may be interpreted as integers, lists, file names, or Tcl commands.

Command names should normally be typed completely (e.g. no abbreviations). However, if the Tcl inter-
preter cannot locate a command it invokes a special command named unknown which attempts to find or
create the command. For example, at many sites unknown will search through library directories for the
desired command and create it as a Tcl procedure if it is found. The unknown command often provides
automatic completion of abbreviated commands, but usually only for commands that were typed interac-
tively. It’s probably a bad idea to use abbreviations in command scripts and other forms that will be re-used
over time: changes to the command set may cause abbreviations to become ambiguous, resulting in scripts











that no longer work.

COMMENTS
If the first non-blank character in a command is #, then everything from the # up through the next newline
character is treated as a comment and ignored. When comments are embedded inside nested commands
(e.g. fields enclosed in braces) they must have properly-matched braces (this is necessary because when Tcl
parses the top-level command it doesn’t yet know that the nested field will be used as a command so it can-
not process the nested comment character as a comment).

GROUPING ARGUMENTS WITH DOUBLE-QUOTES
Normally each argument field ends at the next white space, but double-quotes may be used to create argu-
ments with embedded space. If an argument field begins with a double-quote, then the argument isn’t ter-
minated by white space (including newlines) or a semi-colon (see below for information on semi-colons);
instead it ends at the next double-quote character. The double-quotes are not included in the resulting argu-
ment. For example, the command

set a "This is a single argument"

will pass two arguments to set: a and This is a single argument. Within double-quotes, command substi-
tutions, variable substitutions, and backslash substitutions still occur, as described below. If the first char-
acter of a command field is not a quote, then quotes receive no special interpretation in the parsing of that

2

Tcl(3) Tcl(3)

field.

GROUPING ARGUMENTS WITH BRACES
Curly braces may also be used for grouping arguments. They are similar to quotes except for two differ-
ences. First, they nest; this makes them easier to use for complicated arguments like nested Tcl command
strings. Second, the substitutions described below for commands, variables, and backslashes do not occur
in arguments enclosed in braces, so braces can be used to prevent substitutions where they are undesirable.
If an argument field begins with a left brace, then the argument ends at the matching right brace. Tcl will
strip off the outermost layer of braces and pass the information between the braces to the command without
any further modification. For example, in the command

set a {xyz a {b c d}}

the set command will receive two arguments: a and xyz a {b c d}.

When braces or quotes are in effect, the matching brace or quote need not be on the same line as the start-
ing quote or brace; in this case the newline will be included in the argument field along with any other char-
acters up to the matching brace or quote. For example, the ev al command takes one argument, which is a
command string; ev al invokes the Tcl interpreter to execute the command string. The command

ev al {
set a 22
set b 33

}

will assign the value 22 to a and 33 to b.

If the first character of a command field is not a left brace, then neither left nor right braces in the field will
be treated specially (except as part of variable substitution; see below).

COMMAND SUBSTITUTION WITH BRACKETS
If an open bracket occurs in a field of a command, then command substitution occurs (except for fields
enclosed in braces). All of the text up to the matching close bracket is treated as a Tcl command and
executed immediately. Then the result of that command is substituted for the bracketed text. For example,
consider the command

set a [set b]

When the set command has only a single argument, it is the name of a variable and set returns the contents
of that variable. In this case, if variable b has the value foo, then the command above is equivalent to the
command

set a foo

Brackets can be used in more complex ways. For example, if the variable b has the value foo and the vari-
able c has the value gorp, then the command

set a xyz[set b].[set c]

is equivalent to the command

set a xyzfoo.gorp

A bracketed command may contain multiple commands separated by newlines or semi-colons in the usual
fashion. In this case the value of the last command is used for substitution. For example, the command

3

Tcl(3) Tcl(3)

set a x[set b 22
expr $b+2]x

is equivalent to the command

set a x24x










If a field is enclosed in braces then the brackets and the characters between them are not interpreted spe-
cially; they are passed through to the argument verbatim.

VARIABLE SUBSTITUTION WITH $
The dollar sign ($) may be used as a special shorthand form for substituting variable values. If $ appears in
an argument that isn’t enclosed in braces then variable substitution will occur. The characters after the $,
up to the first character that isn’t a number, letter, or underscore, are taken as a variable name and the string
value of that variable is substituted for the name. For example, if variable foo has the value test, then the
command

set a $foo.c

is equivalent to the command

set a test.c

There are two special forms for variable substitution. If the next character after the name of the variable is
an open parenthesis, then the variable is assumed to be an array name, and all of the characters between the
open parenthesis and the next close parenthesis are taken as an index into the array. Command substitu-
tions and variable substitutions are performed on the information between the parentheses before it is used
as an index. For example, if the variable x is an array with one element named first and value 87 and
another element named 14 and value more, then the command

set a xyz$x(first)zyx

is equivalent to the command

set a xyz87zyx

If the variable index has the value 14, then the command

set a xyz$x($index)zyx

is equivalent to the command

set a xyzmorezyx

For more information on arrays, see VARIABLES AND ARRAYS below.

The second special form for variables occurs when the dollar sign is followed by an open curly brace. In
this case the variable name consists of all the characters up to the next curly brace. Array references are not
possible in this form: the name between braces is assumed to refer to a scalar variable. For example, if
variable foo has the value test, then the command

set a abc${foo}bar

is equivalent to the command

set a abctestbar

4

Tcl(3) Tcl(3)

Variable substitution does not occur in arguments that are enclosed in braces: the dollar sign and variable
name are passed through to the argument verbatim.

The dollar sign abbreviation is simply a shorthand form. $a is completely equivalent to [set a]; it is pro-
vided as a convenience to reduce typing.

SEPARATING COMMANDS WITH SEMI-COLONS
Normally, each command occupies one line (the command is terminated by a newline character). However,
semi-colon (‘‘;’’) is treated as a command separator character; multiple commands may be placed on one
line by separating them with a semi-colon. Semi-colons are not treated as command separators if they
appear within curly braces or double-quotes.

BACKSLASH SUBSTITUTION
Backslashes may be used to insert non-printing characters into command fields and also to insert special
characters like braces and brackets into fields without them being interpreted specially as described above.
The backslash sequences understood by the Tcl interpreter are listed below. In each case, the backslash
sequence is replaced by the given character:

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\{ Left brace (‘‘{’’).

\} Right brace (‘‘}’’).

\[Open bracket (‘‘[’’).

\] Close bracket (‘‘]’’).

\$ Dollar sign (‘‘$’’).

\<space> Space (‘‘ ’’): doesn’t terminate argument.

\; Semi-colon: doesn’t terminate command.

\" Double-quote.

\<newline> Nothing: this joins two lines together into a single line. This backslash feature is
unique in that it will be applied even when the sequence occurs within braces.

\\ Backslash (‘‘\’’).

\ddd The digits ddd (one, two, or three of them) give the octal value of the character.
Null characters may not be embedded in command fields; if ddd is zero then the
backslash sequence is ignored (i.e. it maps to an empty string).

For example, in the command

set a \{x\[\ yz\141

the second argument to set will be ‘‘{x[yza’’.

If a backslash is followed by something other than one of the options described above, then the backslash is
transmitted to the argument field without any special processing, and the Tcl scanner continues normal pro-
cessing with the next character. For example, in the command

5

Tcl(3) Tcl(3)

set *a \\\{foo

The first argument to set will be *a and the second argument will be \{foo.

If an argument is enclosed in braces, then backslash sequences inside the argument are parsed but no substi-
tution occurs (except for backslash-newline): the backslash sequence is passed through to the argument as
is, without making any special interpretation of the characters in the backslash sequence. In particular,
backslashed braces are not counted in locating the matching right brace that terminates the argument. For
example, in the command

set a {\{abc}

the second argument to set will be \{abc.

This backslash mechanism is not sufficient to generate absolutely any argument structure; it only covers the
most common cases. To produce particularly complicated arguments it is probably easiest to use the for-
mat command along with command substitution.

COMMAND SUMMARY
[1] A command is just a string.

[2] Within a string commands are separated by newlines or semi-colons (unless the newline or semi-
colon is within braces or brackets or is backslashed).

[3] A command consists of fields. The first field is the name of the command. The other fields are
strings that are passed to that command as arguments.

[4] Fields are normally separated by white space.

[5] Double-quotes allow white space and semi-colons to appear within a single argument. Command
substitution, variable substitution, and backslash substitution still occur inside quotes.

[6] Braces defer interpretation of special characters. If a field begins with a left brace, then it consists
of everything between the left brace and the matching right brace. The braces themselves are not
included in the argument. No further processing is done on the information between the braces
except that backslash-newline sequences are eliminated.

[7] If a field doesn’t begin with a brace then backslash, variable, and command substitution are done
on the field. Only a single level of processing is done: the results of one substitution are not
scanned again for further substitutions or any other special treatment. Substitution can occur on
any field of a command, including the command name as well as the arguments.

[8] If the first non-blank character of a command is a #, everything from the # up through the next
newline is treated as a comment and ignored.

EXPRESSIONS
The second major interpretation applied to strings in Tcl is as expressions. Several commands, such as
expr, for, and if, treat one or more of their arguments as expressions and call the Tcl expression processors
(Tcl_ExprLong, Tcl_ExprBoolean, etc.) to evaluate them. The operators permitted in Tcl expressions are
a subset of the operators permitted in C expressions, and they hav e the same meaning and precedence as the
corresponding C operators. Expressions almost always yield numeric results (integer or floating-point val-
ues). For example, the expression

8.2 + 6

evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands are specified, and in
that Tcl expressions support non-numeric operands and string comparisons.

