/* Memory allocator `malloc'. Copyright 1990, 1991 Free Software Foundation Written May 1989 by Mike Haertel. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. The author may be reached (Email) at the address mike@ai.mit.edu, or (US mail) as Mike Haertel c/o Free Software Foundation. */ /* IGNORE(@ */ #include #include #include /* @) */ #define _MALLOC_INTERNAL #include #if defined(__GNU_LIBRARY__) || defined(STDC_HEADERS) || defined(USG) #include #else #define memset(s, zero, n) bzero ((s), (n)) #define memcpy(d, s, n) bcopy ((s), (d), (n)) #endif /* How to really get more memory. */ PTR EXFUN((*__morecore), (ptrdiff_t __size)) = __default_morecore; /* Debugging hook for `malloc'. */ PTR EXFUN((*__malloc_hook), (size_t __size)); /* Pointer to the base of the first block. */ char *_heapbase; /* Block information table. Allocated with align/__free (not malloc/free). */ malloc_info *_heapinfo; /* Number of info entries. */ static size_t heapsize; /* Search index in the info table. */ size_t _heapindex; /* Limit of valid info table indices. */ size_t _heaplimit; /* Free lists for each fragment size. */ struct list _fraghead[BLOCKLOG]; /* Instrumentation. */ size_t _chunks_used; size_t _bytes_used; size_t _chunks_free; size_t _bytes_free; /* Are you experienced? */ int __malloc_initialized; /* Aligned allocation. */ static PTR DEFUN(align, (size), size_t size) { PTR result; unsigned long int adj; result = (*__morecore)(size); adj = (unsigned long int) ((unsigned long int) ((char *) result - (char *) NULL)) % BLOCKSIZE; if (adj != 0) { adj = BLOCKSIZE - adj; (void) (*__morecore)(adj); result = (char *) result + adj; } return result; } /* Set everything up and remember that we have. */ static int DEFUN_VOID(initialize) { heapsize = HEAP / BLOCKSIZE; _heapinfo = (malloc_info *) align(heapsize * sizeof(malloc_info)); if (_heapinfo == NULL) return 0; memset(_heapinfo, 0, heapsize * sizeof(malloc_info)); _heapinfo[0].free.size = 0; _heapinfo[0].free.next = _heapinfo[0].free.prev = 0; _heapindex = 0; _heapbase = (char *) _heapinfo; __malloc_initialized = 1; return 1; } /* Get neatly aligned memory, initializing or growing the heap info table as necessary. */ static PTR DEFUN(morecore, (size), size_t size) { PTR result; malloc_info *newinfo, *oldinfo; size_t newsize; result = align(size); if (result == NULL) return NULL; /* Check if we need to grow the info table. */ if ((size_t) BLOCK((char *) result + size) > heapsize) { newsize = heapsize; while ((size_t) BLOCK((char *) result + size) > newsize) newsize *= 2; newinfo = (malloc_info *) align(newsize * sizeof(malloc_info)); if (newinfo == NULL) { (*__morecore)(- size); return NULL; } memset(newinfo, 0, newsize * sizeof(malloc_info)); memcpy(newinfo, _heapinfo, heapsize * sizeof(malloc_info)); oldinfo = _heapinfo; newinfo[BLOCK(oldinfo)].busy.type = 0; newinfo[BLOCK(oldinfo)].busy.info.size = BLOCKIFY(heapsize * sizeof(malloc_info)); _heapinfo = newinfo; __free(oldinfo); heapsize = newsize; } _heaplimit = BLOCK((char *) result + size); return result; } /* Allocate memory from the heap. */ PTR DEFUN(malloc, (size), size_t size) { PTR result; size_t block, blocks, lastblocks, start; register size_t i; struct list *next; if (size == 0) return NULL; if (__malloc_hook != NULL) return (*__malloc_hook)(size); if (!