
Building and Using the Linux Software Development Environment

Hongjiu Lu

hjl�lucon�org

Lu Consulting

Santa Clara� CA� USA

March� ����

Abstract

In this paper� we discuss the Linux software development environment� We describe how the
each component from compiler� assembler� linker to the C library is built� We introduce some
features in the Linux software development environment and the ways to use them�

� Introduction

To develop software under Linux� we need compiler� assembler� linker� and the C library� When
I �rst used the Linux kernel around ����� There was only an old gcc ���x Linux port provided
by Linus� The Linux C library was far from complete� It lacked many standard features and
couldn�t provide all functions which are necessary to build a complete Linux system� At the
time� I had been using Unix for a while and played with the GNU tools while porting X�	
 to
AT�T SVR���
�	
� While looking for an inexpensive Unix for my �	
sx� I found out Linux on
a Minix news group� Although there were only one bootdisk and one rootdisk� they were enough
to convince me that it was the OS I want to put on my machine�

� Software Development Environment

The C language itself doesn�t provide intrinsic functions� The ANSI C standard speci�es a set
of C functions
macros which should be provided in the C library� The software development
environment under Unix consists of the C library� the C compiler� assembler and linker�

�

��� The C Library

The Unix C library provides the functions speci�ed by ANSI C standard and other functions
needed for Unix operations� POSIX de�nes a standard way for an application program to obtain
basic services from the operating system� Most parts of the Unix C library doesn�t involve the
Unix kernel� Only a limited set of services are implemented in the Unix kernel� The access to the
Unix kernel from the application programs is provided via the system call interface�

When I �rst started using Linux� the Linux C library was very weak� The stdio library didn�t con�
form the ANSI C standard� Many crucial functions for Unix operations were missing� Sometimes�
it was an adventure to compile software packages obtained on the Internet�

��� The C Compiler

One import part of a Unix system is the C compiler� Most of the software available on the Internet
are in the source code� Without a C compiler is it is very hard to get the software binary which
can run under Unix�

Under Unix� usually the output of the C compiler is the assembly code� A bare bone C compiler
takes the preprocessed C source code and generates the suitable assembly code� Although it is
not required by the ANSI C standard� on most of Unix systems� a C preprocessor is used to
processes header �les� C language tokens and directives� To generate executable binary� we also
need an assembler which generates the relocatable object code from the assembly code and a link
editor which can output the binary in the format understood by the Unix kernel from the the
relocatable object code�

The most visible C compiler command to the Unix programmers is cc� which is the C compiler
driver� When cc is invoked� depending the command line option and the input �le� it can generate
the assembly source code� the relocatable object code or the executable binary�

� Building Linux Software Development Environment

To build a Linux software development environment from scratch can be very hard if there are
no source codes for C compiler� assembler and linker� Thanks to the GNU project of the Free
Software Foundation� there are free GNU C compiler and binary utilities� which� among other
things� include assembler and linker� for many CPU architectures� We can use the sources for
those tools to build our own Linux software development environment� The most recent GNU C
compiler and binary utilities source code can be found at

ftp���prep�ai�mit�edu�pub�gnu

The GNU C compiler source code is a tar �le with �lename of gcc�x�y�z�tar�gz and the binary
utilities is binutils�i�j�k�tar�gz� That can be unpacked with

�

� gzip �dc gcc�x�y�z�tar�gz � tar xf �

� gzip �dc binutils�i�j�k�tar�gz � tar xf �

We should �rst choose a host machine to do our cross development on� The host platform should
be supported by the GNU binary utilities and the GNU C compiler or at least it should be easy
to add the support to binary utilities and gcc� Two most common host platforms are Sparc
running SunOS ����x and Intel x	
 running Linux� We should be able to build any supported
cross development tools under them without much trouble�

The next thing we have to decide is the binary format and the assembly code calling sequence�
We have to choose a binary format supported by the Linux kernel� When I started building my
own Linux software development environment for Intel x	
 CPUs� only the a�out format was
supported by the kernel� The a�out format has been used for many years under the BSD�derived
operating systems� It is well understood and relatively easy to manipulate� Since then� we have
moved to the ELF ��� format� It is much more �exible and powerful than the old a�out format�

��� The Assembler and Linker

I used an AT�T SVR���
�	
 to build a cross assembler and linker for Linux on Intel x	
 in the
a�out format with the GNU assembler ���	 and the GNU binary utilities ���� At that time� there
is no cross development support in assembler nor linker� I had to hard code many things to make
the cross�assembler and cross�linker�

����� Con�guration

The current GNU binutils fully support the cross development� We can con�gure it with

� configure ��target�cpu�format

where cpu is our CPU architecture and format is our binary format� This command tells the
binutils to con�gure itself to build a cross�assembler� a cross�linker and other cross binary utilities
for our CPU in the speci�ed format on the current host system� These cross binary utilities are
independent of underlying operating system� As long as they run on the same CPU and use the
same binary format� they can share the same set of binary utilities� If our CPU and binary format
are supported by the GNU binary utilities� when the con�gure command returns�

����� Build and Installation

After con�guration is done� we can start building the cross assembler and linker with

� make

�

The build should �nish without any problem if our host machine and the target format is supported
by the GNU binary utilities� When we install the cross assembler and linker� we have to consider
the destination directory� We need to install the cross assembler and linker in a directory where
they will be expected by the C compiler driver� We will leave that in Section ��� where we discuss
building the GNU C compiler�

��� The GNU C Compiler

Before we start building the GNU C compiler� we need to determine what our C library has� That
will determine how we con�gure the GNU C compiler� Besides the C library� some additional �les
are need for the C compiler to generate executable binaries�

����� Auxiliary Files

One common auxiliary �le for the a�out binary format is the startup �le� crt��o� It is the �rst
�le the C compiler driver passes to the linker� ld� crt��o sets up all the necessary stack variables
and other bookkeeping procedures before transferring the execution to main ���

When we use the pro�ling facility provided by the C compiler� we will use an alternative start�up
�le� gcrt��o� In addition to what crt��o does� gcrt��o also setup calls to pro�ling routines such
that when the executable runs a �le will be generated with the pro�ling result�

The ELF binary format uses di�erent auxiliary �les� which are crt��o� crti�o� crtn�o� crtbegin�o
and crtend�o� crt��o plays the similar role as crt��o in the a�out binary format� crti�o and crtn�o
are used to support the ELF�s �init and ��ni sections� crtbegin�o and crtend�o are used by the
C�� compiler to support the �le�scope constructors and destructors� For more information on
crti�o� crtn�o� crtbegin�o andcrtend�o� please read my another paper on ELF ����

����� Con�guration

The current GNU C compiler� ������ has excellent support for cross compilation� Fore a target
platform on the CPU architecture running the operating system� we need to modify the con�gure
script in the gcc source code to support

� configure ��target�ourcpu�ouros

We need to provide at least two �les used by the con�gure script� tm �le� the header �le which
describes our CPU
operating system and provide the gcc driver command line options� tmake �le
which is the Make�le fragment needed for our target platform� tmake �le should contain

LIBGCC��libgcc��null

�

unless you can �nd a way to compile libgcc��a which should be by the old C compiler� In our
case� we are starting from the scratch� It won�t be easy to compile libgcc��a without an old C
compiler�

����� Build and Installation

Before we start building the GNU C compiler for our target platform� we should build the GNU
C compile for our host machine through the bootstrap normal procedure� At the time when start
the build� we can just do

� make CC�gcc

The build process may not �nish normally since we may not have our C library ready yet which
will be compiled with the cross compiler we are building now� When the build stops� there should
be a cpp which is a C preprocessor� cc� which is a C compiler� cc�plus which is a C�� compiler
and cc�obj which is an Objective C compiler�

We have to install them by hand to the destination directory without libgcc�a� libobjc�a�
SYSCALLS�c�X� nor include�	oat�h� libgcc�a and libobjc�a are only needed to build exe�
cutables� which we cannot do until we have compiled our C library�

The cross compiler will look for assembler and linker in
�pre�x��ourcpu�ouros�bin� We have
to make sure that we installed assembler� as� and linker� ld� in
�pre�x��ourcpu�ouros�bin�
Otherwise� the cross compiler driver may be able to �nd the correct as and ld�

��� The Linux C Library

After the cross assemler� linker and C compiler are built� we are ready to compile our C library�
At this pointer� we can use our newly built software development environment to compile our
source code in C with one exception� We may have to write our system call interface in assembly
code since jumping from the user space into the kernel space is out of the scope of the C compiler�

With some hard work� we cross�build our C library together with all the necessary auxillary
�les� Then we install the binaries �les in
�pre�x��ourcpu�ouros�lib and the header �les in

�pre�x��ourcpu�ouros�include� When it is done� we should go back to the GNU C compiler
and this time

� make CC�gcc

should �nish successfully if we set everything right� After installing libgcc�a and libobjc�a� a
complete cross software development environment is built on our host machine� We can use it to
cross�compile the software packages we want to run on our target machine including most of our
kernel�

�

Since include�	oat�h is only CPU�dependent and almost OS�independent� we can use any in�
clude�	oat�h built under any OS under the same CPU� Or we can use the cross�compiled
enquire to generate include�	oat�h on our target machine with

� ��enquire �f 	 include�float�h

We can even use the same gcc driver to compile for di�erent targets� The �b option for gcc tells
gcc for which target machine the output should be�

� gcc �b ourcpu�ouros �����

��� The Final Stage

With the previously built cross compile environment� we can compile binaries running on our
Linux machine from our host platform� That is how the �rst gcc ��x was built� Since I only had
a slow Intel �	
SX at the time� I crossed�compiled all the binaries I uploaded on the Linux gcc
ftp sites� which were

ftp���tsx����mit�edu�pub�linux�packages�GCC

ftp���sunsite�unc�edu�pub�Linux�GCC

on none�Linux machines� It is relatively easy to cross compile most of software packages� We just
need to make sure we use the right compiler� and the right ar programs plus any other binary
utilties� ar� ranlib and other programs should be put in
�pre�x��ourcpu�ouros�bin along
side with as and ld� We need to con�gure binary utiluties and gcc with

� configure ��host�ourcpu�ouros ��target�ourcpu�ouros ��build�hostcpu�hostos

After the con�guration is done� you should be able to cross compile the binary utilties and gcc
with no or a few changes to Make�le�

With the native as� ar� ld and ranlib� it is very easy to recompile gcc and binary utilities under
a Linux machine� On an Intell x	
 machine� we just do

� configure ��prefix��usr ��local�prefix��usr�local ��gxx�include�dir��usr�include�g

to con�ure gcc and then issue

� make bootstrap

� make compare

� make install

to build
install gcc from the source code�

For binary utilities� we just do

�

� configure ��prefix��usr ��enable�shared

to con�gure it� ��enable�shared is used to build shared libraries for bfd and opcodes� To build
and install� just do

