/* Copyright (C) 1989, 1992 Aladdin Enterprises. All rights reserved. Distributed by Free Software Foundation, Inc. This file is part of Ghostscript. Ghostscript is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the Ghostscript General Public License for full details. Everyone is granted permission to copy, modify and redistribute Ghostscript, but only under the conditions described in the Ghostscript General Public License. A copy of this license is supposed to have been given to you along with Ghostscript so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ /* gxdither.c */ #include "gx.h" #include "gxfixed.h" #include "gxlum.h" #include "gxmatrix.h" #include "gzstate.h" #include "gzdevice.h" #include "gzcolor.h" #include "gzht.h" /* * Improved dithering for Ghostscript. The underlying device imaging * model supports dithering between two colors to generate intermediate * shades. * * The strategy is to first see if the color is either pure white or * pure black. In this case the problem is trivial. * * Next, if the device has high quality colors (at least 256 values * per axis), we ask it to map the color directly. * * Next, if the device is black and white, or the color happens * to be achromatic, we perform simple B/W dithering. * * Otherwise, things are a bit more complicated. If the device * supports N shades of each R, G and B independently, there are a total * of N*N*N colors. These colors form a 3-D grid in a cubical color * space. The following dithering technique works by locating the * color we want in this 3-D color grid and finding the eight colors * that surround it. In the case of dithering into 8 colors with 1 * bit for each red, green and blue, these eight colors will always * be the same. * * Now we consider all possible diagonal paths between the eight colors * and chose the path that runs closest to our desired color in 3-D * color space. There are 28 such paths. Then we find the position * on the path that is closest to our color. * * The search is made faster by always reflecting our color into * the bottom octant of the cube and comparing it to 7 paths. * After the best path and the best position on that path are found, * the results are reflected back into the original color space. * * NOTE: This code has been tested for B/W and Color imaging with * 1, 2, 3 and 8 bits per component. * * --- original code by Paul Haeberli @ Silicon Graphics - 1990 * --- extensively revised by L. Peter Deutsch, Aladdin Enterprises */ extern void gx_color_load(P2(gx_device_color *, gs_state *)); #define WEIGHT1 (unsigned long)(100) /* 1.0 */ #define WEIGHT2 (unsigned long)(71) /* 1/sqrt(2.0) */ #define WEIGHT3 (unsigned long)(62) /* 1/sqrt(3.0)+tad */ #define DIAG_R (0x1) #define DIAG_G (0x2) #define DIAG_B (0x4) #define DIAG_RG (0x3) #define DIAG_GB (0x6) #define DIAG_BR (0x5) #define DIAG_RGB (0x7) private const unsigned short lum_w[8] = { (0*lum_blue_weight+0*lum_green_weight+0*lum_red_weight), (0*lum_blue_weight+0*lum_green_weight+1*lum_red_weight), (0*lum_blue_weight+1*lum_green_weight+0*lum_red_weight), (0*lum_blue_weight+1*lum_green_weight+1*lum_red_weight), (1*lum_blue_weight+0*lum_green_weight+0*lum_red_weight), (1*lum_blue_weight+0*lum_green_weight+1*lum_red_weight), (1*lum_blue_weight+1*lum_green_weight+0*lum_red_weight), (1*lum_blue_weight+1*lum_green_weight+1*lum_red_weight), }; /* Compute a fractional color, the correctly rounded quotient of */ /* f * max_color_param / maxv. */ #define _fc(f, maxv)\ (gx_color_value)(((f) * (max_color_param_long * 2) + maxv) / (maxv * 2)) /* We have to split up the following because of a bug in the IBM AIX 3.2 */ /* C compiler. */ private const gx_color_value q0[] = { 0 }; private const gx_color_value q1[] = { 0, 0xffff }; private const gx_color_value q2[] = { 0, _fc(1,2), 0xffff }; private const gx_color_value q3[] = { 0, _fc(1,3), _fc(2,3), 