A Tcl expression consists of a combination of operands, operators, and parentheses. White space may be

6

Tcl(3) Tcl(3)

used between the operands and operators and parentheses; it is ignored by the expression processor. Where
possible, operands are interpreted as integer values. Integer values may be specified in decimal (the normal
case), in octal (if the first character of the operand is 0), or in hexadecimal (if the first two characters of the
operand are 0x). If an operand does not have one of the integer formats given above, then it is treated as a
floating-point number if that is possible. Floating-point numbers may be specified in any of the ways
accepted by an ANSI-compliant C compiler (except that the ‘‘f ’’, ‘‘F’’, ‘‘l’’, and ‘‘L’’ suffixes will not be
permitted in most installations). For example, all of the following are valid floating-point numbers: 2.1, 3.,
6e4, 7.91e+16. If no numeric interpretation is possible, then an operand is left as a string (and only a lim-
ited set of operators may be applied to it).

Operands may be specified in any of the following ways:

[1] As an numeric value, either integer or floating-point.

[2] As a Tcl variable, using standard $ notation. The variable’s value will be used as the operand.

[3] As a string enclosed in double-quotes. The expression parser will perform backslash, variable, and
command substitutions on the information between the quotes, and use the resulting value as the
operand

[4] As a string enclosed in braces. The characters between the open brace and matching close brace
will be used as the operand without any substitutions.

[5] As a Tcl command enclosed in brackets. The command will be executed and its result will be
used as the operand.

Where substitutions occur above (e.g. inside quoted strings), they are performed by the expression proces-
sor. Howev er, an additional layer of substitution may already have been performed by the command parser
before the expression processor was called. As discussed below, it is usually best to enclose expressions in
braces to prevent the command parser from performing substitutions on the contents.

For some examples of simple expressions, suppose the variable a has the value 3 and the variable b has the
value 6. Then the expression on the left side of each of the lines below will evaluate to the value on the
right side of the line:

3.1 + $a 6.1
2 + "$a.$b" 5.6
4*[llength "6 2"] 8
{word one} < "word $a" 0

The valid operators are listed below, grouped in decreasing order of precedence:

− ˜ ! Unary minus, bit-wise NOT, logical NOT. None of these operands may be applied
to string operands, and bit-wise NOT may be applied only to integers.

* / % Multiply, divide, remainder. None of these operands may be applied to string
operands, and remainder may be applied only to integers.

+ − Add and subtract. Valid for any numeric operands.

<< >> Left and right shift. Valid for integer operands only.

< > <= >= Boolean less, greater, less than or equal, and greater than or equal. Each operator
produces 1 if the condition is true, 0 otherwise. These operators may be applied to
strings as well as numeric operands, in which case string comparison is used.

== != Boolean equal and not equal. Each operator produces a zero/one result. Valid for
all operand types.

& Bit-wise AND. Valid for integer operands only.

7

Tcl(3) Tcl(3)

ˆ Bit-wise exclusive OR. Valid for integer operands only.

| Bit-wise OR. Valid for integer operands only.

&& Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise.
Valid for numeric operands only (integers or floating-point).

|| Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for
numeric operands only (integers or floating-point).

x?y:z If-then-else, as in C. If x evaluates to non-zero, then the result is the value of y.
Otherwise the result is the value of z. The x operand must have a numeric value.

See the C manual for more details on the results produced by each operator. All of the binary operators
group left-to-right within the same precedence level. For example, the expression

4*2 < 7

evaluates to 0.

The &&, ||, and ?: operators have ‘‘lazy evaluation’’, just as in C, which means that operands are not evalu-
ated if they are not needed to determine the outcome. For example, in

$v ? [a] : [b]

only one of [a] or [b] will actually be evaluated, depending on the value of $v.

All internal computations involving integers are done with the C type long, and all internal computations
involving floating-point are done with the C type double. When converting a string to floating-point, expo-
nent overflow is detected and results in a Tcl error. For conversion to integer from string, detection of over-
flow depends on the behavior of some routines in the local C library, so it should be regarded as unreliable.
In any case, overflow and underflow are generally not detected reliably for intermediate results.

Conversion among internal representations for integer, floating-point, and string operands is done automati-
cally as needed. For arithmetic computations, integers are used until some floating-point number is intro-
duced, after which floating-point is used. For example,

5 / 4

yields the result 1, while

5 / 4.0
5 / ([string length "abcd"] + 0.0)

both yield the result 1.25.

String values may be used as operands of the comparison operators, although the expression evaluator tries
to do comparisons as integer or floating-point when it can. If one of the operands of a comparison is a
string and the other has a numeric value, the numeric operand is converted back to a string using the C
sprintf format specifier %d for integers and %g for floating-point values. For example, the expressions

"0x03" > "2"
"0y" < "0x12"

both evaluate to 1. The first comparison is done using integer comparison, and the second is done using


























































string comparison after the second operand is converted to the string ‘‘18’’.

In general it is safest to enclose an expression in braces when entering it in a command: otherwise, if the
expression contains any white space then the Tcl interpreter will split it among several arguments. For
example, the command

8

Tcl(3) Tcl(3)

expr $a + $b

results in three arguments being passed to expr: $a, +, and $b. In addition, if the expression isn’t in braces
then the Tcl interpreter will perform variable and command substitution immediately (it will happen in the
command parser rather than in the expression parser). In many cases the expression is being passed to a
command that will evaluate the expression later (or even many times if, for example, the expression is to be
used to decide when to exit a loop). Usually the desired goal is to re-do the variable or command substitu-
tions each time the expression is evaluated, rather than once and for all at the beginning. For example, the
command

for {set i 1} $i<=10 {incr i} {...} *** WRONG ***

is probably intended to iterate over all values of i from 1 to 10. After each iteration of the body of the loop,
for will pass its second argument to the expression evaluator to see whether or not to continue processing.
Unfortunately, in this case the value of i in the second argument will be substituted once and for all when
the for command is parsed. If i was 0 before the for command was invoked then for’s second argument
will be 0<=10 which will always evaluate to 1, even though i’s value eventually becomes greater than 10.
In the above case the loop will never terminate. Instead, the expression should be placed in braces:

for {set i 1} {$i<=10} {incr i} {...} *** RIGHT ***

This causes the substitution of i’s value to be delayed; it will be re-done each time the expression is evalu-
ated, which is the desired result.

LISTS
The third major way that strings are interpreted in Tcl is as lists. A list is just a string with a list-like struc-
ture consisting of fields separated by white space. For example, the string

Al Sue Anne John

is a list with four elements or fields. Lists have the same basic structure as command strings, except that a
newline character in a list is treated as a field separator just like space or tab. Conventions for braces and
quotes and backslashes are the same for lists as for commands. For example, the string

a b\ c {d e {f g h}}

is a list with three elements: a, b c, and d e {f g h}. Whenever an element is extracted from a list, the same
rules about braces and quotes and backslashes are applied as for commands. Thus in the example above
when the third element is extracted from the list, the result is

d e {f g h}

(when the field was extracted, all that happened was to strip off the outermost layer of braces). Command
substitution and variable substitution are never made on a list (at least, not by the list-processing com-
mands; the list can always be passed to the Tcl interpreter for evaluation).

The Tcl commands concat, foreach, lappend, lindex, linsert, list, llength, lrange, lreplace, lsearch, and



lsort allow you to build lists, extract elements from them, search them, and perform other list-related func-
tions.

REGULAR EXPRESSIONS
Tcl provides two commands that support string matching using egrep-style regular expressions: regexp and
regsub. Regular expressions are implemented using Henry Spencer’s package, and the description of regu-
lar expressions below is copied verbatim from his manual entry.

A regular expression is zero or more branches, separated by ‘‘|’’. It matches anything that matches one of

9

Tcl(3) Tcl(3)

the branches.

A branch is zero or more pieces, concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is an atom possibly followed by ‘‘*’’, ‘‘+’’, or ‘‘?’’. An atom followed by ‘‘*’’ matches a sequence
of 0 or more matches of the atom. An atom followed by ‘‘+’’ matches a sequence of 1 or more matches of
the atom. An atom followed by ‘‘?’’ matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expression), a range (see
below), ‘‘.’’ (matching any single character), ‘‘ˆ’’ (matching the null string at the beginning of the input
string), ‘‘$’’ (matching the null string at the end of the input string), a ‘‘\’’ followed by a single character
(matching that character), or a single character with no other significance (matching that character).

A range is a sequence of characters enclosed in ‘‘[]’’. It normally matches any single character from the
sequence. If the sequence begins with ‘‘ˆ’’, it matches any single character not from the rest of the
sequence. If two characters in the sequence are separated by ‘‘−’’, this is shorthand for the full list of
ASCII characters between them (e.g. ‘‘[0-9]’’ matches any decimal digit). To include a literal ‘‘]’’ in the
sequence, make it the first character (following a possible ‘‘ˆ’’). To include a literal ‘‘−’’, make it the first or
last character.

If a regular expression could match two different parts of a string, it will match the one which begins earli-
est. If both begin in the same place but match different lengths, or match the same length in different ways,
life gets messier, as follows.

In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for
‘‘*’’, ‘‘+’’, and ‘‘?’’ are considered longest-first, nested constructs are considered from the outermost in, and
concatenated constructs are considered leftmost-first. The match that will be chosen is the one that uses the
earliest possibility in the first choice that has to be made. If there is more than one choice, the next will be
made in the same manner (earliest possibility) subject to the decision on the first choice. And so forth.

For example, ‘‘(ab|a)b*c’’ could match ‘‘abc’’ in one of two ways. The first choice is between ‘‘ab’’ and
‘‘a’’; since ‘‘ab’’ is earlier, and does lead to a successful overall match, it is chosen. Since the ‘‘b’’ is
already spoken for, the ‘‘b*’’ must match its last possibility—the empty string—since it must respect the
earlier choice.