__malloc_initialized) if (!initialize()) return NULL; if (size < sizeof(struct list)) size = sizeof(struct list); /* Determine the allocation policy based on the request size. */ if (size <= BLOCKSIZE / 2) { /* Small allocation to receive a fragment of a block. Determine the logarithm to base two of the fragment size. */ register size_t log = 1; --size; while ((size /= 2) != 0) ++log; /* Look in the fragment lists for a free fragment of the desired size. */ next = _fraghead[log].next; if (next != NULL) { /* There are free fragments of this size. Pop a fragment out of the fragment list and return it. Update the block's nfree and first counters. */ result = (PTR) next; next->prev->next = next->next; if (next->next != NULL) next->next->prev = next->prev; block = BLOCK(result); if (--_heapinfo[block].busy.info.frag.nfree != 0) _heapinfo[block].busy.info.frag.first = (unsigned long int) ((unsigned long int) ((char *) next->next - (char *) NULL) % BLOCKSIZE) >> log; /* Update the statistics. */ ++_chunks_used; _bytes_used += 1 << log; --_chunks_free; _bytes_free -= 1 << log; } else { /* No free fragments of the desired size, so get a new block and break it into fragments, returning the first. */ result = malloc(BLOCKSIZE); if (result == NULL) return NULL; /* Link all fragments but the first into the free list. */ for (i = 1; i < (size_t) (BLOCKSIZE >> log); ++i) { next = (struct list *) ((char *) result + (i << log)); next->next = _fraghead[log].next; next->prev = &_fraghead[log]; next->prev->next = next; if (next->next != NULL) next->next->prev = next; } /* Initialize the nfree and first counters for this block. */ block = BLOCK(result); _heapinfo[block].busy.type = log; _heapinfo[block].busy.info.frag.nfree = i - 1; _heapinfo[block].busy.info.frag.first = i - 1; _chunks_free += (BLOCKSIZE >> log) - 1; _bytes_free += BLOCKSIZE - (1 << log); _bytes_used -= BLOCKSIZE - (1 << log); } } else { /* Large allocation to receive one or more blocks. Search the free list in a circle starting at the last place visited. If we loop completely around without finding a large enough space we will have to get more memory from the system. */ blocks = BLOCKIFY(size); start = block = MALLOC_SEARCH_START; while (_heapinfo[block].free.size < blocks) { block = _heapinfo[block].free.next; if (block == start) { /* Need to get more from the system. Check to see if the new core will be contiguous with the final free block; if so we don't need to get as much. */ block = _heapinfo[0].free.prev; lastblocks = _heapinfo[block].free.size; if (_heaplimit != 0 && block + lastblocks == _heaplimit && (*__morecore)(0) == ADDRESS(block + lastblocks) && (morecore((blocks - lastblocks) * BLOCKSIZE)) != NULL) { _heapinfo[block].free.size = blocks; _bytes_free += (blocks - lastblocks) * BLOCKSIZE; continue; } result = morecore(blocks * BLOCKSIZE); if (result == NULL) return NULL; block = BLOCK(result); _heapinfo[block].busy.type = 0; _heapinfo[block].busy.info.size = blocks; ++_chunks_used; _bytes_used += blocks * BLOCKSIZE; return result; } } /* At this point we have found a suitable free list entry. Figure out how to remove what we need from the list. */ result = ADDRESS(block); if (_heapinfo[block].free.size > blocks) { /* The block we found has a bit left over, so relink the tail end back into the free list. */ _heapinfo[block + blocks].free.size = _heapinfo[block].free.size - blocks; _heapinfo[block + blocks].free.next = _heapinfo[block].free.next; _heapinfo[block + blocks].free.prev = _heapinfo[block].free.prev; _heapinfo[_heapinfo[block].free.prev].free.next = _heapinfo[_heapinfo[block].free.next].free.prev = _heapindex = block + blocks; } else { /* The block exactly matches our requirements, so just remove it from the list. */ _heapinfo[_heapinfo[block].free.next].free.prev = _heapinfo[block].free.prev; _heapinfo[_heapinfo[block].free.prev].free.next = _heapindex = _heapinfo[block].free.next; --_chunks_free; } _heapinfo[block].busy.type = 0; _heapinfo[block].busy.info.size = blocks; ++_chunks_used; _bytes_used += blocks * BLOCKSIZE; _bytes_free -= blocks * BLOCKSIZE; } return result; }