
TOFU for OpenPGP

Neal H. Walfield�,�

� Johns Hopkins

Werner Koch�

� GnuPG

ABSTRACT
We present the design and implementation of a trust-on-
first-use (TOFU) policy for OpenPGP. When an OpenPGP
user verifies a signature, TOFU checks that the signer used
the same key as in the past. If not, this is a strong indicator
that a key is a forgery and either the message is also a forgery
or an active man-in-the-middle attack (MitM) is or was un-
derway. That is, TOFU can proactively detect new attacks
if the user had previously verified a message from the signer.
And, it can reactively detect an attack if the signer gets a
message through. TOFU cannot, however, protect against
sustained MitM attacks. Despite this weakness, TOFU’s
practical security is stronger than the Web of Trust (WoT),
OpenPGP’s current trust policy, for most users. The prob-
lem with the WoT is that it requires too much user support.
TOFU is also better than the most popular alternative, an
X.509-based PKI, which relies on central servers whose certi-
fication processes are often sloppy. In this paper, we outline
how TOFU can be integrated into OpenPGP; we address a
number of potential attacks against TOFU; and, we show
how TOFU can work alongside the WoT. Our implementa-
tion demonstrates the practicality of the approach.

CCS Concepts
•Security and privacy → Authentication; Key manage-
ment;

Keywords
Security, Authentication, OpenPGP, TOFU, MitM, Mimicry

1. INTRODUCTION
Encryption only protects against passive eavesdropping.

To protect against active man-in-the-middle (MitM) attacks
and forgeries, the endpoints need to authenticate each other.
Currently, OpenPGP [5] users rely on the Web of Trust
(WoT) to do this. In practice, the WoT offers little pro-
tection, because it requires too much user support: users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EUROSEC’16, April 18-21 2016, London, United Kingdom
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4295-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2905760.2905761

need to not only exchange fingerprints, they also need to
carefully designate trusted introducers. Few users take the
time to do this. The most common alternative policy is an
X.509-based PKI, which employs a hierarchy of trusted cer-
tificate authorities (CAs). This approach is too centralized
for OpenPGP. Moreover, CAs provide weak assurances in
practice.

MitM attacks are not new. However, we have observed a
renewed interest in the use of OpenPGP and our (German-
centric) experience is that many of the new users are inter-
ested in protecting themselves from mass surveillance, but
are not technically savvy. We attribute this interest to the
Snowden leaks and the CryptoParty movement. We feel that
if technically sophisticated users can’t be bothered to curate
the WoT, then it is inappropriate for new users and a more
accessible solution is not only required, but long overdue.

We propose that instead of demanding a theoretically per-
fect, but practically useless policy, we slightly weaken the
threat model to permit less-than-perfect, but effective se-
curity policies. Concretely, we consider a threat model in
which we want to protect the user from mass surveillance
and opportunistic attacks, but not targeted attacks. In
practice, this means that we want to protect the user from
forgeries and active MitM attacks, but not sustained MitM
attacks. Further, we are not interested in determining the
endpoint’s identity, but ensuring that the endpoint is always
the same person. A trust-on-first-use (TOFU) policy satis-
fies these requirements and requires little user support.

In this paper, we examine how to integrate TOFU into
OpenPGP. After analyzing the HCI literature, we decided
that unlike ssh, an implementation should not ask the user
to supply a policy for new bindings, but accept them au-
tomatically and only show an interception dialog when a
conflict arises, which is likely to be infrequent in practice.
We discuss what identifier to use for the TOFU binding
(the email address included in the key) and how to prevent
mimicry attacks since the attacker controls the user id. We
examine how to deal with key rotation and subkeys. We
discuss how to use TOFU when verifying a signature and
when encrypting a message. And, finally, we explain how to
combine the WoT with TOFU. We conclude that integrat-
ing TOFU into an OpenPGP implementation is not only
feasible, but also usable, and hypothesize that it will bet-
ter protect OpenPGP users from active MitM attacks and
forgeries than the WoT of X.509-style PKI.

2. BACKGROUND
Although encryption is enough to protect users from pas-

http://dx.doi.org/10.1145/2905760.2905761

sive adversaries, it does not prevent an active adversary from
conducting a MitM attack or forging messages. For Alice to
ensure that there are no eavesdroppers or impersonators, she
must authenticate the other endpoint. Unfortunately, there
is no mathematical process to do this. Instead, a separate,
secure channel needs to be used to exchange some identity
information. This requires burdensome human intervention.

The most common approach to this problem is to delegate
these out-of-band checks to a few central certificate author-
ities (CAs). In theory, users would then authenticate and
directly trust these CAs, but in practice, users just trust
their user agents (Web Browser, OS, etc.) to include a list
of good CAs. Using this system, users just need to confirm
the connection is encrypted.

Unfortunately, there are thousands of these trusted CAs
and they do a poor job. In 2011, TURKTRUST inadver-
tently issued two intermediate certificates instead of a regu-
lar certificate. One of these was later used for scanning en-
crypted traffic [8]. Between about 2010 and 2012, the Flame
malware, which was developed by the USA and Israel and
used for targeted attacks in the middle east, installed mali-
cious Windows updates using a forged certificate that took
advantage of a Microsoft code signing certificate that was
inadvertently enabled and that still used MD5 [17]. In 2015,
Symmantec, the largest issuers of certificates, admitted that
it had incorrectly issued certificates for nearly a hundred
domains [13]. Assuming that these problems were just due
to incompetence and not malice, the most generous conclu-
sion is that the CA system is extremely fragile and open to
abuse, which we know occurs.

OpenPGP eschews these central authorizes in favor of a
decentralized approach called the Web of Trust (WoT). The
WoT is the social graph induced on the public, pair-wise au-
thentication checks that users can perform. To authenticate
a connection, the OpenPGP implementation just needs to
find a trusted path in the WoT. When used correctly, this
method can provide high confidence that a connection is se-
cure. In practice, however, this method requires too much of
a time investment for casual users: not only do these users
need to verify and sign other users’ fingerprints, but they
also need to designate trusted introducers by setting a key’s
so-called owner trust. This burden de facto limits the utility
of the WoT. But, even for users who invest the time to get
this process right, the WoT’s utility remains limited: it is
generally unreasonable to set someone whom you have never
met as a trusted introducer. Thus, at most the web of trust
can be used to authenticate friends of friends.

TOFU is an authentication scheme made popular by ssh.
Instead of confirming the identity, TOFU ensures that the
key associated with an identity (a binding) does not change.
The working assumption is that most connections are secure
and, as such, a MitM attack or a forgery will be noticed
immediately (if the binding is known) or once a good con-
nection is established at which point damage control can be
done. In other words, TOFU provides a sort of asymptotic
guarantee: it cannot protect the user from sustained MitM
attacks nor does it provide any guarantee about the initial
connection, but the longer the user communicates with the
same party, the higher the chances are that the connection
is safe. TOFU also doesn’t verify who a public key belongs
to; it just helps ensure that communication is with the same
entity.

TOFU clearly offers less theoretical protection than either

an X.509-style PKI or the WoT, however, it has the huge
advantage that it does not rely on third parties and requires
very little user support. For the many OpenPGP users un-
willing to rely on an X.509-style PKI and unwilling to invest
the time to curate the WoT, TOFU would provide signifi-
cantly more protection in practice.

3. ARCHITECTURE

3.1 The Right Amount of User Interaction
When a user uses ssh to connect to a host for the first

time, ssh asks the user whether the host’s key is correct.
Anecdotal evidence suggests that most users accept the key
without validating it. This behavior is consistent with that
which that HCI researchers have come to expect: users
quickly become habituated to dialogs and simply click them
away [3, 2, 1]. The problem is that too many dialogs are
shown in situations where the decision to ignore the warn-
ing and continue anyways has no perceived consequences [2,
1]. This is one such example: MitM attacks are rare. One
could argue that some users probably do validate the host’s
key and thus this feature is useful to them and a minor an-
noyance to the rest. Unfortunately, these dialogs consume
the user’s attention and habituate her to taking meaning-
less decisions, which results in her missing important deci-
sions [2, 1]. The general recommendation in the HCI litera-
ture is to reserve interception dialogs to high-risk activities
and try particularly hard to eliminate warnings in benign
situations [15, 3, 2, 1].

Based on this research, we conclude that the implemen-
tation should not ask users to provide a trust policy for
new bindings, but only raise a warning when a conflict is
detected. Anecdotal evidence indicates that MitM attacks
and forgeries are rare, but communicating with new people
is common. As such, requesting a policy for new bindings
would habituate users to dismissing dialogs and eliminate
any proactive protection that this scheme hopes to provide.
Further, it would erode the reactive protection provided by
the alarm that is raised when a conflict is detected: having
habituated the user to dismissing dialogs, the user is unlikely
to take the time to understand the warning, may not mark
the correct key as bad, and will probably fail to do sufficient
damage control.

For users who don’t want positive judgments by default,
it is straightforward to provide an option that configures
an alternate behavior. We are aware of two reasonable al-
ternatives. First, we can enable ssh’s behavior of always
prompting the user for a policy when a new binding is seen.
Second, we can configure the OpenPGP implementation to
not assign any positive trust to bindings by default. In this
case, the TOFU engine only warns about conflicts and re-
jects those bindings marked as being bad; it never asserts
that a key is trusted. This is useful for users who actively cu-
rate the WoT and only want it to assign positive trust, but
also want TOFU’s ability to detect conflicts. (Section 3.6
explains how to combine these policies).

3.2 Avoiding Mimicries
In ssh, the user explicitly designates the host that she

wants to connect to by typing in the hostname at the com-
mand prompt or selecting a previously configured connection
profile. Although a host may be known by many different
names (and there are no restrictions in the DNS prevent-

Global

Securely Unique Memorable

Nicknames

Petnames

Keys

Figure 1: The petname system overlaid with Zooko’s
triangle [14]. Zooko’s triangle describes the traits of
a desirable naming system and postulates that any
naming system can have at most two of these prop-
erties. Petnames, for instance, are securely unique,
which makes them not susceptible to mimicry, and
they are memorable, which means that the user can
directly use them. But, petnames are not global;
they must be assigned locally. Nicknames are global
and memorable, but they are not securely unique,
which means they are susceptible to mimicry at-
tacks. Finally, keys can be made securely unique and
global, but can’t be directly handled by humans.

ing someone from adding more), the user typically uses the
same name to designate a given host. This makes the name
not only stable, but, like a petname [14], secure: since the
name is entered by the user, it can’t be altered by an at-
tacker. These properties make this name ideal to use as the
identifier in a TOFU binding.

When an OpenPGP user receives a message, she doesn’t
designate the sender; this is not necessary for receiving a
message or verifying a signature. Instead, the identity is
extracted from the OpenPGP key, which normally includes
one or more valid user ids. For each of these identities,
we create a TOFU binding. If any of these would create
a non-benign conflict, we raise an alarm. Unfortunately,
an attacker can trivially circumvent this protection. The
problem is that these identifiers are just nicknames [14]: the
key’s creator controls the user id and that information is not
authenticated.

Figure 1 shows the difference between petnames and nick-
names.

3.2.1 Mimicry Attack
A mimicry attack is straightforward to understand. The

attacker creates a key and sets the user id to something that
the victim has probably not seen before. When the victim
verifies a message signed with this key, the TOFU engine
sees that there is a new, non-conflicting binding and assigns
it the default trust policy. No warning about a possible
conflict is shown, because there is no conflict.

The victim’s only defense is to detect that the user id
is different from what she expected. GnuPG and most mail
programs that we are familiar with show at least the primary
user id when verifying a message. Thus, to go undetected,
the attacker needs to use an identifier that is indistinguish-
able from the real identifier, a so-called mimicry [14].

Phishing attacks have shown that creating a mimicry is
easy [7, 10]. In our case, an attacker could take advantage
of the fact that what humans consider to be equivalent is
less strict than what a computer considers to be equivalent.

For instance, many people will indicate that John Doe is
the same identifier as John C. Doe. A more subtle attack is
a homograph attack in which similar looking characters are
substituted for expected characters [9]. For instance, most
people would mistake pàypàl.com for paypal.com (in the
first URL, the às are not Latin as, but Cyrillic às).

3.2.2 Mimicry Defenses
Ideally, we wouldn’t have to use the user id in the TOFU

binding and could instead use a petname. The problem with
petnames is that whenever the system sees a new binding, it
must prompt the user to enter a petname for it. As discussed
in Section 3.1, this type of interaction can result in dialog
fatigue, which can undermine the security of the system.

To be able to use the user id in the TOFU binding, we need
to mitigate this attack. We’ve come up with several methods
that don’t require the user to proactively supply informa-
tion. First, we can force the attacker to make the mimicry
more distinguishable. That is, we can make it harder to ex-
ecute something like a homograph attack. Second, We can
make the use of a mimicry problematic for the attacker by
checking the identifier’s inherent semantic meaning. Finally,
we can make it more obvious when an identifier is mimicked
by showing usage statistics whenever the key is used and
display added warnings when the key is relatively new.

These defenses don’t turn user identifiers into petnames,
however, they should provide a reasonable defense against
mimicry. (For those users for whom these defenses are not
sufficient, TOFU is probably also not sufficient and they
should instead be directly authenticating their communica-
tion partners or using the WoT.) A user study would help
in determining how effective these defenses really are. We
leave such a study for future work.

What’s in a Name.
Before detailing our proposed defenses, we first consider

what exactly we are using as an identifier. An OpenPGP
key can contain one or more user ids. A user id is a free
form UTF-8 string, which the OpenPGP specification rec-
ommends be in the form of an RFC 2822 mail name-addr [5],
which consists of a name, an email address and a com-
ment [11]. Most user ids are in this format. One legitimate
use case for not following this recommendation is when the
key is associated with a host. In this case, the user id is
the host’s name. Based on this, we recommend warning the
user if a user id does not conform to this format. Some keys
also include photo ids. We ignore these, because they are
so easy to mimic (changing a bit in an image without a hu-
man noticing is trivial) and because they are typically only
supplemental.

We don’t want to include the comment field in the iden-
tifier. The comment field is not well defined and most users
don’t know how to interpret it. Although most people leave
it empty, some users set it to their role (e.g., work), some
to the key’s role (e.g., Release Signing Key), some to their
organization, and some to something random (e.g., plantain
is encrypted!). Given this, it’s unlikely that users would rec-
ognize the set of valid comments that each communication
partner uses in order to identify mimicries. Moreover, newer
versions of GnuPG don’t ask for it when generating a key.

We also don’t want to use the user’s name. As previously
mentioned, people consider simple variations of a name to
be equivalent and there is no simple way to formalize all

of these transformations particularly given that our solution
should be culturally independent. Further, names are not
globally unique, which would result in false alarms.

This leaves the email address, which is actually a good
identifier: it is globally unique and it has broader techni-
cal semantics, which we can exploit to help identify mimi-
cries. Nevertheless, we still need to do some basic normal-
ization. Although the receiver determines whether the lo-
cal part of an email address is case sensitive, in practice,
the local part is nearly always case insensitive. Thus, the
TOFU implementation should consider John@example.org
and john@example.org to be equivalent. Unfortunately, case
folding is locale specific and a user id doesn’t include the
locale. (Encoding is generally not a problem: RFC 4880
mandates UTF-8 and only old PGP implementations didn’t
respect this. Thus, invalid UTF-8 strings should generate a
warning.) With respect to case folding, in Turkish the lower

case versions of I and İ are respectively ı and i (that is,
I and i are different letters). It may be reasonable to just
lowercase ASCII characters (this is what our implementation
currently does), but an alternative is to use loose equivalent

classes. For instance, we could consider I, İ, ı and i equiv-
alent even though they correspond to two distinct charac-
ters. Another simple transformation is to expand vowels
with umlauts. For instance, in German ue is a commonly
used transliteration of ü. These transformations result in
some aliasing, however, the amount of aliasing should be
limited and most such aliasing probably indicates an attack.

Making Mimicries Distinguishable.
We’ve identified two ways to force an attacker to use more

distinguishable mimicries: compare renderings and limit char-
acter combinations.

By rendering user ids as images and comparing how simi-
lar they are, we can detect potential mimicries. Concretely,
if the most similar image’s similarity exceeds some thresh-
old, then we could display a warning about a possible at-
tack. This technique forces the attacker to use mimicries
that are more distinguishable from the victim’s user id in
order to avoid raising an alarm. This approach requires a
fair amount of work to realize and its effectiveness is unclear.
We leave this as future work.

Unicode provides standard restriction levels to thwart ex-
actly this type of attack. A restriction level defines valid
character combinations. In our case, the highly restrictive
level is probably best: it only allows characters from a sin-
gle script or from a combination of a few select scripts [6].
(GMail has used this since 2014 [12].) This restriction level
should accept most reasonable identifiers while defeating
most homograph attacks. This defense would have caught
the aforementioned paypal.com attack, which mimicked the
URL by mixing Latin and Cyrillic scripts.

Checking Semantic Meaning.
An email address is more than an opaque identifier. It

has semantic meaning. By checking whether this meaning is
plausible and consistent with other artifacts, we can detect
many mimicries.

The simplest meaning to verify is to check whether the
email address is valid. If not, this is a good sign that the
identifier is a mimicry. This technique has a major disad-
vantage: it leaks information. The amount of information

leaked can be constrained by routing these verifications over
something like Tor and by caching previous results.

Another approach is to have the mail client compare the
identifier in in the From header to the email addresses listed
in the key. (This technique obviously only works for emails
verified within a mail client.) If none of them match, then
the key is suspect. Since the From line can also be spoofed
and replies can still be received by spoofing the Reply-to
header, the mail client also needs to check that any address
in the Reply-to header also appears in the key. An attacker
could also spoof this line, but then he would need to make
sure the spoofed email address actually works in order to
receive a reply and not generate a suspicious-raising bound.
This means that simple homograph attacks probably won’t
work, since the attacker won’t have control of the domain.
This forces the attacker to choose a less similar user id, which
they can control, but which the user will hopefully notice as
being fraudulent. Currently, we are only aware of two mail
clients that implement this protection: KMail and Claws.
A disadvantage of this technique is that it will raise a false
alarm when checking a signature in a forwarded message.

Helping Users Recognize Mimicries.
If a mimicry doesn’t cause the TOFU engine to raise an

alarm, then the remaining defense is for the user to recognize
the mimicry. We can support the user by displaying statis-
tics about previous interactions with the key. If an attacker
mimics the nickname of a person with whom the victim has
frequent contact, then the statistics will indicate that the
key is new. This should make the user suspicious.

We can collect statistics whenever the user verifies a mes-
sage. Since messages may be verified multiple times (e.g.,
each time an email is viewed), we save the message’s hash
to avoid inflating the count. It is also helpful to save the
time stamp embedded in the signature and the time the
message was first verified. Using this information, we can
compute the range of time over which messages from the
key were allegedly generated and when the signatures were
verified. This can reveal keys that have suddenly become
active again, which may suggest a security breach.

We can also collect statistics when the user encrypts mes-
sages. In this case, saving the time the encryption was per-
formed is sufficient. (Encrypting the same message multiple
times is different from verifying a message multiple times.)
These statistics can be shown in a similar way.

When checking the validity of a key, an implementation
should always show the statistics, not only when the statis-
tics are somehow suspicious. By always showing the statis-
tics, the user gets used to seeing a steadily increasing count
of verified and encrypted messages and will become surprised
if this count drops to zero. Further, users become confused
if security indicators aren’t always shown [7].

We also recommend an extra inline warning if the number
of signatures seen to be generated by the key and the number
of messages encrypted to the key is less than ten. This is
helpful, since successful mimicries are previously unseen keys
unlike the keys they are trying to impersonate.

The statistics are also helpful when resolving conflicts. We
can’t assume that the new key is necessarily the bad key. If
a MitM attack is broken due to a new network path, then
the new key might be the legitimate one. Alternatively, if
a user has received messages over many years from one key
and none from another, then the new key is suspicious.

John@example.org
john@example.org

3.3 Bindings
A binding is an identity and key tuple. Associated with

each binding is a policy. We have identified five useful poli-
cies: auto, good, bad, unknown and ask.

auto is the default policy and means that the user did
not explicitly set it. We associate marginal trust with such
bindings. The good policy indicates that the binding has
been positively verified and, as such, is fully trusted. The
bad policy is similar, but means the opposite: the key should
never be trusted. These policies are normally only set when
the user resolves a conflict (or the default policy is ask, see
Section 3.1). (In our implementation, we also allow the user
to set the policy from the command line.) The unknown
policy is used to avoid assigning a positive trust value to a
binding and corresponds to unknown trust. This is useful
as the default policy when only the WoT should be used for
making positive trust assertions, see Section 3.1. Finally,
the ask policy means that at the next opportunity, the user
should be asked to select a policy. We found this useful in
our implementation when it is not possible to interact with
the user (e.g., in batch mode) or when the user defers the
policy decision. If the trust level is requested for a binding
with this policy and it is not possible to actually ask the user,
we return undefined trust, which means that the required
information to ascertain the trust level is not available.

Subkeys.
An OpenPGP key is more than just a public key pair; it

is a collection of keys and attributes. The main key is called
the primary key and is used as a stable identifier. The other
keys are called subkeys and are actually used for signing
and encrypting. The subkeys often have specialized roles
and typically have shorter lifetimes. Because the subkeys
are linked to the primary key, this makes consolidation of
an identity and key rotation straightforward. This property
is useful for realizing a form of forward secrecy [4].

Since the identity is associated with the key as a whole
rather than a particular subkey, we always use the primary
key when constructing the binding even if a message is signed
with a subkey or will be encrypted with a subkey. This will
not interfere with normal usage patterns since the lifetime
of a subkey is bounded by the lifetime of the primary key
and the primary key must be available to use the subkey.

3.4 Keys
Since a key can have multiple user ids and signatures ref-

erence a key and not a user id, we need to combine the trust
level of each binding to get the key’s trust level. We propose
taking the maximum trust level according to:

undefined < unknown < marginal < fully < never

In this case, we ignore expired and revoked ids. If a key
has no user ids, then we return unknown trust. However,
returning the never trust level would also be reasonable.

Consider a concrete example: a key contains two user ids
that are marked as good (=⇒ fully trusted). According
to the above rule, the key is fully trusted. If the key now
acquires a new user id, the new binding would be assigned
the auto policy (=⇒ marginal trust). The trust for the
key, however, remains the same. If instead, the new binding
was marked as bad, then the whole key should be considered
bad. This is exactly what this scheme decides.

3.5 Verification and Encryption
When the user verifies a signature, the implementation

needs to tell the user not only if the signature is correct, but
also if the key that generated the signature is trusted. We
need to do the same thing when encrypting to a specified key.
Although the user may designate a particular user id (rather
than using the keyid), for consistency’s sake, we believe it is
better to compute the trust level over all bindings.

To compute the trust level for a binding, we first look
to see if the binding is in the database. If so, we convert
the policy to a trust level and use that. If the binding is
not present, we need to check for conflicts, i.e., an existing
binding with the same identifier. If there is no conflict, then
we create a new binding with the default policy. Otherwise,
there is a conflict and we need to ask the user what to do.
Sometimes we can detect that a conflict is benign. This is
the case if the user has a new key and cross signs them.
Note: it is perfectly reasonable to have multiple valid keys
with the same user id. This often happens when a key is
rotated: normally the old key is left valid for a short time.

In the case of a non-benign conflict, the user needs to
determine whether the new key is good or bad. To help
the user make a more informed decision, it makes sense to
display some statistics and explain the situation. At the
same time, if the policy of the conflicting key was auto, we
change its policy to ask and record the key that caused the
conflict. The next time the trust level is retrieved for this
key, the user is prompted to assign it a trust policy. One
could make an argument that policies for both keys should
be requested at the same time. We leave this to future work.

The above procedure assumes that the key is locally avail-
able. If this is not the case, then we can’t evaluate the trust
level. At most we can record information about the signa-
ture and the key and execute the above algorithm when the
key becomes available. This is useful to help catch conflicts
and to collect more data.

3.6 Combining the WoT and TOFU
As mentioned in Section 3.1, the WoT and TOFU can be

usefully combined. Taking the maximum trust level using
the ordering in Section 3.4, but inserting expired and revoked
between fully and never is straightforward and seems rea-
sonable. More complex approaches are conceivable to better
take advantage of the available information, however, it’s
questionable whether they offer a tangible advantage. For
instance, if each trust level returns two marginals, it might
be reasonable to conclude that the key is fully trusted (in
the WoT, by default, three marginally trusted paths to a
key make it fully trusted instead of marginally trusted).

3.7 Exporting the Bindings
TOFU’s strength is increased the more messages it sees

over different network paths. A simple way to increase this
is to share TOFU databases among users. This effectively
implements something like Perspectives [16].

Unlike Perspectives in which notaries make connections to
https servers and save their certificates, in OpenPGP there
is no way to make a low-cost connection to a user: to get a
reply, the user has to manually generate an answer. This is
a significant burden particularly if it is done frequently and
by many different servers.

An alternative is for users to share their TOFU databases.
Unfortunately, this will expose even more of a user’s social

graph than the WoT already does. (The WoT just exposes
the signatures; the TOFU database exposes all communica-
tion partners and, if the statistics are included, when each
communication occurred.) Further, we need a way to decide
which databases to trust: if we trusted any database, then
an attacker could create a fake key and upload a database
that would enable him to execute a MitM attack. If we
require users to explicitly select users to trust, we end up
in the same situation as we are now in with the WoT: few
people will bother to configure this.

4. IMPLEMENTATION
We have implemented a TOFU trust policy in GnuPG and

it was initially part of the 2.1.10 release, which was released
in December 2015. Our testing indicates that our implemen-
tation is able to successfully detect mimicry attacks.

5. CONCLUSION
TOFU offers better practical protection from active MitM

attacks for OpenPGP users than the major alternatives, the
WoT and X.509-style PKI. Concretely, whereas the WoT
offers better theoretical protection than TOFU, in practice
it requires too much user support. The result is that most
users have no protection from MitM attacks most of the
time. X.509, the most widespread system, simply isn’t ap-
propriate for OpenPGP, which strives as much as possible to
be decentralized. Moreover, the practical security of the sys-
tem leaves much to be desired. Finally, TOFU can be com-
bined with the WoT in a straightforward manner thereby
enabling the WoTs superior authentication checks when the
required data is available and exploiting TOFU’s consistency
checks when not.

Adding TOFU support to OpenPGP presented a number
of challenges. In particular, an attacker is able to control
the identity used in the key-identity binding. We developed
several counter-measures to mitigate this attack vector. An-
other difficulty is that a key may contain multiple user ids.
We showed how to combine the policies from these bindings.
We also explored how much user interaction is appropriate
and decided that unlike ssh-style TOFU, the user should
not be prompted to verify new bindings by default.

6. REFERENCES
[1] Devdatta Akhawe, Bernhard Amann, Matthias

Vallentin, and Robin Sommer. Here’s my cert, so trust
me, maybe?: Understanding TLS errors on the web.
In Proceedings of the 22nd International Conference
on World Wide Web, WWW ’13, pages 59–70,
Republic and Canton of Geneva, Switzerland, 2013.
International World Wide Web Conferences Steering
Committee.

[2] Rainer Böhme and Jens Grossklags. The security cost
of cheap user interaction. In Proceedings of the 2011
Workshop on New Security Paradigms Workshop,
NSPW ’11, pages 67–82, New York, NY, USA, 2011.
ACM.

[3] Rainer Böhme and Stefan Köpsell. Trained to accept?:
A field experiment on consent dialogs. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10, pages 2403–2406, New
York, NY, USA, 2010. ACM.

[4] I. Brown, A. Back, and B. Laurie. Forward secrecy
extensions for OpenPGP. Internet-Draft
draft-brown-pgp-pfs-03, IETF Secretariat, October
2011.
https://tools.ietf.org/html/draft-brown-pgp-pfs-03.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP Message Format. RFC 4880
(Proposed Standard), November 2007. Updated by
RFC 5581.

[6] Mark Davis and Michel Suignard. Unicode security
mechanisms. Technical Report Version 8.0, The
Unicode Consortium, June 2015.
http://www.unicode.org/reports/tr39/.

[7] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why
phishing works. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’06, pages 581–590, New York, NY, USA, 2006.
ACM.

[8] Paul Ducklin. The TURKTRUST SSL certificate
fiasco – what really happened, and what happens
next? https://nakedsecurity.sophos.com/2013/01/08/
the-turktrust-ssl-certificate-fiasco-what-happened-
and-what-happens-next/, January 2013. [Online;
accessed 23-March-2016].

[9] Evgeniy Gabrilovich and Alex Gontmakher. The
homograph attack. Communications of the ACM,
45(2):128, February 2002.

[10] Zulfikar Ramzan. Phishing attacks and
countermeasures. In Peter Stavroulakis and Mark
Stamp, editors, Handbook of Information and
Communication Security, pages 433–448. Springer
Berlin Heidelberg, 2010.

[11] P. Resnick. Internet Message Format. RFC 2822
(Proposed Standard), April 2001. Obsoleted by RFC
5322, updated by RFCs 5335, 5336.

[12] Mark Risher. Protecting Gmail in a global world.
http://googleforwork.blogspot.de/2014/08/protecting-
gmail-in-global-world.html, August 2014. [Online;
accessed 23-March-2016].

[13] Ryan Sleevi. Sustaining digital certificate security.
https://security.googleblog.com/2015/10/sustaining-
digital-certificate-security.html, October 2015. [Online;
accessed 23-March-2016].

[14] Marc Stiegler. An introduction to petname systems.
http://www.skyhunter.com/marcs/petnames/
IntroPetNames.html, February 2005 (updated June
2010).

[15] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Faith Cranor. Crying wolf: An
empirical study of SSL warning effectiveness. In
Proceedings of the 18th Conference on USENIX
Security Symposium, SSYM’09, pages 399–416,
Berkeley, CA, USA, 2009. USENIX Association.

[16] Dan Wendlandt, David G. Andersen, and Adrian
Perrig. Perspectives: Improving SSH-style host
authentication with multi-path probing. In USENIX
Annual Technical Conference, pages 321–334, 2008.

[17] Wikipedia. Flame (malware) — Wikipedia, The Free
Encyclopedia, 2015. [Online; accessed 23-March-2016].

https://tools.ietf.org/html/draft-brown-pgp-pfs-03
http://www.unicode.org/reports/tr39/
https://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
https://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
https://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
http://googleforwork.blogspot.de/2014/08/protecting-gmail-in-global-world.html
http://googleforwork.blogspot.de/2014/08/protecting-gmail-in-global-world.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html

	Introduction
	Background
	Architecture
	The Right Amount of User Interaction
	Avoiding Mimicries
	Mimicry Attack
	Mimicry Defenses

	Bindings
	Keys
	Verification and Encryption
	Combining the WoT and TOFU
	Exporting the Bindings

	Implementation
	Conclusion
	References