� make

� make install

Through those straight foward steps� we can update our Linux software development tool set from
thee source code once we cross�compiled our �rst C compiler� assembler and linker� One interesting
note is when we moved from the a�out format to the ELF format� we simply cross�compiled from
a�out to ELF until we got a working software development environment in ELF�

� Using Linux Sofeware Development Environment

The Linux sofeware development environment consists of the GNU C compiler� the GNU binary
utilities and the Linux C library� They are very similar to the typical Unix C sofeware development
environment before the commercial Unix vendors unbundled the C compiler from their Unix
operating systems� On Linux� all the source codes of those tools are available to the developers�

��� The Linux C Library

The Linux C library provides the basic functions to user applications� It is used in almost every
Linux program� The C library is included and linked in when cc is used to compile a C source
code�

The Linux C header �les are designed for C and C��� No special cares are needed when we use
the C header �les for C�� programs� Also the same Linux C header �le can be included more
than once� Only the �rst occurrance will take e�ect�

����� BSD and System V

The design goal of the Linux C library is to be POSIX�� compliant with many BSD and System
V extensions� Most of BSD TCP
IP socket functions are supported under Linux� For certain
functions� if POSIX�� speci�es both BSD and System V behaviors are acceptable� we favor the
SVR� if there is an equivelant BSD function in POSIX� If there are no con�icts� both BSD and
System V header �les and associated library functions are provided to help port softwares to
Linux�

� The Linux signal �� and setjmp ��
lonjmp �� work like the System V ones� For the
BSD behavior� the programer should use the POSIX functions sigaction �� and sigsetjmp
��
siglongjmp ���

�

� The directory access is quite di�erent before POSIX� The Linux C library provides header
�les for both POSIX and BSD implementations� But like POSIX� only the d name �eld
in the dirent structure should be used� The BSD seekdir �� and telldir �� functions are
also included in the Linux C library� For the DIR pointer by opendir ��� it should be only
used by subsequent readdir ��� closedir ��� seekdir �� and telldir ��� An access function
dirfd �� is provided to access the �le descriptor associated with the DIR pointer�

� The Linux C library uses the POSIX termios for terminal I
O� which is very close to the
System V termio� For job control� the POSIX semantic should be used with terminal I
O
and associated signals�

Like most of BSD systems� the Linux C library has a special function� syscall ���

�include �syscall�h	

int syscall �int number
 �����

where number is the system call number� All the system calls number known to the current
Linux C library are de�ned in �sys�syscall�h�� This fucntion can be used to access any system
call interface� It is most often used by the new system call which is not implemented in the Linux
C library yet� For example� we can use

�include �sys�types�h	

�include �syscall�h	

int fd
 whence
 ret�

loff�t offset�

loff�t result�

���

ret � syscall ����
 fd
 �off�t� �offset 		 ���

�off�t� �offset � �xffffffff�
 �result
 whence��

���

to access the system number ��� which is the long version of the lseek �� system call�

One thing should be noted here� The Linux C library header �les depend on the kernel source
code� The reason is all the system calls share the same data between kernel and user applications�
It is natural for them to share the data� When we compile the user applications� we shoule be
able to pick up whatever is supported in the kernel without update our C library header �les�

�

��� Programming under Linux

The Linux C software development environment consists of the GNU tools and the Linux C
library which is POSIX based with System V and BSD extension� This combination provides
great �exibilites for proramming under Linux as well as porting to Linux�

����� Porting to Linux

For a software package� porting to Linux is just to pick up a supported target which is close to
Linux� In general� any straight System V Release � �SVR�� based system should be a good start
point to work on�

The Linux C library has the full support of BSD TCP
IP socket functions plus an enhanced
����� version of the BSD resolver library with one exception� although they are present in the
Linux C library� send ��� sendto ��� sendmsg ��� recv �� � recvfrom and recvmsg �� haven�t
been completed in the Linux kernel yet� But this status can change at any time since people are
working on improving Linux as we speak�

For the directory access� signal handling and terminal I
O ���� the Linux C library tries to follow
POSIX��� From my Linux porting experiences� I believe we have done a pretty good job on
POSIX�

One issue we may face while compiling software under Linux is some softeware packages come
with their own malloc libraries� On some Unix systems� the default system malloc library may
not be very fast nor e�cient� Some softeware developers provide an alternative malloc library to
replace the default one� Under Linux� that is no longer true� Base on the best of my judgement�
I have put the best malloc package available in the Linux C library� Theres should be no need
for another malloc library under Linux� But under certain circumstances� we may want to use
another malloc library� If it is the case� we have to be very careful about what are inside the
alternative malloc library� The minimum requrement for a replacement malloc library is

extern void � malloc �size�t size��

extern void free �void �ptr��

extern void realloc �void �ptr
 size size��

extern void calloc �size�t nmemb
 size size��

extern void � ��libc�valloc �size�t size��

where libc valloc �� is similar to malloc ��� But it returns the allocated memory on the page
boundary� It can be a performance concern� In certain cases� the memory has to be on the page
boundary�

Another malloc related issue may come up during the porting� The Linux malloc library has very
little tolerance on sloppy codes� If the software packages abuse the malloc library� they may core
dump much faster under Linux than anyone Unix systems� I view that as a Linux feature� It
should improve the qualities of softwares developed under Linux as well as those ported to Linux
from other Unix systems�

	

One System V feature missing from Linux is STREAM� Another is Network Services Library�
libnsl� They are used in SVR� to implement TCP
IP� But the TCP
IP facility under Linux is
implemented with a BSD socket interface� Fortunately most of free softwares are more or less BSD
based� I have to yet to see a sigini�cant software depend on STREAM
libnsl to run� Usually it
is not a problem�

��� Software Development under Linux

Since Linux heavily relies on the existing software packages on the Internet� one of the design goal
of the Linux C library is to make porting as easy as possible in the meantime to follow the POSIX
standard� the result is porting to Linux ususally is a matter of recompiling� When we write code
under Linux� if we follow the POSIX standard� our software should be very easy to compile on
any other modern Unix systems with the POSIX support�

����� C�C�� Compiler under Linux

Linux uses the GNU C�C

 compilers as the default system compiler� gcc has many nice features
make us life much easier under Linux�

One compiler �ag is �M� It tells the preprocessor to generate a suitable for make describing the
dependencies of each object �le� We take a �le� foo�c

� cat foo�c

�include �stdio�h	

int

main ��

�

printf ��Hello World��n���

return ��

�

We can use gcc �M

� gcc �M foo�c

foo�o� foo�c �usr�include�stdio�h �usr�include�features�h �

�usr�include�sys�cdefs�h �usr�include�libio�h �

�usr�include��G�config�h

This feature also works on C

 and any source �les processed by the preprocessor� including the
assembly source �les with the �S su�x�

There are a few �M variants� Please consult the gcc manual page for details�

�

Another very useful �ag is �Wall� It tells gcc to issue a warning if there are some potential
problems in the source codes� You can also turn on the warning for spe�ci cases and
or add more
�W �ags to ask gcc to check more cases� It is always a good idea to compile the source code with
�Wall and silence all the gcc warnings if possible�

����� Debugging and Pro�ling under Linux

To debug a user application under Linux� we need to compile the source code with the �g �ag�
e�g��

� gcc �c �g foo�c

� gcc �g �o foo foo�o

We can use the GNU debugger gdb to debug the binary foo with

� gdb foo

GDB is free software and you are welcome to distribute copies of it

under certain conditions� type �show copying� to see the conditions�

There is absolutely no warranty for GDB� type �show warranty� for details�

GDB ������ �i����linux�
 Copyright ���� Free Software Foundation
 Inc���

�gdb� b main

Breakpoint � at �x�������� file foo�c
 line ��

�gdb� r

Starting program� �tmp�foo

Breakpoint �
 main �� at foo�c��

� printf ��Hello World��n���

�gdb� info shared

From To Syms Read Shared Object Library

�x�������� �x���b�f � No �lib�libc�so� ����

�x�������� �x���� �bc No �lib�ld�linux�so��

�gdb� c

Continuing�

Hello World�

Program exited normally�

�gdb� quit

�

To pro�le a user application� we need to compile it with

� gcc �c �p foo�c

� gcc �p �o foo foo�o

��

We use the GNU pro�le data display program gprof to produce an execution pro�le of foo�

� foo

Hello World�

� gprof foo

Flat profile�

Each sample counts as ���� seconds�

no time accumulated

! cumulative self self total

time seconds seconds calls Ts�call Ts�call name

���� ���� ���� � ���� ���� main

! the percentage of the total running time of the

time program used by this function�

cumulative a running sum of the number of seconds accounted

seconds for by this function and those listed above it�

self the number of seconds accounted for by this

seconds function alone� This is the major sort for this

listing�

calls the number of times this function was invoked
 if

this function is profiled
 else blank�

self the average number of milliseconds spent in this

ms�call function per call
 if this function is profiled

else blank�

total the average number of milliseconds spent in this

ms�call function and its descendents per call
 if this

function is profiled
 else blank�

name the name of the function� This is the minor sort

for this listing� The index shows the location of

the function in the gprof listing� If the index is

in parenthesis it shows where it would appear in

the gprof listing if it were to be printed�

Call graph �explanation follows�

��

granularity� each sample hit covers � byte�s� no time propagated

index ! time self children called name

���� ���� ��� �start "� #

"�# ��� ���� ���� � main "�#

���

This table describes the call tree of the program
 and was sorted by

the total amount of time spent in each function and its children�

Each entry in this table consists of several lines� The line with the

index number at the left hand margin lists the current function�

The lines above it list the functions that called this function

and the lines below it list the functions this one called�

This line lists�

index A unique number given to each element of the table�

Index numbers are sorted numerically�

The index number is printed next to every function name so

it is easier to look up where the function in the table�

! time This is the percentage of the $total% time that was spent

in this function and its children� Note that due to

different viewpoints
 functions excluded by options
 etc

these numbers will NOT add up to ���!�

self This is the total amount of time spent in this function�

children This is the total amount of time propagated into this

function by its children�

called This is the number of times the function was called�

If the function called itself recursively
 the number

only includes non�recursive calls
 and is followed by

a $
% and the number of recursive calls�

name The name of the current function� The index number is

printed after it� If the function is a member of a

cycle
 the cycle number is printed between the

function%s name and the index number�

For the function%s parents
 the fields have the following meanings�

self This is the amount of time that was propagated directly

��

from the function into this parent�

children This is the amount of time that was propagated from

the function%s children into this parent�

called This is the number of times this parent called the

function $�% the total number of times the function

was called� Recursive calls to the function are not

included in the number after the $�%�

name This is the name of the parent� The parent%s index

number is printed after it� If the parent is a

member of a cycle
 the cycle number is printed between

the name and the index number�

If the parents of the function cannot be determined
 the word

$�spontaneous	% is printed in the $name% field
 and all the other

fields are blank�

For the function%s children
 the fields have the following meanings�

self This is the amount of time that was propagated directly

from the child into the function�

children This is the amount of time that was propagated from the

child%s children to the function�

called This is the number of times the function called

this child $�% the total number of times the child

was called� Recursive calls by the child are not

listed in the number after the $�%�

name This is the name of the child� The child%s index

number is printed after it� If the child is a

member of a cycle
 the cycle number is printed

between the name and the index number�

If there are any cycles �circles� in the call graph
 there is an

entry for the cycle�as�a�whole� This entry shows who called the

cycle �as parents� and the members of the cycle �as children��

The $
% recursive calls entry shows the number of function calls that

were internal to the cycle
 and the calls entry for each member shows

for that member
 how many times it was called from other members of

the cycle�

��

Index by function name

"�# main

�

The binary distribution of the Linux C library doesn�t include libg�a nor libc p�a� They are the
debug version and pro�le version of the C library� respectively� Usually� those special C libraries
are only needed by the C library developers� They are not required to debug nor pro�le the user
applications�

To debug or pro�le the Linux C library� we need to compile the Linux C library ourselves and
install libg�a and libc p�a�

To debug the C library� we do

� gcc �c �ggdb foo�c

� gcc �ggdb �o foo foo�o

The �ggdb �ag tells the compiler driver to link in the debug version of the C library so that we
can debug it� With gdb� we can do

� gdb foo

GDB is free software and you are welcome to distribute copies of it

under certain conditions� type �show copying� to see the conditions�

There is absolutely no warranty for GDB� type �show warranty� for details�

GDB ������ �i����linux�
 Copyright ���� Free Software Foundation
 Inc���

�gdb� b write

Breakpoint � at �x�� ����

�gdb� r

Starting program� �tmp�foo

Breakpoint �
 �x�� ���� in ��write ��

�gdb� bt

�� �x�� ���� in ��write ��

�� �x�� �� � in �IO�file�write �f��x�� ����
 data��x�� c���
 n����

at fileops�c� �

�� �x���fe�� in �IO�do�write �fp��x�� ����
 data��x�� c��� �Hello World��n�

to�do���� at fileops�c���

�� �x�� ��� in �IO�file�overflow �f��x�� ����
 ch���� at fileops�c����

�� �x�� ��f� in ��overflow �f��x�� ����
 ch���� at genops�c����

� �x�� �a� in �IO�default�xsputn �f��x�� ����
 data��x�� ����
 n����

at genops�c�� �

�� �x�� ��ac in �IO�file�xsputn �f��x�� ����
 data��x�� ����
 n����

��

at fileops�c����

�� �x����� in �IO�vfprintf �s��x�� ����
 format��x�� ���� �Hello World��n�

ap��xbffffd��� at iovfprintf�c����

�� �x������� in �IO�printf �format��x�� ���� �Hello World��n��

at ioprintf�c���

�� �x������d in main �� at foo�c��

��� �x�����e� in ���crt�dummy�� ��

�gdb� f �

�� �x�� �� � in �IO�file�write �f��x�� ����
 data��x�� c���
 n����

at fileops�c� �

 � �

�gdb� list

 �� �

 ��

 �� �IO�ssize�t

 �� DEFUN��IO�file�write
 �f
 data
 n�

 �� register �IO�FILE� f AND const void� data AND �IO�ssize�t n�

 � �

 �� �IO�ssize�t to�do � n�

 �� while �to�do 	 ��

 �� �

 �� �IO�ssize�t count � �IO�write�f�	�fileno
 data
 to�do��

�gdb� c

Continuing�

Hello World�

Program exited normally�

�gdb� quit

�

We can use the �pro�le to pro�le the Linux C library� e�g��

� gcc �c �profile foo�c

� gcc �profile �o foo foo�o

For foo compiled with gcc �pro�le� we get

� foo

Hello World�

� gprof foo

Flat profile�

Each sample counts as ���� seconds�

no time accumulated

��

! cumulative self self total

time seconds seconds calls Ts�call Ts�call name

���� ���� ���� �� ���� ���� �IO�file�overflow

���� ���� ���� �� ���� ���� ��overflow

���� ���� ���� � ���� ���� �IO�do�write

���� ���� ���� � ���� ���� ��init�brk

���� ���� ���� � ���� ���� ��libc�free

���� ���� ���� � ���� ���� ��sbrk

���� ���� ���� � ���� ���� �IO�default�xsputn

���� ���� ���� � ���� ���� �IO�doallocbuf

���� ���� ���� � ���� ���� �IO�file�doallocate

���� ���� ���� � ���� ���� �IO�file�stat

���� ���� ���� � ���� ���� �IO�file�write

���� ���� ���� � ���� ���� �IO�file�xsputn

���� ���� ���� � ���� ���� �IO�printf

���� ���� ���� � ���� ���� �IO�setb

���� ���� ���� � ���� ���� �IO�vfprintf

���� ���� ���� � ���� ���� ��default�morecore

���� ���� ���� � ���� ���� ��default�morecore�init

���� ���� ���� � ���� ���� ��init�dummy

���� ���� ���� � ���� ���� ��isatty

���� ���� ���� � ���� ���� ��libc�init

���� ���� ���� � ���� ���� ��libc�malloc

���� ���� ���� � ���� ���� ��libc�memalign

���� ���� ���� � ���� ���� ��libc�valloc

���� ���� ���� � ���� ���� ��new�exitfn

���� ���� ���� � ���� ���� ��setfpucw

���� ���� ���� � ���� ���� ��sigaction

���� ���� ���� � ���� ���� ��tcgetattr

���� ���� ���� � ���� ���� �fxstat

���� ���� ���� � ���� ���� atexit

���� ���� ���� � ���� ���� exit

���� ���� ���� � ���� ���� main

���� ���� ���� � ���� ���� malloc�extend�top

���� ���� ���� � ���� ���� mbtowc

! the percentage of the total running time of the

time program used by this function�

cumulative a running sum of the number of seconds accounted

seconds for by this function and those listed above it�

self the number of seconds accounted for by this

��

seconds function alone� This is the major sort for this

listing�

calls the number of times this function was invoked
 if

this function is profiled
 else blank�

self the average number of milliseconds spent in this

ms�call function per call
 if this function is profiled

else blank�

total the average number of milliseconds spent in this

ms�call function and its descendents per call
 if this

function is profiled
 else blank�

name the name of the function� This is the minor sort

for this listing� The index shows the location of

the function in the gprof listing� If the index is

in parenthesis it shows where it would appear in

the gprof listing if it were to be printed�

Call graph �explanation follows�

granularity� each sample hit covers � byte�s� no time propagated

