/*---------------------------------------------------------------------------+ | p_atan.c | | | | Compute the tan of a REG, using a polynomial approximation. | | | | Copyright (C) 1992 W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail apm233m@vaxc.cc.monash.edu.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #define HIPOWERon 6 /* odd poly, negative terms */ static unsigned oddnegterms[HIPOWERon][2] = { { 0x00000000, 0x00000000 }, /* for + 1.0 */ { 0x763b6f3d, 0x1adc4428 }, { 0x20f0630b, 0x0502909d }, { 0x4e825578, 0x0198ce38 }, { 0x22b7cb87, 0x008da6e3 }, { 0x9b30ca03, 0x00239c79 } } ; #define HIPOWERop 6 /* odd poly, positive terms */ static unsigned oddplterms[HIPOWERop][2] = { { 0xa6f67cb8, 0x94d910bd }, { 0xa02ffab4, 0x0a43cb45 }, { 0x04265e6b, 0x02bf5655 }, { 0x0a728914, 0x00f280f7 }, { 0x6d640e01, 0x004d6556 }, { 0xf1dd2dbf, 0x000a530a } }; static unsigned denomterm[2] = { 0xfc4bd208, 0xea2e6612 }; /*--- poly_atan() -----------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_atan(REG *arg) { char recursions = 0; short exponent; REG odd_poly, even_poly, pos_poly, neg_poly; REG argSq; long long arg_signif, argSqSq; #ifdef PARANOID if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */ { arith_invalid(arg); return; } #endif PARANOID exponent = arg->exp - EXP_BIAS; if ( arg->tag == TW_Zero ) { /* Return 0.0 */ reg_move(&CONST_Z, arg); return; } if ( exponent >= -2 ) { /* argument is in the range [0.25 .. 1.0] */ if ( exponent >= 0 ) { #ifdef PARANOID if ( (exponent == 0) && (arg->sigl == 0) && (arg->sigh == 0x80000000) ) #endif PARANOID { reg_move(&CONST_PI4, arg); return; } #ifdef PARANOID EXCEPTION(EX_INTERNAL|0x104); /* There must be a logic error */ #endif PARANOID } /* If the argument is greater than sqrt(2)-1 (=0.414213562...) */ /* convert the argument by an identity for atan */ if ( (exponent >= -1) || (arg->sigh > 0xd413ccd0) ) { REG numerator, denom; recursions++; arg_signif = *(long long *)&(arg->sigl); if ( exponent < -1 ) { if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U ) arg_signif++; /* round up */ } *(long long *)&(numerator.sigl) = -arg_signif; numerator.exp = EXP_BIAS - 1; normalize(&numerator); /* 1 - arg */ arg_signif = *(long long *)&(arg->sigl); if ( shrx(&arg_signif, -exponent) >= 0x80000000U ) arg_signif++; /* round up */ *(long long *)&(denom.sigl) = arg_signif; denom.sigh |= 0x80000000; /* 1 + arg */ arg->exp = numerator.exp; reg_u_div((long long *)&(numerator.sigl), (long long *)&(denom.sigl), arg); exponent = arg->exp - EXP_BIAS; } } *(long long *)&arg_signif = *(long long *)&(arg->sigl); #ifdef PARANOID /* This must always be true */ if ( exponent >= -1 ) { EXCEPTION(EX_INTERNAL|0x120); /* There must be a logic error */ } #endif PARANOID /* shift the argument right by the required places */ if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U ) arg_signif++; /* round up */ /* Now have arg_signif with binary point at the left .1xxxxxxxx */ mul64(&arg_signif, &arg_signif, (long long *)(&argSq.sigl)); mul64((long long *)(&argSq.sigl), (long long *)(&argSq.sigl), &argSqSq); /* will be a valid positive nr with expon = 0 */ *(short *)&(pos_poly.sign) = 0; pos_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&pos_poly.sigl, (unsigned *)&argSqSq, (unsigned short (*)[4])oddplterms, HIPOWERop-1); mul64((long long *)(&argSq.sigl), (long long *)(&pos_poly.sigl), (long long *)(&pos_poly.sigl)); /* will be a valid positive nr with expon = 0 */ *(short *)&(neg_poly.sign) = 0; neg_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&neg_poly.sigl, (unsigned *)&argSqSq, (unsigned short (*)[4])oddnegterms, HIPOWERon-1); /* Subtract the mantissas */ *((long long *)(&pos_poly.sigl)) -= *((long long *)(&neg_poly.sigl)); reg_move(&pos_poly, &odd_poly); poly_add_1(&odd_poly); reg_u_mul(&odd_poly, arg, &odd_poly); /* The complete odd polynomial */ odd_poly.exp -= EXP_BIAS - 1; /* will be a valid positive nr with expon = 0 */ *(short *)&(even_poly.sign) = 0; mul64((long long *)(&argSq.sigl), (long long *)(&denomterm), (long long *)(&even_poly.sigl)); poly_add_1(&even_poly); reg_div(&odd_poly, &even_poly, arg); if ( recursions ) reg_sub(&CONST_PI4, arg, arg); } /* The argument to this function must be polynomial() compatible, i.e. have an exponent (not checked) of EXP_BIAS-1 but need not be normalized. This function adds 1.0 to the (assumed positive) argument. */ void poly_add_1(REG *src) { /* Rounding in a consistent direction produces better results for the use of this function in poly_atan. Simple truncation is used here instead of round-to-nearest. */ #ifdef OBSOLETE char round = (src->sigl & 3) == 3; #endif OBSOLETE shrx(&src->sigl, 1); #ifdef OBSOLETE if ( round ) (*(long long *)&src->sigl)++; /* Round to even */ #endif OBSOLETE src->sigh |= 0x80000000; src->exp = EXP_BIAS; }