In the particular case where no ‘‘|’’s are present and there is only one ‘‘*’’, ‘‘+’’, or ‘‘?’’, the net effect is
that the longest possible match will be chosen. So ‘‘ab*’’, presented with ‘‘xabbbby’’, will match ‘‘abbbb’’.
Note that if ‘‘ab*’’ is tried against ‘‘xabyabbbz’’, it will match ‘‘ab’’ just after ‘‘x’’, due to the begins-earli-
est rule. (In effect, the decision on where to start the match is the first choice to be made, hence subsequent













































choices must respect it even if this leads them to less-preferred alternatives.)

COMMAND RESULTS
Each command produces two results: a code and a string. The code indicates whether the command com-
pleted successfully or not, and the string gives additional information. The valid codes are defined in tcl.h,
and are:

TCL_OK This is the normal return code, and indicates that the command com-
pleted successfully. The string gives the command’s return value.

TCL_ERROR Indicates that an error occurred; the string gives a message describing the
error. In addition, the global variable errorInfo will contain human-read-
able information describing which commands and procedures were being
executed when the error occurred, and the global variable errorCode will
contain machine-readable details about the error, if they are available.















See the section BUILT-IN VARIABLES below for more information.

TCL_RETURN Indicates that the return command has been invoked, and that the current
procedure (or top-level command or source command) should return

10

Tcl(3) Tcl(3)

immediately. The string gives the return value for the procedure or com-
mand.

TCL_BREAK Indicates that the break command has been invoked, so the innermost
loop should abort immediately. The string should always be empty.

TCL_CONTINUE Indicates that the continue command has been invoked, so the innermost
loop should go on to the next iteration. The string should always be
empty.

Tcl programmers do not normally need to think about return codes, since TCL_OK is almost always
returned. If anything else is returned by a command, then the Tcl interpreter immediately stops processing
commands and returns to its caller. If there are several nested invocations of the Tcl interpreter in progress,
then each nested command will usually return the error to its caller, until eventually the error is reported to
the top-level application code. The application will then display the error message for the user.

In a few cases, some commands will handle certain ‘‘error’’ conditions themselves and not return them
upwards. For example, the for command checks for the TCL_BREAK code; if it occurs, then for stops
executing the body of the loop and returns TCL_OK to its caller. The for command also handles
TCL_CONTINUE codes and the procedure interpreter handles TCL_RETURN codes. The catch com-
mand allows Tcl programs to catch errors and handle them without aborting command interpretation any
further.

PROCEDURES
Tcl allows you to extend the command interface by defining procedures. A Tcl procedure can be invoked
just like any other Tcl command (it has a name and it receives one or more arguments). The only difference
is that its body isn’t a piece of C code linked into the program; it is a string containing one or more other
Tcl commands. See the proc command for information on how to define procedures and what happens
when they are invoked.

VARIABLES − SCALARS AND ARRAYS
Tcl allows the definition of variables and the use of their values either through $-style variable substitution,
the set command, or a few other mechanisms. Variables need not be declared: a new variable will auto-
matically be created each time a new variable name is used.

Tcl supports two types of variables: scalars and arrays. A scalar variable has a single value, whereas an
array variable can have any number of elements, each with a name (called its ‘‘index’’) and a value. Array
indexes may be arbitrary strings; they need not be numeric. Parentheses are used refer to array elements in
Tcl commands. For example, the command

set x(first) 44

will modify the element of x whose index is first so that its new value is 44. Two-dimensional arrays can
be simulated in Tcl by using indexes that contain multiple concatenated values. For example, the com-
mands

set a(2,3) 1
set a(3,6) 2

set the elements of a whose indexes are 2,3 and 3,6.

In general, array elements may be used anywhere in Tcl that scalar variables may be used. If an array is
defined with a particular name, then there may not be a scalar variable with the same name. Similarly, if
there is a scalar variable with a particular name then it is not possible to make array references to the vari-
able. To convert a scalar variable to an array or vice versa, remove the existing variable with the unset
command.

11

Tcl(3) Tcl(3)

The array command provides several features for dealing with arrays, such as querying the names of all the



elements of the array and searching through the array one element at a time.

Variables may be either global or local. If a variable name is used when a procedure isn’t being executed,
then it automatically refers to a global variable. Variable names used within a procedure normally refer to
local variables associated with that invocation of the procedure. Local variables are deleted whenever a
procedure exits. The global command may be used to request that a name refer to a global variable for the
duration of the current procedure (this is somewhat analogous to extern in C).

BUILT-IN COMMANDS
The Tcl library provides the following built-in commands, which will be available in any application using
Tcl. In addition to these built-in commands, there may be additional commands defined by each applica-
tion, plus commands defined as Tcl procedures. In the command syntax descriptions below, words in bold-
face are literals that you type verbatim to Tcl. Words in italics are meta-symbols; they serve as names for
any of a range of values that you can type. Optional arguments or groups of arguments are indicated by
enclosing them in question-marks. Ellipses (‘‘...’’) indicate that any number of additional arguments or
groups of arguments may appear, in the same format as the preceding argument(s).

append varName value ?value value ...?
Append all of the value arguments to the current value of variable varName. If varName doesn’t
exist, it is given a value equal to the concatenation of all the value arguments. This command pro-
vides an efficient way to build up long variables incrementally. For example, ‘‘append a $b’’ is






much more efficient than ‘‘set a ab’’ if $a is long.

array option arrayName ?arg arg ...?
This command performs one of several operations on the variable given by arrayName. Array-
Name must be the name of an existing array variable. The option argument determines what
action is carried out by the command. The legal options (which may be abbreviated) are:

array anymore arrayName searchId
Returns 1 if there are any more elements left to be processed in an array search, 0 if all
elements have already been returned. SearchId indicates which search on arrayName to
check, and must have been the return value from a previous invocation of array start-
search. This option is particularly useful if an array has an element with an empty name,
since the return value from array nextelement won’t indicate whether the search has
been completed.

array donesearch arrayName searchId
This command terminates an array search and destroys all the state associated with that
search. SearchId indicates which search on arrayName to destroy, and must have been
the return value from a previous invocation of array startsearch. Returns an empty
string.

array names arrayName
Returns a list containing the names of all of the elements in the array. If there are no ele-
ments in the array then an empty string is returned.

array nextelement arrayName searchId
Returns the name of the next element in arrayName, or an empty string if all elements of
arrayName have already been returned in this search. The searchId argument identifies
the search, and must have been the return value of an array startsearch command.
Warning: if elements are added to or deleted from the array, then all searches are auto-
matically terminated just as if array donesearch had been invoked; this will cause array
nextelement operations to fail for those searches.

12

Tcl(3) Tcl(3)

array size arrayName
Returns a decimal string giving the number of elements in the array.

array startsearch arrayName
This command initializes an element-by-element search through the array given by array-
Name, such that invocations of the array nextelement command will return the names of
the individual elements in the array. When the search has been completed, the array
donesearch command should be invoked. The return value is a search identifier that
must be used in array nextelement and array donesearch commands; it allows multiple













searches to be underway simultaneously for the same array.

break This command may be invoked only inside the body of a loop command such as for or foreach or
while. It returns a TCL_BREAK code to signal the innermost containing loop command to return
immediately.

case string ?in? patList body ?patList body ...?

case string ?in? {patList body ?patList body ...?}
Match string against each of the patList arguments in order. If one matches, then evaluate the fol-
lowing body argument by passing it recursively to the Tcl interpreter, and return the result of that
evaluation. Each patList argument consists of a single pattern or list of patterns. Each pattern may
contain any of the wild-cards described under string match. If a patList argument is default, the
corresponding body will be evaluated if no patList matches string. If no patList argument matches
string and no default is given, then the case command returns an empty string.

Tw o syntaxes are provided. The first uses a separate argument for each of the patterns and com-
mands; this form is convenient if substitutions are desired on some of the patterns or commands.
The second form places all of the patterns and commands together into a single argument; the
argument must have proper list structure, with the elements of the list being the patterns and com-
mands. The second form makes it easy to construct multi-line case commands, since the braces
around the whole list make it unnecessary to include a backslash at the end of each line. Since the
patList arguments are in braces in the second form, no command or variable substitutions are per-
formed on them; this makes the behavior of the second form different than the first form in some
cases.

Below are some examples of case commands:

case abc in {a b} {format 1} default {format 2} a* {format 3}

will return 3,

case a in {
{a b} {format 1}
default {format 2}
a* {format 3}

}

will return 1, and

case xyz {
{a b}

{format 1}
default

{format 2}
a*

{format 3}
}

13

Tcl(3) Tcl(3)

will return 2.

catch command ?varName?
The catch command may be used to prevent errors from aborting command interpretation. Catch
calls the Tcl interpreter recursively to execute command, and always returns a TCL_OK code,
regardless of any errors that might occur while executing command. The return value from catch
is a decimal string giving the code returned by the Tcl interpreter after executing command. This
will be 0 (TCL_OK) if there were no errors in command; otherwise it will have a non-zero value
corresponding to one of the exceptional return codes (see tcl.h for the definitions of code values).
If the varName argument is given, then it gives the name of a variable; catch will set the value of
the variable to the string returned from command (either a result or an error message).

cd ?dirName?
Change the current working directory to dirName, or to the home directory (as specified in the
HOME environment variable) if dirName is not given. If dirName starts with a tilde, then tilde-
expansion is done as described for Tcl_TildeSubst. Returns an empty string. This command can
potentially be disruptive to an application, so it may be removed in some applications.

close fileId
Closes the file given by fileId. FileId must be the return value from a previous invocation of the
open command; after this command, it should not be used anymore. If fileId refers to a command
pipeline instead of a file, then close waits for the children to complete. The normal result of this
command is an empty string, but errors are returned if there are problems in closing the file or














waiting for children to complete.

concat arg ?arg ...?
This command treats each argument as a list and concatenates them into a single list. It permits
any number of arguments. For example, the command

concat a b {c d e} {f {g h}}

will return

a b c d e f {g h}

as its result.

continue
This command may be invoked only inside the body of a loop command such as for or foreach or
while. It returns a TCL_CONTINUE code to signal the innermost containing loop command to
skip the remainder of the loop’s body but continue with the next iteration of the loop.

eof fileId
Returns 1 if an end-of-file condition has occurred on fileId, 0 otherwise. FileId must have been the
return value from a previous call to open, or it may be stdin, stdout, or stderr to refer to one of





the standard I/O channels.

error message ?info? ?code?
Returns a TCL_ERROR code, which causes command interpretation to be unwound. Message is a
string that is returned to the application to indicate what went wrong.