index ! time self children called name

���� ���� ��� �start "���#

"�# ��� ���� ���� � atexit "�#

���� ���� ��� ��new�exitfn "��#

���

���� ���� ��� �start "���#

"�# ��� ���� ���� � exit "�#

���

���� ���� ��� �start "���#

"�# ��� ���� ���� � main "�#

���� ���� ��� �IO�printf "��#

���

���� ���� ��� ��libc�malloc "� #

"�# ��� ���� ���� � malloc�extend�top "�#

���� ���� ��� ��default�morecore�init "��#

���� ���� ��� ��default�morecore "��#

���

���� ���� ��� �IO�vfprintf "��#

" # ��� ���� ���� � mbtowc " #

��

���

���� ���� ����� ��overflow "��#

"� # ��� ���� ���� �� �IO�file�overflow "� #

���� ���� ��� �IO�do�write "��#

���� ���� ��� �IO�doallocbuf "��#

���

���� ���� ���� �IO�file�xsputn "��#

���� ���� ����� �IO�default�xsputn "��#

"��# ��� ���� ���� �� ��overflow "��#

���� ���� ����� �IO�file�overflow "� #

���

���� ���� ��� �IO�file�xsputn "��#

���� ���� ��� �IO�file�overflow "� #

"��# ��� ���� ���� � �IO�do�write "��#

���� ���� ��� �IO�file�write "� #

���

���� ���� ��� ��default�morecore�init "��#

���� ���� ��� ��sbrk "��#

"��# ��� ���� ���� � ��init�brk "��#

���

���� ���� ��� ��libc�memalign "��#

"��# ��� ���� ���� � ��libc�free "��#

���

���� ���� ��� ��default�morecore "��#

���� ���� ��� ��default�morecore�init "��#

"��# ��� ���� ���� � ��sbrk "��#

���� ���� ��� ��init�brk "��#

���

���� ���� ��� �IO�file�xsputn "��#

"��# ��� ���� ���� � �IO�default�xsputn "��#

���� ���� ����� ��overflow "��#

���

���� ���� ��� �IO�file�overflow "� #

"��# ��� ���� ���� � �IO�doallocbuf "��#

���� ���� ��� �IO�file�doallocate "��#

���

���� ���� ��� �IO�doallocbuf "��#

"��# ��� ���� ���� � �IO�file�doallocate "��#

���� ���� ��� �IO�file�stat "��#

���� ���� ��� ��libc�valloc "��#

���� ���� ��� �IO�setb "��#

���� ���� ��� ��isatty "��#

���

���� ���� ��� �IO�file�doallocate "��#

�	

"��# ��� ���� ���� � �IO�file�stat "��#

���� ���� ��� �fxstat "��#

���

���� ���� ��� �IO�do�write "��#

"� # ��� ���� ���� � �IO�file�write "� #

���

���� ���� ��� �IO�vfprintf "��#

"��# ��� ���� ���� � �IO�file�xsputn "��#

���� ���� ���� ��overflow "��#

���� ���� ��� �IO�do�write "��#

���� ���� ��� �IO�default�xsputn "��#

���

���� ���� ��� main "�#

"��# ��� ���� ���� � �IO�printf "��#

���� ���� ��� �IO�vfprintf "��#

���

���� ���� ��� �IO�file�doallocate "��#

"��# ��� ���� ���� � �IO�setb "��#

���

���� ���� ��� �IO�printf "��#

"��# ��� ���� ���� � �IO�vfprintf "��#

���� ���� ��� mbtowc " #

���� ���� ��� �IO�file�xsputn "��#

���

���� ���� ��� malloc�extend�top "�#

"��# ��� ���� ���� � ��default�morecore "��#

���� ���� ��� ��sbrk "��#

���

���� ���� ��� malloc�extend�top "�#

"��# ��� ���� ���� � ��default�morecore�init "��#

���� ���� ��� ��init�brk "��#

���� ���� ��� ��sbrk "��#

���

���� ���� ��� ��libc�init "��#

"��# ��� ���� ���� � ��init�dummy "��#

���

���� ���� ��� �IO�file�doallocate "��#

"��# ��� ���� ���� � ��isatty "��#

���� ���� ��� ��tcgetattr "��#

���

���� ���� ��� �start "���#

"��# ��� ���� ���� � ��libc�init "��#

���� ���� ��� ��init�dummy "��#

���

�

���� ���� ��� ��libc�memalign "��#

"� # ��� ���� ���� � ��libc�malloc "� #

���� ���� ��� malloc�extend�top "�#

���

���� ���� ��� ��libc�valloc "��#

"��# ��� ���� ���� � ��libc�memalign "��#

���� ���� ��� ��libc�free "��#

���� ���� ��� ��libc�malloc "� #

���

���� ���� ��� �IO�file�doallocate "��#

"��# ��� ���� ���� � ��libc�valloc "��#

���� ���� ��� ��libc�memalign "��#

���

���� ���� ��� atexit "�#

"��# ��� ���� ���� � ��new�exitfn "��#

���

���� ���� ��� �start "���#

"��# ��� ���� ���� � ��setfpucw "��#

���

���� ���� ��� profil " �#

"��# ��� ���� ���� � ��sigaction "��#

���

���� ���� ��� ��isatty "��#

"��# ��� ���� ���� � ��tcgetattr "��#

���

���� ���� ��� �IO�file�stat "��#

"��# ��� ���� ���� � �fxstat "��#

���

This table describes the call tree of the program
 and was sorted by

the total amount of time spent in each function and its children�

Each entry in this table consists of several lines� The line with the

index number at the left hand margin lists the current function�

The lines above it list the functions that called this function

and the lines below it list the functions this one called�

This line lists�

index A unique number given to each element of the table�

Index numbers are sorted numerically�

The index number is printed next to every function name so

it is easier to look up where the function in the table�

! time This is the percentage of the $total% time that was spent

in this function and its children� Note that due to

��

different viewpoints
 functions excluded by options
 etc

these numbers will NOT add up to ���!�

self This is the total amount of time spent in this function�

children This is the total amount of time propagated into this