0xffff }; private const gx_color_value q4[] = { 0, _fc(1,4), _fc(2,4), _fc(3,4), 0xffff }; private const gx_color_value q5[] = { 0, _fc(1,5), _fc(2,5), _fc(3,5), _fc(4,5), 0xffff }; private const gx_color_value q6[] = { 0, _fc(1,6), _fc(2,6), _fc(3,6), _fc(4,6), _fc(5,6), 0xffff }; private const gx_color_value q7[] = { 0, _fc(1,7), _fc(2,7), _fc(3,7), _fc(4,7), _fc(5,7), _fc(6,7), 0xffff }; private const gx_color_value _ds *color_quo[8] = { q0, q1, q2, q3, q4, q5, q6, q7 }; #define fractional_color(f, maxv)\ ((maxv) <= 7 ? color_quo[maxv][f] : _fc(f, maxv)) /* Note that this routine assumes that the incoming color */ /* has already been mapped through the transfer functions. */ void gx_color_render(gs_color *pcolor, gx_device_color *pdevc, gs_state *pgs) { device *pdev = pgs->device; uint max_value; unsigned long hsize; gx_device *dev; gx_color_index (*map_rgb_color)(P4(gx_device *, gx_color_value, gx_color_value, gx_color_value)); /* Make a special check for black and white. */ if ( pcolor->is_gray ) { if ( pcolor->luminance == 0 ) { pdevc->color2 = pdevc->color1 = pdev->black; pdevc->halftone_level = 0; /* pure color */ return; } else if ( pcolor->luminance == max_color_param ) { pdevc->color2 = pdevc->color1 = pdev->white; pdevc->halftone_level = 0; /* pure color */ return; } } /* get a few handy values */ dev = pdev->info; map_rgb_color = dev->procs->map_rgb_color; hsize = (unsigned)pgs->halftone->order_size; /* See if we should do it in black and white. */ if ( !gx_device_has_color(dev) || pcolor->is_gray ) { color_param lum = color_luminance(pcolor); if ( dev->color_info.max_gray >= 31 ) { /* Give the device a chance first. */ gx_color_index cx = (*map_rgb_color)(dev, lum, lum, lum); if ( cx != gx_no_color_index ) { pdevc->color2 = pdevc->color1 = cx; pdevc->halftone_level = 0; return; } } /* No luck, must dither. */ max_value = dev->color_info.dither_gray - 1; { unsigned long nshades = hsize * max_value + 1; unsigned long lx = (nshades * lum) / (max_color_param_long+1); color_param l = lx / hsize; pdevc->halftone_level = lx % hsize; lum = fractional_color(l, max_value); pdevc->color1 = (*map_rgb_color)(dev, lum, lum, lum); if ( pdevc->halftone_level == 0 ) { /* Close enough to a pure color, */ /* no dithering needed. */ pdevc->color2 = pdevc->color1; } else { lum = fractional_color(l+1, max_value); pdevc->color2 = (*map_rgb_color)(dev, lum, lum, lum); } gx_color_load(pdevc, pgs); } return; } /* If we are on a high quality RGB display, try not dithering first. */ if ( dev->color_info.max_rgb >= 31 ) { gx_color_index cx = (*map_rgb_color)(dev, pcolor->red, pcolor->green, pcolor->blue); if ( cx != gx_no_color_index ) { pdevc->color2 = pdevc->color1 = cx; pdevc->halftone_level = 0; /* pure color */ return; } } max_value = dev->color_info.dither_rgb - 1; /* must do real color dithering */ { color_param r, g, b; color_param rem_r = pcolor->red; color_param rem_g = pcolor->green; color_param rem_b = pcolor->blue; int adjust_r, adjust_b, adjust_g; unsigned short amax; unsigned long dmax; int axisc, diagc; unsigned short lum_invert; unsigned long dot1, dot2, dot3; int level; /* Compute the quotient and remainder of each color component */ /* with the actual number of available colors. Avoid */ /* multiplies and divides for the common values. */ /* Note that max_color_param is all 1s, so when only a short */ /* result is needed, subtracting x*max_color_param is equivalent to */ /* just adding x. rem_{r,g,b} are short, so we can get away */ /* with short arithmetic. */ switch ( max_value ) { case 1: /* 8 colors */ if ( rem_r == max_color_param ) rem_r = 0, r = 1; else r = 0; if ( rem_g == max_color_param ) rem_g = 0, g = 1; else g = 0; if ( rem_b == max_color_param ) rem_b = 0, b = 1; else b = 0; break; /* When max_color_param % max_value = 0, */ /* we can do some short arithmetic. */ /* Don't bother if ints are 32 bits. */ #if arch_ints_are_short case 3: /* 64 colors */ case 15: /* 4096 colors */ { const color_param q = max_color_param / max_value; r = rem_r / q; rem_r = rem_r * max_value + r; g = rem_g / q; rem_g = rem_g * max_value + g; b = rem_b / q; rem_b = rem_b * max_value + b; } break; #endif default: { unsigned long want_r = (ulong)max_value * rem_r; unsigned long want_g = (ulong)max_value * rem_g; unsigned long want_b = (ulong)max_value * rem_b; r = want_r / max_color_param_long; g = want_g / max_color_param_long; b = want_b / max_color_param_long; rem_r = (color_param)want_r + r; rem_g = (color_param)want_g + g; rem_b = (color_param)want_b + b; } } /* Check for no dithering required */ if ( !(rem_r | rem_g | rem_b) ) { pdevc->color2 = pdevc->color1 = (*map_rgb_color)(dev, fractional_color(r, max_value), fractional_color(g, max_value), fractional_color(b, max_value)); pdevc->halftone_level = 0; return; } if_debug9('c', "[c]rgb=%x,%x,%x -->\n %x+%x,%x+%x,%x+%x -->\n", (unsigned)pcolor->red, (unsigned)pcolor->green, (unsigned)pcolor->blue, (unsigned)r, (unsigned)rem_r, (unsigned)g, (unsigned)rem_g, (unsigned)b, (unsigned)rem_b); /* flip the remainder color into the 0, 0, 0 octant */ lum_invert = 0; #define half ((color_param)(max_color_param_long>>1)) if ( rem_r > half ) rem_r = max_color_param - rem_r, adjust_r = -1, r++, lum_invert += lum_red_weight; else adjust_r = 1; if ( rem_g > half) rem_g = max_color_param - rem_g, adjust_g = -1, g++, lum_invert += lum_green_weight; else adjust_g = 1; if ( rem_b > half ) rem_b = max_color_param - rem_b, adjust_b = -1, b++, lum_invert += lum_blue_weight; else adjust_b = 1; pdevc->color1 = (*map_rgb_color)(dev, fractional_color(r, max_value), fractional_color(g, max_value), fractional_color(b, max_value)); /* * Dot the color with each axis to find the best one of 7; * find the color at the end of the axis chosen. */ if ( rem_g > rem_r ) { if ( rem_b > rem_g ) amax = rem_b, axisc = DIAG_B; else amax = rem_g, axisc = DIAG_G; if ( rem_b > rem_r ) dmax = (unsigned long)rem_g+rem_b, diagc = DIAG_GB; else dmax = (unsigned long)rem_r+rem_g, diagc = DIAG_RG; } else { if ( rem_b > rem_r ) amax = rem_b, axisc = DIAG_B; else amax = rem_r, axisc = DIAG_R; if ( rem_b > rem_g ) dmax = (unsigned long)rem_b+rem_r, diagc = DIAG_BR; else dmax = (unsigned long)rem_r+rem_g, diagc = DIAG_RG; } dot1 = amax*WEIGHT1; dot2 = dmax*WEIGHT2; dot3 = (ulong)rem_r+rem_g+rem_b; /* rgb axis */ if ( dot1 > dot2 ) { if ( dot3*WEIGHT3 > dot1 ) diagc = DIAG_RGB, level = (hsize * dot3) / (3 * max_color_param_long); else diagc = axisc, level = (hsize * amax) / max_color_param_long; } else { if ( dot3*WEIGHT3 > dot2 ) diagc = DIAG_RGB, level = (hsize * dot3) / (3 * max_color_param_long); else level = (hsize * dmax) / (2 * max_color_param_long); }; if_debug9('c', " %x+%x,%x+%x,%x+%x; adjust=%d,%d,%d;\n", (unsigned)r, (unsigned)rem_r, (unsigned)g, (unsigned)rem_g, (unsigned)b, (unsigned)rem_b, adjust_r, adjust_g, adjust_b); if ( (pdevc->halftone_level = level) == 0 ) pdevc->color2 = pdevc->color1; else { gx_color_index color2; /* construct the second color, inverting back to original space if needed */ if (diagc & DIAG_R) r += adjust_r; if (diagc & DIAG_G) g += adjust_g; if (diagc & DIAG_B) b += adjust_b; /* get the second device color, sorting by luminance */ color2 = (*map_rgb_color)(dev, fractional_color(r, max_value), fractional_color(g, max_value), fractional_color(b, max_value)); /****** THIS IS A BAD IDEA ******/ #if 0 if ( lum_w[diagc] < lum_invert ) { pdevc->color2 = pdevc->color1; pdevc->color1 = color2; pdevc->halftone_level = level = hsize - level; } else #endif pdevc->color2 = color2; gx_color_load(pdevc, pgs); } if_debug5('c', "[c]diagc=%d; color1=%lx, color2=%lx, level=%d/%d\n", diagc, (ulong)pdevc->color1, (ulong)pdevc->color2, level, (unsigned)hsize); } }