If the info argument is provided and is non-empty, it is used to initialize the global variable error-
Info. errorInfo is used to accumulate a stack trace of what was in progress when an error
occurred; as nested commands unwind, the Tcl interpreter adds information to errorInfo. If the
info argument is present, it is used to initialize errorInfo and the first increment of unwind infor-
mation will not be added by the Tcl interpreter. In other words, the command containing the error
command will not appear in errorInfo; in its place will be info. This feature is most useful in con-
junction with the catch command: if a caught error cannot be handled successfully, info can be

14

Tcl(3) Tcl(3)

used to return a stack trace reflecting the original point of occurrence of the error:

catch {...} errMsg
set savedInfo $errorInfo
...
error $errMsg $savedInfo

If the code argument is present, then its value is stored in the errorCode global variable. This
variable is intended to hold a machine-readable description of the error in cases where such infor-
mation is available; see the section BUILT-IN VARIABLES below for information on the proper
format for the variable. If the code argument is not present, then errorCode is automatically reset








to ‘‘NONE’’ by the Tcl interpreter as part of processing the error generated by the command.

ev al arg ?arg ...?
Eval takes one or more arguments, which together comprise a Tcl command (or collection of Tcl
commands separated by newlines in the usual way). Eval concatenates all its arguments in the
same fashion as the concat command, passes the concatenated string to the Tcl interpreter recur-
sively, and returns the result of that evaluation (or any error generated by it).

exec arg ?arg ...?
This command treats its arguments as the specification of one or more UNIX commands to
execute as subprocesses. The commands take the form of a standard shell pipeline; ‘‘|’’ arguments
separate commands in the pipeline and cause standard output of the preceding command to be
piped into standard input of the next command.

Under normal conditions the result of the exec command consists of the standard output produced
by the last command in the pipeline. If any of the commands in the pipeline exit abnormally or are
killed or suspended, then exec will return an error and the error message will include the pipeline’s
output followed by error messages describing the abnormal terminations; the errorCode variable
will contain additional information about the last abnormal termination encountered. If any of the
commands writes to its standard error file, then exec will return an error, and the error message
will include the pipeline’s output, followed by messages about abnormal terminations (if any), fol-
lowed by the standard error output.

If the last character of the result or error message is a newline then that character is deleted from
the result or error message for consistency with normal Tcl return values.

If an arg has the value ‘‘>’’ then the following argument is taken as the name of a file and the stan-
dard output of the last command in the pipeline is redirected to the file. In this situation exec will
normally return an empty string.

If an arg has the value ‘‘<’’ then the following argument is taken as the name of a file to use for
standard input to the first command in the pipeline. If an argument has the value ‘‘<<’’ then the
following argument is taken as an immediate value to be passed to the first command as standard
input. If there is no ‘‘<’’ or ‘‘<<’’ argument then the standard input for the first command in the
pipeline is taken from the application’s current standard input.

If the last arg is ‘‘&’’ then the command will be executed in background. In this case the standard
output from the last command in the pipeline will go to the application’s standard output unless
redirected in the command, and error output from all the commands in the pipeline will go to the
application’s standard error file.

Each arg becomes one word for a command, except for ‘‘|’’, ‘‘<’’, ‘‘<<’’, ‘‘>’’, and ‘‘&’’ argu-
ments, and the arguments that follow ‘‘<’’, ‘‘<<’’, and ‘‘>’’. The first word in each command is
taken as the command name; tilde-substitution is performed on it, and the directories in the PATH
environment variable are searched for an executable by the given name. No ‘‘glob’’ expansion or
other shell-like substitutions are performed on the arguments to commands.

15

Tcl(3) Tcl(3)

exit ?returnCode?
Terminate the process, returning returnCode to the parent as the exit status. If returnCode isn’t





specified then it defaults to 0.

expr arg
Calls the expression processor to evaluate arg, and returns the result as a string. See the section
EXPRESSIONS above.

file option name ?arg arg ...?
Operate on a file or a file name. Name is the name of a file; if it starts with a tilde, then tilde sub-
stitution is done before executing the command (see the manual entry for Tcl_TildeSubst for
details). Option indicates what to do with the file name. Any unique abbreviation for option is
acceptable. The valid options are:

file atime name
Return a decimal string giving the time at which file name was last accessed. The time is
measured in the standard UNIX fashion as seconds from a fixed starting time (often Jan-
uary 1, 1970). If the file doesn’t exist or its access time cannot be queried then an error is
generated.

file dirname name
Return all of the characters in name up to but not including the last slash character. If
there are no slashes in name then return ‘‘.’’. If the last slash in name is its first character,
then return ‘‘/’’.

file executable name
Return 1 if file name is executable by the current user, 0 otherwise.

file exists name
Return 1 if file name exists and the current user has search privileges for the directories
leading to it, 0 otherwise.

file extension name
Return all of the characters in name after and including the last dot in name. If there is no
dot in name then return the empty string.

file isdirectory name
Return 1 if file name is a directory, 0 otherwise.

file isfile name
Return 1 if file name is a regular file, 0 otherwise.

file lstat name varName
Same as stat option (see below) except uses the lstat kernel call instead of stat. This
means that if name refers to a symbolic link the information returned in varName is for
the link rather than the file it refers to. On systems that don’t support symbolic links this
option behaves exactly the same as the stat option.

file mtime name
Return a decimal string giving the time at which file name was last modified. The time is
measured in the standard UNIX fashion as seconds from a fixed starting time (often Jan-
uary 1, 1970). If the file doesn’t exist or its modified time cannot be queried then an error
is generated.

file owned name
Return 1 if file name is owned by the current user, 0 otherwise.

file readable name
Return 1 if file name is readable by the current user, 0 otherwise.

16

Tcl(3) Tcl(3)

file readlink name
Returns the value of the symbolic link given by name (i.e. the name of the file it points
to). If name isn’t a symbolic link or its value cannot be read, then an error is returned.
On systems that don’t support symbolic links this option is undefined.

file rootname name
Return all of the characters in name up to but not including the last ‘‘.’’ character in the
name. If name doesn’t contain a dot, then return name.

file size name
Return a decimal string giving the size of file name in bytes. If the file doesn’t exist or its
size cannot be queried then an error is generated.

file stat name varName
Invoke the stat kernel call on name, and use the variable given by varName to hold infor-
mation returned from the kernel call. VarName is treated as an array variable, and the fol-
lowing elements of that variable are set: atime, ctime, dev, gid, ino, mode, mtime,
nlink, size, type, uid. Each element except type is a decimal string with the value of the
corresponding field from the stat return structure; see the manual entry for stat for details
on the meanings of the values. The type element gives the type of the file in the same
form returned by the command file type. This command returns an empty string.

file tail name
Return all of the characters in name after the last slash. If name contains no slashes then
return name.

file type name
Returns a string giving the type of file name, which will be one of file, directory, charac-
terSpecial, blockSpecial, fifo, link, or socket.

file writable name
Return 1 if file name is writable by the current user, 0 otherwise.

The file commands that return 0/1 results are often used in conditional or looping commands, for
example:

if {![file exists foo]} then {error {bad file name}} else {...}











































flush fileId
Flushes any output that has been buffered for fileId. FileId must have been the return value from a
previous call to open, or it may be stdout or stderr to access one of the standard I/O streams; it





must refer to a file that was opened for writing. This command returns an empty string.

for start test next body
For is a looping command, similar in structure to the C for statement. The start, next, and body
arguments must be Tcl command strings, and test is an expression string. The for command first
invokes the Tcl interpreter to execute start. Then it repeatedly evaluates test as an expression; if
the result is non-zero it invokes the Tcl interpreter on body, then invokes the Tcl interpreter on
next, then repeats the loop. The command terminates when test evaluates to 0. If a continue com-
mand is invoked within body then any remaining commands in the current execution of body are
skipped; processing continues by invoking the Tcl interpreter on next, then evaluating test, and so
on. If a break command is invoked within body or next, then the for command will return imme-
diately. The operation of break and continue are similar to the corresponding statements in C.
For returns an empty string.

foreach varname list body
In this command, varname is the name of a variable, list is a list of values to assign to varname,
and body is a collection of Tcl commands. For each field in list (in order from left to right),

17

Tcl(3) Tcl(3)

foreach assigns the contents of the field to varname (as if the lindex command had been used to
extract the field), then calls the Tcl interpreter to execute body. The break and continue state-
ments may be invoked inside body, with the same effect as in the for command. Foreach returns
an empty string.

format formatString ?arg arg ...?
This command generates a formatted string in the same way as the C sprintf procedure (it uses
sprintf in its implementation). FormatString indicates how to format the result, using % fields as
in sprintf, and the additional arguments, if any, provide values to be substituted into the result.
All of the sprintf options are valid; see the sprintf man page for details. Each arg must match the
expected type from the % field in formatString; the format command converts each argument to
the correct type (floating, integer, etc.) before passing it to sprintf for formatting. The only
unusual conversion is for %c; in this case the argument must be a decimal string, which will then
be converted to the corresponding ASCII character value. Format does backslash substitution on
its formatString argument, so backslash sequences in formatString will be handled correctly even
if the argument is in braces. The return value from format is the formatted string.

gets fileId ?varName?
Reads the next line from the file given by fileId and discards the terminating newline character. If
varName is specified, then the line is placed in the variable by that name and the return value is a
count of the number of characters read (not including the newline). If the end of the file is reached
before reading any characters then −1 is returned and varName is set to an empty string. If var-
Name is not specified then the return value will be the line (minus the newline character) or an
empty string if the end of the file is reached before reading any characters. An empty string will
also be returned if a line contains no characters except the newline, so eof may have to be used to
determine what really happened. If the last character in the file is not a newline character, then
gets behaves as if there were an additional newline character at the end of the file. FileId must be
stdin or the return value from a previous call to open; it must refer to a file that was opened for















reading.

glob ?−nocomplain? filename ?filename ...?
This command performs filename globbing, using csh rules. The returned value from glob is the
list of expanded filenames. If −nocomplain is specified as the first argument then an empty list
may be returned; otherwise an error is returned if the expanded list is empty. The −nocomplain





argument must be provided exactly: an abbreviation will not be accepted.

global varname ?varname ...?
This command is ignored unless a Tcl procedure is being interpreted. If so, then it declares the
given varname’s to be global variables rather than local ones. For the duration of the current pro-
cedure (and only while executing in the current procedure), any reference to any of the varnames
will be bound to a global variable instead of a local one.

history ?option? ?arg arg ...?
Note: this command may not be available in all Tcl-based applications. Typically, only those that
receive command input in a typescript form will support history. The history command performs
one of several operations related to recently-executed commands recorded in a history list. Each
of these recorded commands is referred to as an ‘‘event’’. When specifying an event to the history
command, the following forms may be used:

[1] A number: if positive, it refers to the event with that number (all events are numbered
starting at 1). If the number is negative, it selects an event relative to the current event
(−1 refers to the previous event, −2 to the one before that, and so on).

[2] A string: selects the most recent event that matches the string. An event is considered to
match the string either if the string is the same as the first characters of the event, or if the
string matches the event in the sense of the string match command.

18

Tcl(3) Tcl(3)

The history command can take any of the following forms:

history Same as history info, described below.

history add command ?exec?
Add the command argument to the history list as a new event. If exec is specified (or
abbreviated) then the command is also executed and its result is returned. If exec isn’t
specified then an empty string is returned as result.

history change newValue ?event?
Replace the value recorded for an event with newValue. Event specifies the event to
replace, and defaults to the current ev ent (not event −1). This command is intended for
use in commands that implement new forms of history substitution and wish to replace
the current event (which invokes the substitution) with the command created through sub-
stitution. The return value is an empty string.

history event ?event?
Returns the value of the event given by event. Event defaults to −1. This command
causes history revision to occur: see below for details.

history info ?count?
Returns a formatted string (intended for humans to read) giving the event number and
contents for each of the events in the history list except the current event. If count is
specified then only the most recent count ev ents are returned.

history keep count
This command may be used to change the size of the history list to count ev ents. Ini-
tially, 20 events are retained in the history list. This command returns an empty string.

history nextid
Returns the number of the next event to be recorded in the history list. It is useful for
things like printing the event number in command-line prompts.

history redo ?event?
Re-execute the command indicated by event and return its result. Event defaults to −1.
This command results in history revision: see below for details.

history substitute old new ?event?
Retrieve the command given by event (−1 by default), replace any occurrences of old by
new in the command (only simple character equality is supported; no wild cards), execute
the resulting command, and return the result of that execution. This command results in
history revision: see below for details.

history words selector ?event?
Retrieve from the command given by event (−1 by default) the words given by selector,
and return those words in a string separated by spaces. The selector argument has three
forms. If it is a single number then it selects the word given by that number (0 for the
command name, 1 for its first argument, and so on). If it consists of two numbers sepa-
rated by a dash, then it selects all the arguments between those two. Otherwise selector
is treated as a pattern; all words matching that pattern (in the sense of string match) are
returned. In the numeric forms $ may be used to select the last word of a command. For
example, suppose the most recent command in the history list is

format {%s is %d years old} Alice [expr $ageInMonths/12]

Below are some history commands and the results they would produce:

Command Result

19

Tcl(3) Tcl(3)

history words $ [expr $ageInMonths/12]
history words 1-2 {%s is %d years old} Alice
history words *a*o* {%s is %d years old} [expr $ageInMonths/12]

History words results in history revision: see below for details.
The history options ev ent, redo, substitute, and words result in ‘‘history revision’’. When one of
these options is invoked then the current event is modified to eliminate the history command and
replace it with the result of the history command. For example, suppose that the most recent com-
mand in the history list is

set a [expr $b+2]

and suppose that the next command invoked is one of the ones on the left side of the table below.
The command actually recorded in the history event will be the corresponding one on the right
side of the table.

Command Typed Command Recorded

history redo set a [expr $b+2]
history s a b set b [expr $b+2]
set c [history w 2] set c [expr $b+2]

History revision is needed because event specifiers like −1 are only valid at a particular time: once
more events have been added to the history list a different event specifier would be needed. His-
tory revision occurs even when history is invoked indirectly from the current event (e.g. a user
types a command that invokes a Tcl procedure that invokes history): the top-level command
whose execution eventually resulted in a history command is replaced. If you wish to invoke
commands like history words without history revision, you can use history event to save the cur-










rent history event and then use history change to restore it later.

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?
The if command evaluates expr1 as an expression (in the same way that expr evaluates its argu-
ment). The value of the expression must be numeric; if it is non-zero then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is non-zero
then body2 is executed, and so on. If none of the expressions evaluates to non-zero then bodyN is
executed. The then and else arguments are optional ‘‘noise words’’ to make the command easier
to read. There may be any number of elseif clauses, including zero. BodyN may also be omitted
as long as else is omitted too. The return value from the command is the result of the body script
that was executed, or an empty string if none of the expressions was non-zero and there was no












bodyN.

incr varName ?increment?
Increment the value stored in the variable whose name is varName. The value of the variable must
be integral. If increment is supplied then its value (which must be an integer) is added to the value
of variable varName; otherwise 1 is added to varName. The new value is stored as a decimal






string in variable varName and also returned as result.

info option ?arg arg ...?
Provide information about various internals to the Tcl interpreter. The legal option’s (which may
be abbreviated) are:

info args procname
Returns a list containing the names of the arguments to procedure procname, in order.
Procname must be the name of a Tcl command procedure.

20

Tcl(3) Tcl(3)

info body procname
Returns the body of procedure procname. Procname must be the name of a Tcl com-
mand procedure.

info cmdcount
Returns a count of the total number of commands that have been invoked in this inter-
preter.

info commands ?pattern?
If pattern isn’t specified, returns a list of names of all the Tcl commands, including both
the built-in commands written in C and the command procedures defined using the proc
command. If pattern is specified, only those names matching pattern are returned.
Matching is determined using the same rules as for string match.

info complete command
Returns 1 if command is a complete Tcl command in the sense of having no unclosed
quotes, braces, brackets or array element names, If the command doesn’t appear to be
complete then 0 is returned. This command is typically used in line-oriented input envi-
ronments to allow users to type in commands that span multiple lines; if the command
isn’t complete, the script can delay evaluating it until additional lines have been typed to









complete the command.

info default procname arg varname
Procname must be the name of a Tcl command procedure and arg must be the name of an
argument to that procedure. If arg doesn’t hav e a default value then the command returns
0. Otherwise it returns 1 and places the default value of arg into variable varname.

info exists varName
Returns 1 if the variable named varName exists in the current context (either as a global
or local variable), returns 0 otherwise.

info globals ?pattern?
If pattern isn’t specified, returns a list of all the names of currently-defined global vari-
ables. If pattern is specified, only those names matching pattern are returned. Matching
is determined using the same rules as for string match.

info lev el ?number?
If number is not specified, this command returns a number giving the stack level of the
invoking procedure, or 0 if the command is invoked at top-level. If number is specified,
then the result is a list consisting of the name and arguments for the procedure call at
level number on the stack. If number is positive then it selects a particular stack level (1
refers to the top-most active procedure, 2 to the procedure it called, and so on); otherwise
it gives a lev el relative to the current level (0 refers to the current procedure, -1 to its
caller, and so on). See the uplevel command for more information on what stack levels
mean.

info library
Returns the name of the library directory in which standard Tcl scripts are stored. The
default value for the library is compiled into Tcl, but it may be overridden by setting the
TCL_LIBRARY environment variable. If there is no TCL_LIBRARY variable and no





compiled-in value then and error is generated. See the library manual entry for details of
the facilities provided by the Tcl script library. Normally each application will have its
own application-specific script library in addition to the Tcl script library; I suggest that
each application set a global variable with a name like $app_library (where app is the






application’s name) to hold the location of that application’s library directory.

21

Tcl(3) Tcl(3)

info locals ?pattern?
If pattern isn’t specified, returns a list of all the names of currently-defined local vari-
ables, including arguments to the current procedure, if any. Variables defined with the




global and upvar commands will not be returned. If pattern is specified, only those
names matching pattern are returned. Matching is determined using the same rules as for
string match.

info procs ?pattern?
If pattern isn’t specified, returns a list of all the names of Tcl command procedures. If
pattern is specified, only those names matching pattern are returned. Matching is deter-
mined using the same rules as for string match.

info script
If a Tcl script file is currently being evaluated (i.e. there is a call to Tcl_EvalFile active or
there is an active inv ocation of the source command), then this command returns the
name of the innermost file being processed. Otherwise the command returns an empty






string.

info tclversion
Returns the version number for this version of Tcl in the form x.y, where changes to x
represent major changes with probable incompatibilities and changes to y represent small
enhancements and bug fixes that retain backward compatibility.

info vars ?pattern?
If pattern isn’t specified, returns a list of all the names of currently-visible variables,
including both locals and currently-visible globals. If pattern is specified, only those
names matching pattern are returned. Matching is determined using the same rules as for
string match.

join list ?joinString?
The list argument must be a valid Tcl list. This command returns the string formed by joining all
of the elements of list together with joinString separating each adjacent pair of elements. The





joinString argument defaults to a space character.

lappend varName value ?value value ...?
Treat the variable given by varName as a list and append each of the value arguments to that list as
a separate element, with spaces between elements. If varName doesn’t exist, it is created as a list
with elements given by the value arguments. Lappend is similar to append except that the values
are appended as list elements rather than raw text. This command provides a relatively efficient
way to build up large lists. For example, ‘‘lappend a $b’’ is much more efficient than ‘‘set a [con-
cat $a [list $b]]’’ when $a is long.

lindex list index
Treats list as a Tcl list and returns the index’th element from it (0 refers to the first element of the
list). In extracting the element, lindex observes the same rules concerning braces and quotes and
backslashes as the Tcl command interpreter; however, variable substitution and command substitu-
tion do not occur. If index is negative or greater than or equal to the number of elements in value,
then an empty string is returned.

linsert list index element ?element element ...?
This command produces a new list from list by inserting all of the element arguments just before
the indexth element of list. Each element argument will become a separate element of the new list.
If index is less than or equal to zero, then the new elements are inserted at the beginning of the list.
If index is greater than or equal to the number of elements in the list, then the new elements are
























appended to the list.

22

Tcl(3) Tcl(3)

list arg ?arg ...?
This command returns a list comprised of all the args. Braces and backslashes get added as neces-
sary, so that the index command may be used on the result to re-extract the original arguments,
and also so that ev al may be used to execute the resulting list, with arg1 comprising the com-
mand’s name and the other args comprising its arguments. List produces slightly different results
than concat: concat removes one level of grouping before forming the list, while list works
directly from the original arguments. For example, the command

list a b {c d e} {f {g h}}

will return

a b {c d e} {f {g h}}

while concat with the same arguments will return

a b c d e f {g h}

llength list
Treats list as a list and returns a decimal string giving the number of elements in it.

lrange list first last
List must be a valid Tcl list. This command will return a new list consisting of elements first
through last, inclusive. Last may be end (or any abbreviation of it) to refer to the last element of
the list. If first is less than zero, it is treated as if it were zero. If last is greater than or equal to the
number of elements in the list, then it is treated as if it were end. If first is greater than last then an
empty string is returned. Note: ‘‘lrange list first first’’ does not always produce the same result as
‘‘lindex list first’’ (although it often does for simple fields that aren’t enclosed in braces); it does,
however, produce exactly the same results as ‘‘list [lindex list first]’’

lreplace list first last ?element element ...?
Returns a new list formed by replacing one or more elements of list with the element arguments.
First gives the index in list of the first element to be replaced. If first is less than zero then it refers
to the first element of list; the element indicated by first must exist in the list. Last gives the index
in list of the last element to be replaced; it must be greater than or equal to first. Last may be end
(or any abbreviation of it) to indicate that all elements between first and the end of the list should
be replaced. The element arguments specify zero or more new arguments to be added to the list in
place of those that were deleted. Each element argument will become a separate element of the
list. If no element arguments are specified, then the elements between first and last are simply
deleted.

lsearch list pattern
Search the elements of list to see if one of them matches pattern. If so, the command returns the
index of the first matching element. If not, the command returns −1. Pattern matching is done in
the same way as for the string match command.

lsort list
Sort the elements of list, returning a new list in sorted order. ASCII sorting is used, with the result




































in increasing order.

open fileName ?access?
Opens a file and returns an identifier that may be used in future invocations of commands like
read, puts, and close. FileName gives the name of the file to open; if it starts with a tilde then
tilde substitution is performed as described for Tcl_TildeSubst. If the first character of fileName
is ‘‘|’’ then the remaining characters of fileName are treated as a command pipeline to invoke, in
the same style as for exec. In this case, the identifier returned by open may be used to write to the
command’s input pipe or read from its output pipe. The access argument indicates the way in

23

Tcl(3) Tcl(3)

which the file (or command pipeline) is to be accessed. It may have any of the following values:

r Open the file for reading only; the file must already exist.

r+ Open the file for both reading and writing; the file must already exist.

w Open the file for writing only. Truncate it if it exists. If it doesn’t exist, create a new file.

w+ Open the file for reading and writing. Truncate it if it exists. If it doesn’t exist, create a
new file.

a Open the file for writing only. The file must already exist, and the file is positioned so
that new data is appended to the file.

a+ Open the file for reading and writing. If the file doesn’t exist, create a new empty file.
Set the initial access position to the end of the file.

Access defaults to r. If a file is opened for both reading and writing, then seek must be invoked
between a read and a write, or vice versa (this restriction does not apply to command pipelines
opened with open). When fileName specifies a command pipeline and a write-only access is used,
then standard output from the pipeline is directed to the current standard output unless overridden
by the command. When fileName specifies a command pipeline and a read-only access is used,
then standard input from the pipeline is taken from the current standard input unless overridden by
the command.


























proc name args body
The proc command creates a new Tcl command procedure, name, replacing any existing com-
mand there may have been by that name. Whenever the new command is invoked, the contents of
body will be executed by the Tcl interpreter. Args specifies the formal arguments to the procedure.
It consists of a list, possibly empty, each of whose elements specifies one argument. Each argu-
ment specifier is also a list with either one or two fields. If there is only a single field in the speci-
fier, then it is the name of the argument; if there are two fields, then the first is the argument name
and the second is its default value. braces and backslashes may be used in the usual way to spec-
ify complex default values.

When name is invoked, a local variable will be created for each of the formal arguments to the
procedure; its value will be the value of corresponding argument in the invoking command or the
argument’s default value. Arguments with default values need not be specified in a procedure
invocation. However, there must be enough actual arguments for all the formal arguments that
don’t hav e defaults, and there must not be any extra actual arguments. There is one special case to
permit procedures with variable numbers of arguments. If the last formal argument has the name
args, then a call to the procedure may contain more actual arguments than the procedure has for-
mals. In this case, all of the actual arguments starting at the one that would be assigned to args are
combined into a list (as if the list command had been used); this combined value is assigned to the
local variable args.

When body is being executed, variable names normally refer to local variables, which are created
automatically when referenced and deleted when the procedure returns. One local variable is
automatically created for each of the procedure’s arguments. Global variables can only be
accessed by invoking the global command.

The proc command returns the null string. When a procedure is invoked, the procedure’s return
value is the value specified in a return command. If the procedure doesn’t execute an explicit
return, then its return value is the value of the last command executed in the procedure’s body. If
an error occurs while executing the procedure body, then the procedure-as-a-whole will return that
same error.

puts ?−nonewline? ?fileId? string
Writes the characters given by string to the file given by fileId. FileId must have been the return
value from a previous call to open, or it may be stdout or stderr to refer to one of the standard I/O

24

Tcl(3) Tcl(3)

channels; it must refer to a file that was opened for writing. If no fileId is specified then it defaults
to stdout. Puts normally outputs a newline character after string, but this feature may be sup-




pressed by specifying the −nonewline switch. Output to files is buffered internally by Tcl; the
flush command may be used to force buffered characters to be output.

pwd
Returns the path name of the current working directory.

read ?−nonewline? fileId

read fileId numBytes
In the first form, all of the remaining bytes are read from the file given by fileId; they are returned
as the result of the command. If the −nonewline switch is specified then the last character of the







file is discarded if it is a newline. In the second form, the extra argument specifies how many
bytes to read; exactly this many bytes will be read and returned, unless there are fewer than num-
Bytes bytes left in the file; in this case, all the remaining bytes are returned. FileId must be stdin
or the return value from a previous call to open; it must refer to a file that was opened for reading.

regexp ?−indices? ?−nocase? exp string ?matchVar? ?subMatchVar subMatchVar ...?
Determines whether the regular expression exp matches part or all of string and returns 1 if it does,
0 if it doesn’t. See REGULAR EXPRESSIONS above for complete information on the syntax of
exp and how it is matched against string.

If the −nocase switch is specified then upper-case characters in string are treated as lower case
during the matching process. The −nocase switch must be specified before exp and may not be
abbreviated.

If additional arguments are specified after string then they are treated as the names of variables to
use to return information about which part(s) of string matched exp. MatchVar will be set to the
range of string that matched all of exp. The first subMatchVar will contain the characters in string
that matched the leftmost parenthesized subexpression within exp, the next subMatchVar will con-
tain the characters that matched the next parenthesized subexpression to the right in exp, and so
on.

Normally, matchVar and the subMatchVars are set to hold the matching characters from string.
However, if the −indices switch is specified then each variable will contain a list of two decimal
strings giving the indices in string of the first and last characters in the matching range of charac-
ters. The −indices switch must be specified before the exp argument and may not be abbreviated.

If there are more subMatchVar’s than parenthesized subexpressions within exp, or if a particular
subexpression in exp doesn’t match the string (e.g. because it was in a portion of the expression
that wasn’t matched), then the corresponding subMatchVar will be set to ‘‘−1 −1’’ if −indices has
been specified or to an empty string otherwise.

regsub ?−all? ?−nocase? exp string subSpec varName
This command matches the regular expression exp against string using the rules described in
REGULAR EXPRESSIONS above. If there is no match, then the command returns 0 and does
nothing else. If there is a match, then the command returns 1 and also copies string to the variable
whose name is given by varName. When copying string, the portion of string that matched exp is
replaced with subSpec. If subSpec contains a ‘‘&’’ or ‘‘\0’’, then it is replaced in the substitution
with the portion of string that matched exp. If subSpec contains a ‘‘\n’’, where n is a digit between
1 and 9, then it is replaced in the substitution with the portion of string that matched the n-th
parenthesized subexpression of exp. Additional backslashes may be used in subSpec to prevent
special interpretation of ‘‘&’’ or ‘‘\0’’ or ‘‘\n’’ or backslash. The use of backslashes in subSpec
tends to interact badly with the Tcl parser’s use of backslashes, so it’s generally safest to enclose
subSpec in braces if it includes backslashes. If the −all argument is specified, then all ranges in
string that match exp are found and substitution is performed for each of these ranges; otherwise
only the first matching range is found and substituted. If −all is specified, then ‘‘&’’ and ‘‘\n’’

25

Tcl(3) Tcl(3)

sequences are handled for each substitution using the information from the corresponding match.
If the −nocase argument is specified, then upper-case characters in string are converted to lower-
case before matching against exp; howev er, substitutions specified by subSpec use the original
unconverted form of string. The −all and −nocase arguments must be specified exactly: no abbre-





viations are permitted.

rename oldName newName
Rename the command that used to be called oldName so that it is now called newName. If new-
Name is an empty string (e.g. {}) then oldName is deleted. The rename command returns an
empty string as result.

return ?value?
Return immediately from the current procedure (or top-level command or source command), with
value as the return value. If value is not specified, an empty string will be returned as result.

scan string format varname1 ?varname2 ...?
This command parses fields from an input string in the same fashion as the C sscanf procedure.
String gives the input to be parsed and format indicates how to parse it, using % fields as in
sscanf. All of the sscanf options are valid; see the sscanf man page for details. Each varname
gives the name of a variable; when a field is scanned from string, the result is converted back into
a string and assigned to the corresponding varname. The only unusual conversion is for %c. For
%c conversions a single character value is converted to a decimal string, which is then assigned to
the corresponding varname; no field width may be specified for this conversion.

seek fileId offset ?origin?
Change the current access position for fileId. The offset and origin arguments specify the position
at which the next read or write will occur for fileId. Offset must be a number (which may be neg-
ative) and origin must be one of the following:

start The new access position will be offset bytes from the start of the file.

current
The new access position will be offset bytes from the current access position; a negative
offset moves the access position backwards in the file.

end The new access position will be offset bytes from the end of the file. A neg ative offset
places the access position before the end-of-file, and a positive offset places the access
position after the end-of-file.

The origin argument defaults to start. FileId must have been the return value from a previous call
to open, or it may be stdin, stdout, or stderr to refer to one of the standard I/O channels. This
command returns an empty string.























set varname ?value?
Returns the value of variable varname. If value is specified, then set the value of varname to
value, creating a new variable if one doesn’t already exist, and return its value. If varName con-
tains an open parenthesis and ends with a close parenthesis, then it refers to an array element: the
characters before the open parenthesis are the name of the array, and the characters between the






parentheses are the index within the array. Otherwise varName refers to a scalar variable. If no
procedure is active, then varname refers to a global variable. If a procedure is active, then var-
name refers to a parameter or local variable of the procedure, unless the global command has been
invoked to declare varname to be global.

source fileName
Read file fileName and pass the contents to the Tcl interpreter as a sequence of commands to
execute in the normal fashion. The return value of source is the return value of the last command
executed from the file. If an error occurs in executing the contents of the file, then the source
command will return that error. If a return command is invoked from within the file, the remain-
der of the file will be skipped and the source command will return normally with the result from

26

Tcl(3) Tcl(3)

the return command. If fileName starts with a tilde, then it is tilde-substituted as described in the
Tcl_TildeSubst manual entry.

split string ?splitChars?
Returns a list created by splitting string at each character that is in the splitChars argument. Each
element of the result list will consist of the characters from string between instances of the charac-
ters in splitChars. Empty list elements will be generated if string contains adjacent characters in
splitChars, or if the first or last character of string is in splitChars. If splitChars is an empty string
then each character of string becomes a separate element of the result list. SplitChars defaults to
the standard white-space characters. For example,

split "comp.unix.misc" .

returns "comp unix misc" and

split "Hello world" {}





























returns "H e l l o { } w o r l d".

string option arg ?arg ...?
Perform one of several string operations, depending on option. The legal options (which may be
abbreviated) are:

string compare string1 string2
Perform a character-by-character comparison of strings string1 and string2 in the same
way as the C strcmp procedure. Return -1, 0, or 1, depending on whether string1 is lexi-
cographically less than, equal to, or greater than string2.

string first string1 string2
Search string2 for a sequence of characters that exactly match the characters in string1.
If found, return the index of the first character in the first such match within string2. If
not found, return -1.

string index string charIndex
Returns the charIndex’th character of the string argument. A charIndex of 0 corresponds
to the first character of the string. If charIndex is less than 0 or greater than or equal to







the length of the string then an empty string is returned.

string last string1 string2
Search string2 for a sequence of characters that exactly match the characters in string1.
If found, return the index of the first character in the last such match within string2. If
there is no match, then return −1.

string length string



Returns a decimal string giving the number of characters in string.

string match pattern string
See if pattern matches string; return 1 if it does, 0 if it doesn’t. Matching is done in a
fashion similar to that used by the C-shell. For the two strings to match, their contents
must be identical except that the following special sequences may appear in pattern:

* Matches any sequence of characters in string, including a null string.

? Matches any single character in string.

[chars] Matches any character in the set given by chars. If a sequence of the form
x−y appears in chars, then any character between x and y, inclusive, will
match.

\x Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[]\ in pattern.

27

Tcl(3) Tcl(3)

string range string first last
Returns a range of consecutive characters from string, starting with the character whose
index is first and ending with the character whose index is last. An index of 0 refers to
the first character of the string. Last may be end (or any abbreviation of it) to refer to the
last character of the string. If first is less than zero then it is treated as if it were zero, and
if last is greater than or equal to the length of the string then it is treated as if it were end.
If first is greater than last then an empty string is returned.

string tolower string
Returns a value equal to string except that all upper case letters have been converted to
lower case.

string toupper string
Returns a value equal to string except that all lower case letters have been converted to
upper case.

string trim string ?chars?
Returns a value equal to string except that any leading or trailing characters from the set
given by chars are removed. If chars is not specified then white space is removed
(spaces, tabs, newlines, and carriage returns).

string trimleft string ?chars?
Returns a value equal to string except that any leading characters from the set given by
chars are removed. If chars is not specified then white space is removed (spaces, tabs,
newlines, and carriage returns).

string trimright string ?chars?
Returns a value equal to string except that any trailing characters from the set given by
chars are removed. If chars is not specified then white space is removed (spaces, tabs,
newlines, and carriage returns).

tell fileId
Returns a decimal string giving the current access position in fileId. FileId must have been the
return value from a previous call to open, or it may be stdin, stdout, or stderr to refer to one of







































the standard I/O channels.

time command ?count?
This command will call the Tcl interpreter count times to execute command (or once if count isn’t
specified). It will then return a string of the form

503 microseconds per iteration

which indicates the average amount of time required per iteration, in microseconds. Time is mea-
sured in elapsed time, not CPU time.

trace option ?arg arg ...?
Cause Tcl commands to be executed whenever certain operations are invoked. At present, only
variable tracing is implemented. The legal option’s (which may be abbreviated) are:

trace variable name ops command
Arrange for command to be executed whenever variable name is accessed in one of the
ways given by ops. Name may refer to a normal variable, an element of an array, or to an
array as a whole (i.e. name may be just the name of an array, with no parenthesized
index). If name refers to a whole array, then command is invoked whenever any element
of the array is manipulated.

Ops indicates which operations are of interest, and consists of one or more of the follow-
ing letters:

28

Tcl(3) Tcl(3)

r Invoke command whenever the variable is read.

w Invoke command whenever the variable is written.

u Invoke command whenever the variable is unset. Variables can be
unset explicitly with the unset command, or implicitly when proce-
dures return (all of their local variables are unset). Variables are also
unset when interpreters are deleted, but traces will not be invoked
because there is no interpreter in which to execute them.

When the trace triggers, three arguments are appended to command so that the actual
command is as follows:

command name1 name2 op

Name1 and name2 give the name(s) for the variable being accessed: if the variable is a
scalar then name1 gives the variable’s name and name2 is an empty string; if the variable
is an array element then name1 gives the name of the array and name2 gives the index
into the array; if an entire array is being deleted and the trace was registered on the over-
all array, rather than a single element, then name1 gives the array name and name2 is an
empty string. Op indicates what operation is being performed on the variable, and is one
of r, w, or u as defined above.

Command executes in the same context as the code that invoked the traced operation: if
the variable was accessed as part of a Tcl procedure, then command will have access to
the same local variables as code in the procedure. This context may be different than the
context in which the trace was created. If command invokes a procedure (which it nor-
mally does) then the procedure will have to use upvar or uplevel if it wishes to access
the traced variable. Note also that name1 may not necessarily be the same as the name
used to set the trace on the variable; differences can occur if the access is made through a
variable defined with the upvar command.

For read and write traces, command can modify the variable to affect the result of the
traced operation. If command modifies the value of a variable during a read or write
trace, then the new value will be returned as the result of the traced operation. The return
value from command is ignored except that if it returns an error of any sort then the
traced operation is aborted with an error message saying that the access was denied (this
mechanism can be used to implement read-only variables, for example). For write traces,
command is invoked after the variable’s value has been changed; it can write a new value
into the variable to override the original value specified in the write operation. To imple-
ment read-only variables, command will have to restore the old value of the variable.

While command is executing during a read or write trace, traces on the variable are tem-
porarily disabled. This means that reads and writes invoked by command will occur
directly, without invoking command (or any other traces) again.

When an unset trace is invoked, the variable has already been deleted: it will appear to be
undefined with no traces. If an unset occurs because of a procedure return, then the trace
will be invoked in the variable context of the procedure being returned to: the stack
frame of the returning procedure will no longer exist. Traces are not disabled during
unset traces, so if an unset trace command creates a new trace and accesses the variable,
the trace will be invoked.

If there are multiple traces on a variable they are invoked in order of creation, most-recent
first. If one trace returns an error, then no further traces are invoked for the variable. If
an array element has a trace set, and there is also a trace set on the array as a whole, the
trace on the overall array is invoked before the one on the element.

Once created, the trace remains in effect either until the trace is removed with the trace

29

Tcl(3) Tcl(3)

vdelete command described below, until the variable is unset, or until the interpreter is
deleted. Unsetting an element of array will remove any traces on that element, but will
not remove traces on the overall array.

This command returns an empty string.

trace vdelete name ops command
If there is a trace set on variable name with the operations and command given by ops
and command, then the trace is removed, so that command will never again be invoked.
Returns an empty string.

trace vinfo name
Returns a list containing one element for each trace currently set on variable name. Each
element of the list is itself a list containing two elements, which are the ops and command
associated with the trace. If name doesn’t exist or doesn’t hav e any traces set, then the
result of the command will be an empty string.

unknown cmdName ?arg arg ...?
This command doesn’t actually exist as part of Tcl, but Tcl will invoke it if it does exist. If the Tcl
interpreter encounters a command name for which there is not a defined command, then Tcl
checks for the existence of a command named unknown. If there is no such command, then the
interpeter returns an error. If the unknown command exists, then it is invoked with arguments
consisting of the fully-substituted name and arguments for the original non-existent command.
The unknown command typically does things like searching through library directories for a com-
mand procedure with the name cmdName, or expanding abbreviated command names to full-
length, or automatically executing unknown commands as UNIX sub-processes. In some cases
(such as expanding abbreviations) unknown will change the original command slightly and then
(re-)execute it. The result of the unknown command is used as the result for the original non-
existent command.

unset name ?name name ...?
Remove one or more variables. Each name is a variable name, specified in any of the ways
acceptable to the set command. If a name refers to an element of an array, then that element is
removed without affecting the rest of the array. If a name consists of an array name with no paren-
thesized index, then the entire array is deleted. The unset command returns an empty string as









































result. An error occurs if any of the variables doesn’t exist.

uplevel ?level? command ?command ...?
All of the command arguments are concatenated as if they had been passed to concat; the result is
then evaluated in the variable context indicated by level. Uplevel returns the result of that evalua-
tion. If level is an integer, then it gives a distance (up the procedure calling stack) to move before
executing the command. If level consists of # followed by a number then the number gives an
absolute level number. If level is omitted then it defaults to 1. Level cannot be defaulted if the first
command argument starts with a digit or #. For example, suppose that procedure a was inv oked
from top-level, and that it called b, and that b called c. Suppose that c invokes the uplevel com-
mand. If level is 1 or #2 or omitted, then the command will be executed in the variable context of
b. If level is 2 or #1 then the command will be executed in the variable context of a. If level is 3
or #0 then the command will be executed at top-level (only global variables will be visible). The
uplevel command causes the invoking procedure to disappear from the procedure calling stack
while the command is being executed. In the above example, suppose c invokes the command

uplevel 1 {set x 43; d}

where d is another Tcl procedure. The set command will modify the variable x in b’s context, and
d will execute at level 3, as if called from b. If it in turn executes the command

uplevel {set x 42}

30

Tcl(3) Tcl(3)

then the set command will modify the same variable x in b’s context: the procedure c does not
appear to be on the call stack when d is executing. The command ‘‘info lev el’’ may be used to
obtain the level of the current procedure. Uplevel makes it possible to implement new control
constructs as Tcl procedures (for example, uplevel could be used to implement the while construct
as a Tcl procedure).

upvar ?level? otherVar myVar ?otherVar myVar ...?
This command arranges for one or more local variables in the current procedure to refer to vari-
ables in an enclosing procedure call or to global variables. Level may have any of the forms per-
mitted for the uplevel command, and may be omitted if the first letter of the first otherVar isn’t #
or a digit (it defaults to 1). For each otherVar argument, upvar makes the variable by that name in
the procedure frame given by level (or at global level, if level is #0) accessible in the current proce-
dure by the name given in the corresponding myVar argument. The variable named by otherVar
need not exist at the time of the call; it will be created the first time myVar is referenced, just like
an ordinary variable. Upvar may only be invoked from within procedures. Neither otherVar or
myVar may refer to an element of an array. Upvar returns an empty string.

The upvar command simplifies the implementation of call-by-name procedure calling and also
makes it easier to build new control constructs as Tcl procedures. For example, consider the fol-
lowing procedure:

proc add2 name {
upvar $name x
set x [expr $x+2]

}

Add2 is invoked with an argument giving the name of a variable, and it adds two to the value of
that variable. Although add2 could have been implemented using uplevel instead of upvar,



























upvar makes it simpler for add2 to access the variable in the caller’s procedure frame.

while test body
The while command evaluates test as an expression (in the same way that expr evaluates its argu-
ment). The value of the expression must be numeric; if it is non-zero then body is executed by
passing it to the Tcl interpreter. Once body has been executed then test is evaluated again, and the
process repeats until eventually test evaluates to a zero numeric value. Continue commands may
be executed inside body to terminate the current iteration of the loop, and break commands may
be executed inside body to cause immediate termination of the while command. The while com-










mand always returns an empty string.

BUILT-IN VARIABLES
The following global variables are created and managed automatically by the Tcl library. Except where
noted below, these variables should normally be treated as read-only by application-specific code and by
users.

env
This variable is maintained by Tcl as an array whose elements are the environment variables for
the process. Reading an element will return the value of the corresponding environment variable.
Setting an element of the array will modify the corresponding environment variable or create a
new one if it doesn’t already exist. Unsetting an element of env will remove the corresponding
environment variable. Changes to the env array will affect the environment passed to children by
commands like exec. If the entire env array is unset then Tcl will stop monitoring env accesses
and will not update environment variables.

errorCode
After an error has occurred, this variable will be set to hold additional information about the error
in a form that is easy to process with programs. errorCode consists of a Tcl list with one or more

31

Tcl(3) Tcl(3)

elements. The first element of the list identifies a general class of errors, and determines the for-
mat of the rest of the list. The following formats for errorCode are used by the Tcl core; individ-
ual applications may define additional formats.

CHILDKILLED pid sigName msg
This format is used when a child process has been killed because of a signal. The second
element of errorCode will be the process’s identifier (in decimal). The third element
will be the symbolic name of the signal that caused the process to terminate; it will be
one of the names from the include file signal.h, such as SIGPIPE. The fourth element
will be a short human-readable message describing the signal, such as ‘‘write on pipe
with no readers’’ for SIGPIPE.

CHILDSTATUS pid code
This format is used when a child process has exited with a non-zero exit status. The sec-
ond element of errorCode will be the process’s identifier (in decimal) and the third ele-
ment will be the exit code returned by the process (also in decimal).

CHILDSUSP pid sigName msg
This format is used when a child process has been suspended because of a signal. The
second element of errorCode will be the process’s identifier, in decimal. The third ele-
ment will be the symbolic name of the signal that caused the process to suspend; this will
be one of the names from the include file signal.h, such as SIGTTIN. The fourth ele-
ment will be a short human-readable message describing the signal, such as ‘‘background
tty read’’ for SIGTTIN.

NONE
This format is used for errors where no additional information is available for an error
besides the message returned with the error. In these cases errorCode will consist of a
list containing a single element whose contents are NONE.

UNIX errName msg
If the first element of errorCode is UNIX, then the error occurred during a UNIX kernel
call. The second element of the list will contain the symbolic name of the error that
occurred, such as ENOENT; this will be one of the values defined in the include file
errno.h. The third element of the list will be a human-readable message corresponding to
errName, such as ‘‘no such file or directory’’ for the ENOENT case.

To set errorCode, applications should use library procedures such as Tcl_SetErrorCode and
Tcl_UnixError, or they may invoke the error command. If one of these methods hasn’t been
used, then the Tcl interpreter will reset the variable to NONE after the next error.














































errorInfo
After an error has occurred, this string will contain one or more lines identifying the Tcl com-
mands and procedures that were being executed when the most recent error occurred. Its contents
take the form of a stack trace showing the various nested Tcl commands that had been invoked at
the time of the error.

AUTHOR
John Ousterhout, University of California at Berkeley (ouster@sprite.berkeley.edu)

Many people have contributed to Tcl in various ways, but the following people have made unusually large
contributions:

Bill Carpenter
Peter Da Silva
Mark Diekhans

32

Tcl(3) Tcl(3)

Karl Lehenbauer
Mary Ann May-Pumphrey

33