function by its children�

called This is the number of times the function was called�

If the function called itself recursively
 the number

only includes non�recursive calls
 and is followed by

a $
% and the number of recursive calls�

name The name of the current function� The index number is

printed after it� If the function is a member of a

cycle
 the cycle number is printed between the

function%s name and the index number�

For the function%s parents
 the fields have the following meanings�

self This is the amount of time that was propagated directly

from the function into this parent�

children This is the amount of time that was propagated from

the function%s children into this parent�

called This is the number of times this parent called the

function $�% the total number of times the function

was called� Recursive calls to the function are not

included in the number after the $�%�

name This is the name of the parent� The parent%s index

number is printed after it� If the parent is a

member of a cycle
 the cycle number is printed between

the name and the index number�

If the parents of the function cannot be determined
 the word

$�spontaneous	% is printed in the $name% field
 and all the other

fields are blank�

For the function%s children
 the fields have the following meanings�

self This is the amount of time that was propagated directly

��

from the child into the function�

children This is the amount of time that was propagated from the

child%s children to the function�

called This is the number of times the function called

this child $�% the total number of times the child

was called� Recursive calls by the child are not

listed in the number after the $�%�

name This is the name of the child� The child%s index

number is printed after it� If the child is a

member of a cycle
 the cycle number is printed

between the name and the index number�

If there are any cycles �circles� in the call graph
 there is an

entry for the cycle�as�a�whole� This entry shows who called the

cycle �as parents� and the members of the cycle �as children��

The $
% recursive calls entry shows the number of function calls that

were internal to the cycle
 and the calls entry for each member shows

for that member
 how many times it was called from other members of

the cycle�

Index by function name

"��# �IO�default�xsputn "��# ��default�morecore "��# ��overflow

"��# �IO�do�write "��# ��default�morecore�init "��# ��sbrk

"��# �IO�doallocbuf "��# ��init�brk "��# ��setfpucw

"��# �IO�file�doallocate "��# ��init�dummy "��# ��sigaction

"� # �IO�file�overflow "��# ��isatty "��# ��tcgetattr

"��# �IO�file�stat "��# ��libc�free "��# �fxstat

"� # �IO�file�write "��# ��libc�init "�# atexit

"��# �IO�file�xsputn "� # ��libc�malloc "�# exit

"��# �IO�printf "��# ��libc�memalign "�# main

"��# �IO�setb "��# ��libc�valloc "�# malloc�extend�top

"��# �IO�vfprintf "��# ��new�exitfn " # mbtowc

�

More information about gdb and gprof can be found in the gdb �
� and gprof ��� manuals�

��

����� Linking under Linux

Linux uses the ELF ��� binary format� It is very �exible and provides many useful functionalities�
One of them is shared library� With gcc� we can build shared C�C

 libraries with ease�

To build shared library� we need to compile the source code with Position�Independent�Code
�PIC��

� gcc �fPIC �O �c libfoo�c

To build shared library� we do�

� gcc �shared �o libfoo�so libfoo�o

We can also build dependencies into a shared library by

� gcc �shared �o libfoo�so libfoo�o

We can also build dependencies into a shared library by

� gcc �shared �o libfoo�so libfoo�o �lbar

That causes libfoo�so depends on libbar�so� Whenever libfoo�so is used� libbar�so will also
be searched� If libbar�so is not at the default locations� �lib� �usr�lib and �usr�local�lib� the
linker may not be able to �nd libbar�so when it is seached implicitly by �lfoo evenif �Ldir is
used� If it happens� we have a few choices�

� The �rpath�link �ag� We can pass the library directory infomation through the linker
�rpath�link �ag�

� gcc �o foo �lfoo �Wl
�rpath�link
dir��dir������

It will tell the linker to search dir�� dir�� ��� for shared library dependencies�

� LD LIBRARY PATH is used by the dynamic linker to �nd shared libraries when the program
is run� If it is set at link time� a native ELF linker will also use it to �nd shared libraries at
link time�

� LD RUN PATH is used by the linker at link time� If the �rpath argument is not used� then the
linker behaves as though �rpath LD RUN PATH were speci�ed for the linker� In other words�
it incorporates the environment variable into the program� where the dynamic linker will
see it and use it when the program is run�

If you set LD RUN PATH at link time� then you do not need to set LD LIBRARY PATH at run time�
The one we should use depends upon what we plan to do with the binaries�for example� whether
we plan to distribute them to other machines which may have shared libraries in a di�erent

��

places� In general� LD RUN PATH should be the last resort� The preferred way is �rpath�link since
LD LIBRARY PATH may have other side e�ects�

One useful option for linking is �symbolic� When it is used to build shared library�

� gcc �symbolic �shared �o libfoo�so libfoo�o

it will bind references to global symbols when building a shared shared library� Those global
symbols available during building shared library will be resolved and won�t be overriden at run
time�

A side note� the newer gdb can also debug shared libraries if they are compiled with �g� It
sometime is necessary to debug a shared library since the static one may not show the same bug�

For C

 programs� we should normally use c

 instead of g

� The di�erence between the two is
shown here

� cat bar�cc

�include �iostream�h	

int

main ��

�

cout �� �Hello World�� �� endl�

return ��

�

� c

 �v �o bar bar�cc

gcc �v �o bar bar�cc �lstdc

 �lm

Reading specs from �usr�lib�gcc�lib�i����linux�������l���specs

gcc version ������l��

�usr�lib�gcc�lib�i����linux�������l���cpp �lang�c

 �v �undef �D��GNUC���� �D��GNUG���� �D��cplusp

GNU CPP version ������l�� �i��� Linux�ELF�

�include ����� search starts here�

�include ����	 search starts here�

�usr�include�g

�usr�local�include

�usr�i����linux�include

�usr�lib�gcc�lib�i����linux�������l���include

�usr�include

End of search list�

�usr�lib�gcc�lib�i����linux�������l���cc�plus �tmp�cca������ii �quiet �dumpbase bar�cc �version �o

GNU C

 version ������l�� �i��� Linux�ELF� compiled by GNU C version ������l���

�usr�i����linux�bin�as �V �Qy �o �tmp�cca�������o �tmp�cca������s

GNU assembler version ������ �i����linux�
 using BFD version ��������

�usr�i����linux�bin�ld �m elf�i��� �dynamic�linker �lib�ld�linux�so�� �o bar �usr�lib�crt��o �usr�

� ldd bar

��

libstdc

�so��� �	 �usr�lib�libstdc

�so�������

libm�so� �	 �lib�libm�so� ���

libc�so� �	 �lib�libc�so� ����

� bar

Hello World�

� g

 �v �o bar bar�cc

gcc �v �o bar bar�cc �lg

 �lstdc

 �lm

Reading specs from �usr�lib�gcc�lib�i����linux�������l���specs

gcc version ������l��

�usr�lib�gcc�lib�i����linux�������l���cpp �lang�c

 �v �undef �D��GNUC���� �D��GNUG���� �D��cplusp

GNU CPP version ������l�� �i��� Linux�ELF�

�include ����� search starts here�

�include ����	 search starts here�

�usr�include�g

�usr�local�include

�usr�i����linux�include

�usr�lib�gcc�lib�i����linux�������l���include

�usr�include

End of search list�

�usr�lib�gcc�lib�i����linux�������l���cc�plus �tmp�cca������ii �quiet �dumpbase bar�cc �version �o

GNU C

 version ������l�� �i��� Linux�ELF� compiled by GNU C version ������l���

�usr�i����linux�bin�as �V �Qy �o �tmp�cca�������o �tmp�cca������s

GNU assembler version ������ �i����linux�
 using BFD version ��������

�usr�i����linux�bin�ld �m elf�i��� �dynamic�linker �lib�ld�linux�so�� �o bar �usr�lib�crt��o �usr�

� ldd bar

libg

�so��� �	 �usr�lib�libg

�so�������

libstdc

�so��� �	 �usr�lib�libstdc

�so�������

libm�so� �	 �lib�libm�so� ���

libc�so� �	 �lib�libc�so� ����

� bar

Hello World�

�

As we can see� g

 includes libg

�so which is not needed unless classes in libg

�so are used
in our C

 programs�

More information about ELF� the GNU C compiler and the GNU linker can be found in my ELF
paper ���� the gcc manual ���� and the GNU linker manual ����

� Conclusion

As we have shown above� thanks to the Free Software Foundation� Inc�� Cygnus Support and
countless GNU
Linux developers� Linux has grown from a hobby system to a full blown Unix

��

system with many advanced features in C�C

 software development environment which are pre�
viously only available under those modern commercial Unix systems� It still amazes me today
that the work I have done at my free time has been shared by so many people� Linux has come
to a point where people can make many wonderful things happen under it� We hope more and
more GNU
Linux developers will take advantage of those powerful tools and bring GNU
Linux
to another level�

References

��� H�J� Lu� ELF� From The Programmer�s Perspective� Linux � Internet ���� Berlin� Ger�
many� �����

��� Donald Lewine� POSIX Programmer�s Guide� O�Reilly � Associate� Inc�� �����

��� SunOS ��� Linker and Libraries Manual� SunSoft� �����

��� Richard M� Stallman� Using and Porting GNU CC for Version ���� Free Software Foun�
dation� September �����

��� Steve Chamberlain and Roland Pesch� Using ld� The GNU linker� ld version �� Cygnus
Support� January �����

�
� Richard M� Stallman and Cygnus Support� Debugging with GDB� The GNU Source	Level

Debugger� Free Software Foundation� Inc�� ����

��� Jay Fenlason and Richard Stallman� The GNU Pro
ler� Free Software Foundation� Inc��
����

��

