
The extended-2 �lesystem overview

Gadi Oxman, tgud@tochnapc2.technion.ac.il v0.1, August 3 1995

Contents

1 Preface 2

2 Introduction 3

3 A �lesystem - Why do we need it ? 3

4 The Linux VFS layer 3

5 About blocks and block groups 4

6 The view of inodes from the point of view of a blocks group 4

7 The group descriptors 4

8 The block bitmap allocation block 5

9 The inode allocation bitmap 6

10 On the inode and the inode tables 6

10.1 The allocated blocks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

10.2 The i mode variable : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

10.2.1 The rightmost 4 octal digits : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

10.2.2 The leftmost two octal digits : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

10.3 Time and date : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

10.4 i size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

10.5 User and group id : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

10.6 Hard links : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

10.7 The Ext2fs extended 
ags : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

10.8 Symbolic links : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11



1. Preface 2

10.8.1 Fast symbolic links : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

10.8.2 Slow symbolic links : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

10.9 i version : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

10.10Reserved variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

10.11Special reserved inodes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

11 Directories 12

12 The superblock 13

12.1 superblock identi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

12.2 Filesystem �xed parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

12.3 Ext2fs error handling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

12.4 Additional parameters used by e2fsck : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

12.5 Additional user tunable parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

12.6 Filesystem current state : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

13 Copyright 16

14 Acknowledgments 16

1 Preface

This document attempts to present an overview of the internal structure of the ext2 �lesystem. It was written

in summer 95, while I was working on the ext2 filesystem editor project (EXT2ED).

In the process of constructing EXT2ED, I acquired knowledge of the various design aspects of the the ext2

�lesystem. This document is a result of an e�ort to document this knowledge.

This is only the initial version of this document. It is obviously neither error-prone nor complete, but at least

it provides a starting point.

In the process of learning the subject, I have used the following sources / tools:

� Experimenting with EXT2ED, as it was developed.

� The ext2 kernel sources:

{ The main ext2 include �le, /usr/include/linux/ext2 fs.h

{ The contents of the directory /usr/src/linux/fs/ext2.

{ The VFS layer sources (only a bit).

� The slides: The Second Extended File System, Current State, Future Development, by Remy Card.



2. Introduction 3

� The slides: Optimisation in File Systems, by Stephen Tweedie.

� The various ext2 utilities.

2 Introduction

The Second Extended File System (Ext2fs) is very popular among Linux users. If you use Linux, chances

are that you are using the ext2 �lesystem.

Ext2fs was designed by Remy Card and Wayne Davison. It was implemented by Remy Card and was further

enhanced by Stephen Tweedie and Theodore Ts'o.

The ext2 �lesystem is still under development. I will document here version 0.5a, which is distributed along

with Linux 1.2.x. At this time of writing, the most recent version of Linux is 1.3.13, and the version of the

ext2 kernel source is 0.5b. A lot of fancy enhancements are planned for the ext2 �lesystem in Linux 1.3, so

stay tuned.

3 A �lesystem - Why do we need it ?

I thought that before we dive into the various small details, I'll reserve a few minutes for the discussion of

�lesystems from a general point of view.

A filesystem consists of two word - file and system.

Everyone knows the meaning of the word file - A bunch of data put somewhere. where ? This is an important

question. I, for example, usually throw almost everything into a single drawer, and have di�culties �nding

something later.

This is where the system comes in - Instead of just throwing the data to the device, we generalize and

construct a system which will virtualize for us a nice and ordered structure in which we could arrange our

data in much the same way as books are arranged in a library. The purpose of the �lesystem, as I understand

it, is to make it easy for us to update and maintain our data.

Normally, by mounting �lesystems, we just use the nice and logical virtual structure. However, the disk knows

nothing about that - The device driver views the disk as a large continuous paper in which we can write notes

wherever we wish. It is the task of the �lesystem management code to store bookkeeping information which

will serve the kernel for showing us the nice and ordered virtual structure.

In this document, we consider one particular administrative structure - The Second Extended Filesystem.

4 The Linux VFS layer

When Linux was �rst developed, it supported only one �lesystem - The Minix �lesystem. Today, Linux has

the ability to support several �lesystems concurrently. This was done by the introduction of another layer

between the kernel and the �lesystem code - The Virtual File System (VFS).



5. About blocks and block groups 4

The kernel "speaks" with the VFS layer. The VFS layer passes the kernel's request to the proper �lesystem

management code. I haven't learned much of the VFS layer as I didn't need it for the construction of EXT2ED

so that I can't elaborate on it. Just be aware that it exists.

5 About blocks and block groups

In order to ease management, the ext2 �lesystem logically divides the disk into small units called blocks. A

block is the smallest unit which can be allocated. Each block in the �lesystem can be allocated or free.1

The block size can be selected to be 1024, 2048 or 4096 bytes when creating the �lesystem.

Ext2fs groups together a �xed number of sequential blocks into a group block. The resulting situation is

that the �lesystem is managed as a series of group blocks. This is done in order to keep related information

physically close on the disk and to ease the management task. As a result, much of the �lesystem management

reduces to management of a single blocks group.

6 The view of inodes from the point of view of a blocks group

Each �le in the �lesystem is reserved a special inode. I don't want to explain inodes now. Rather, I would

like to treat it as another resource, much like a block - Each blocks group contains a limited number of

inode, while any speci�c inode can be allocated or unallocated.

7 The group descriptors

Each blocks group is accompanied by a group descriptor. The group descriptor summarizes some necessary

information about the speci�c group block. Follows the de�nition of the group descriptor, as de�ned in

/usr/include/linux/ext2 fs.h:

struct ext2_group_desc

{

__u32 bg_block_bitmap; /* Blocks bitmap block */

__u32 bg_inode_bitmap; /* Inodes bitmap block */

__u32 bg_inode_table; /* Inodes table block */

__u16 bg_free_blocks_count; /* Free blocks count */

__u16 bg_free_inodes_count; /* Free inodes count */

__u16 bg_used_dirs_count; /* Directories count */

__u16 bg_pad;

__u32 bg_reserved[3];

};

1The Ext2fs source code refers to the concept of fragments, which I believe are supposed to be sub-block allocations.

As far as I know, fragments are currently unsupported in Ext2fs.



8. The block bitmap allocation block 5

The last three variables: bg free blocks count, bg free inodes count and bg used dirs count provide

statistics about the use of the three resources in a blocks group - The blocks, the inodes and the directories.

I believe that they are used by the kernel for balancing the load between the various blocks groups.

bg block bitmap contains the block number of the block allocation bitmap block. This is used to

allocate / deallocate each block in the speci�c blocks group.

bg inode bitmap is fully analogous to the previous variable - It contains the block number of the inode

allocation bitmap block, which is used to allocate / deallocate each speci�c inode in the �lesystem.

bg inode table contains the block number of the start of the inode table of the current blocks group.

The inode table is just the actual inodes which are reserved for the current block.

The block bitmap block, inode bitmap block and the inode table are created when the �lesystem is created.

The group descriptors are placed one after the other. Together they make the group descriptors table.

Each blocks group contains the entire table of group descriptors in its second block, right after the superblock.

However, only the �rst copy (in group 0) is actually used by the kernel. The other copies are there for backup

purposes and can be of use if the main copy gets corrupted.

8 The block bitmap allocation block

Each blocks group contains one special block which is actually a map of the entire blocks in the group, with

respect to their allocation status. Each bit in the block bitmap indicated whether a speci�c block in the

group is used or free.

The format is actually quite simple - Just view the entire block as a series of bits. For example,

Suppose the block size is 1024 bytes. As such, there is a place for 1024*8=8192 blocks in a group block. This

number is one of the �elds in the �lesystem's superblock, which will be explained later.

� Block 0 in the blocks group is managed by bit 0 of byte 0 in the bitmap block.

� Block 7 in the blocks group is managed by bit 7 of byte 0 in the bitmap block.

� Block 8 in the blocks group is managed by bit 0 of byte 1 in the bitmap block.

� Block 8191 in the blocks group is managed by bit 7 of byte 1023 in the bitmap block.

A value of "1" in the appropriate bit signals that the block is allocated, while a value of "0" signals that the

block is unallocated.

You will probably notice that typically, all the bits in a byte contain the same value, making the byte's value

0 or 0ffh. This is done by the kernel on purpose in order to group related data in physically close blocks,

since the physical device is usually optimized to handle such a close relationship.



9. The inode allocation bitmap 6

9 The inode allocation bitmap

The format of the inode allocation bitmap block is exactly like the format of the block allocation bitmap

block. The explanation above is valid here, with the work block replaced by inode. Typically, there are

much less inodes then blocks in a blocks group and thus only part of the inode bitmap block is used. The

number of inodes in a blocks group is another variable which is listed in the superblock.

10 On the inode and the inode tables

An inode is a main resource in the ext2 �lesystem. It is used for various purposes, but the main two are:

� Support of �les

� Support of directories

Each �le, for example, will allocate one inode from the �lesystem resources.

An ext2 �lesystem has a total number of available inodes which is determined while creating the �lesystem.

When all the inodes are used, for example, you will not be able to create an additional �le even though there

will still be free blocks on the �lesystem.

Each inode takes up 128 bytes in the �lesystem. By default, mke2fs reserves an inode for each 4096 bytes

of the �lesystem space.

The inodes are placed in several tables, each of which contains the same number of inodes and is placed at

a di�erent blocks group. The goal is to place inodes and their related �les in the same blocks group because

of locality arguments.

The number of inodes in a blocks group is available in the superblock variable s inodes per group. For

example, if there are 2000 inodes per group, group 0 will contain the inodes 1-2000, group 2 will contain the

inodes 2001-4000, and so on.

Each inode table is accessed from the group descriptor of the speci�c blocks group which contains the table.

Follows the structure of an inode in Ext2fs:

struct ext2_inode {

__u16 i_mode; /* File mode */

__u16 i_uid; /* Owner Uid */

__u32 i_size; /* Size in bytes */

__u32 i_atime; /* Access time */

__u32 i_ctime; /* Creation time */

__u32 i_mtime; /* Modification time */

__u32 i_dtime; /* Deletion Time */

__u16 i_gid; /* Group Id */

__u16 i_links_count; /* Links count */

__u32 i_blocks; /* Blocks count */

__u32 i_flags; /* File flags */

union {



10. On the inode and the inode tables 7

struct {

__u32 l_i_reserved1;

} linux1;

struct {

__u32 h_i_translator;

} hurd1;

struct {

__u32 m_i_reserved1;

} masix1;

} osd1; /* OS dependent 1 */

__u32 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */

__u32 i_version; /* File version (for NFS) */

__u32 i_file_acl; /* File ACL */

__u32 i_dir_acl; /* Directory ACL */

__u32 i_faddr; /* Fragment address */

union {

struct {

__u8 l_i_frag; /* Fragment number */

__u8 l_i_fsize; /* Fragment size */

__u16 i_pad1;

__u32 l_i_reserved2[2];

} linux2;

struct {

__u8 h_i_frag; /* Fragment number */

__u8 h_i_fsize; /* Fragment size */

__u16 h_i_mode_high;

__u16 h_i_uid_high;

__u16 h_i_gid_high;

__u32 h_i_author;

} hurd2;

struct {

__u8 m_i_frag; /* Fragment number */

__u8 m_i_fsize; /* Fragment size */

__u16 m_pad1;

__u32 m_i_reserved2[2];

} masix2;

} osd2; /* OS dependent 2 */

};

10.1 The allocated blocks

The basic functionality of an inode is to group together a series of allocated blocks. There is no limitation on

the allocated blocks - Each block can be allocated to each inode. Nevertheless, block allocation will usually

be done in series to take advantage of the locality principle.

The inode is not always used in that way. I will now explain the allocation of blocks, assuming that the

current inode type indeed refers to a list of allocated blocks.



10. On the inode and the inode tables 8

It was found experimently that many of the �les in the �lesystem are actually quite small. To take advantage

of this e�ect, the kernel provides storage of up to 12 block numbers in the inode itself. Those blocks are

called direct blocks. The advantage is that once the kernel has the inode, it can directly access the �le's

blocks, without an additional disk access. Those 12 blocks are directly speci�ed in the variables i block[0]

to i block[11].

i block[12] is the indirect block - The block pointed by i block12 will not be a data block. Rather, it

will just contain a list of direct blocks. For example, if the block size is 1024 bytes, since each block number

is 4 bytes long, there will be place for 256 indirect blocks. That is, block 13 till block 268 in the �le will be

accessed by the indirect block method. The penalty in this case, compared to the direct blocks case, is

that an additional access to the device is needed - We need two accesses to reach the required data block.

In much the same way, i block[13] is the double indirect block and i block[14] is the triple

indirect block.

i block[13] points to a block which contains pointers to indirect blocks. Each one of them is handled in

the way described above.

In much the same way, the triple indirect block is just an additional level of indirection - It will point to a

list of double indirect blocks.

10.2 The i mode variable

The i mode variable is used to determine the inode type and the associated permissions. It is best

described by representing it as an octal number. Since it is a 16 bit variable, there will be 6 octal digits.

Those are divided into two parts - The rightmost 4 digits and the leftmost 2 digits.

10.2.1 The rightmost 4 octal digits

The rightmost 4 digits are bit options - Each bit has its own purpose.

The last 3 digits (Octal digits 0,1 and 2) are just the usual permissions, in the known form rwxrwxrwx. Digit

2 refers to the user, digit 1 to the group and digit 2 to everyone else. They are used by the kernel to grant

or deny access to the object presented by this inode.2

Bit number 9 signals that the �le (I'll refer to the object presented by the inode as �le even though it can be

a special device, for example) is set VTX. I still don't know what is the meaning of "VTX".

Bit number 10 signals that the �le is set group id - I don't know exactly the meaning of the above either.

Bit number 11 signals that the �le is set user id, which means that the �le will run with an e�ective user

id root.

10.2.2 The leftmost two octal digits

Note the the leftmost octal digit can only be 0 or 1, since the total number of bits is 16.

2A smarter permissions control is one of the enhancements planned for Linux 1.3 - The ACL (Access Control

Lists). Actually, from browsing of the kernel source, some of the ACL handling is already done.



10. On the inode and the inode tables 9

Those digits, as opposed to the rightmost 4 digits, are not bit mapped options. They determine the type of

the "�le" to which the inode belongs:

� 01 - The �le is a FIFO.

� 02 - The �le is a character device.

� 04 - The �le is a directory.

� 06 - The �le is a block device.

� 10 - The �le is a regular file.

� 12 - The �le is a symbolic link.

� 14 - The �le is a socket.

10.3 Time and date

Linux records the last time in which various operations occured with the �le. The time and date are saved in

the standard C library format - The number of seconds which passed since 00:00:00 GMT, January 1, 1970.

The following times are recorded:

� i ctime - The time in which the inode was last allocated. In other words, the time in which the �le

was created.

� i mtime - The time in which the �le was last modi�ed.

� i atime - The time in which the �le was last accessed.

� i dtime - The time in which the inode was deallocated. In other words, the time in which the �le was

deleted.

10.4 i size

i size contains information about the size of the object presented by the inode. If the inode corresponds

to a regular �le, this is just the size of the �le in bytes. In other cases, the interpretation of the variable is

di�erent.

10.5 User and group id

The user and group id of the �le are just saved in the variables i uid and i gid.



10. On the inode and the inode tables 10

10.6 Hard links

Later, when we'll discuss the implementation of directories, it will be explained that each directory entry

points to an inode. It is quite possible that a single inode will be pointed to from several directories. In

that case, we say that there exist hard links to the �le - The �le can be accessed from each of the directories.

The kernel keeps track of the number of hard links in the variable i links count. The variable is set to "1"

when �rst allocating the inode, and is incremented with each additional link. Deletion of a �le will delete

the current directory entry and will decrement the number of links. Only when this number reaches zero, the

inode will be actually deallocated.

The name hard link is used to distinguish between the alias method described above, to another alias

method called symbolic linking, which will be described later.

10.7 The Ext2fs extended 
ags

The ext2 �lesystem associates additional 
ags with an inode. The extended attributes are stored in the

variable i flags. i flags is a 32 bit variable. Only the 7 rightmost bits are de�ned. Of them, only 5

bits are used in version 0.5a of the �lesystem. Speci�cally, the undelete and the compress features are not

implemented, and are to be introduced in Linux 1.3 development.

The currently available 
ags are:

� bit 0 - Secure deletion.

When this bit is on, the �le's blocks are zeroed when the �le is deleted. With this bit o�, they will just

be left with their original data when the inode is deallocated.

� bit 1 - Undelete.

This bit is not supported yet. It will be used to provide an undelete feature in future Ext2fs develop-

ments.

� bit 2 - Compress �le.

This bit is also not supported. The plan is to o�er "compression on the 
y" in future releases.

� bit 3 - Synchronous updates.

With this bit on, the meta-data will be written synchronously to the disk, as if the �lesystem was

mounted with the "sync" mount option.

� bit 4 - Immutable �le.

When this bit is on, the �le will stay as it is - Can not be changed, deleted, renamed, no hard links,

etc, before the bit is cleared.

� bit 5 - Append only �le.

With this option active, data will only be appended to the �le.

� bit 6 - Do not dump this �le.

I think that this bit is used by the port of dump to linux (ported by Remy Card) to check if the �le

should not be dumped.



10. On the inode and the inode tables 11

10.8 Symbolic links

The hard links presented above are just another pointers to the same inode. The important aspect is that

the inode number is fixed when the link is created. This means that the implementation details of the

�lesystem are visible to the user - In a pure abstract usage of the �lesystem, the user should not care about

inodes.

The above causes several limitations:

� Hard links can be done only in the same �lesystem. This is obvious, since a hard link is just an inode

number in some directory entry, and the above elements are �lesystem speci�c.

� You can not "replace" the �le which is pointed to by the hard link after the link creation. "Replacing"

the �le in one directory will still leave the original �le in the other directory - The "replacement" will not

deallocate the original inode, but rather allocate another inode for the new version, and the directory

entry at the other place will just point to the old inode number.

Symbolic link, on the other hand, is analyzed at run time. A symbolic link is just a pathname which is

accessible from an inode. As such, it "speaks" in the language of the abstract �lesystem. When the kernel

reaches a symbolic link, it will follow it in run time using its normal way of reaching directories.

As such, symbolic link can be made across different filesystems and a replacement of a �le with a new

version will automatically be active on all its symbolic links.

The disadvantage is that hard link doesn't consume space except to a small directory entry. Symbolic link,

on the other hand, consumes at least an inode, and can also consume one block.

When the inode is identi�ed as a symbolic link, the kernel needs to �nd the path to which it points.

10.8.1 Fast symbolic links

When the pathname contains up to 64 bytes, it can be saved directly in the inode, on the i block[0] -

i block[15] variables, since those are not needed in that case. This is called fast symbolic link. It is fast

because the pathname resolution can be done using the inode itself, without accessing additional blocks. It is

also economical, since it allocates only an inode. The length of the pathname is stored in the i size variable.

10.8.2 Slow symbolic links

Starting from 65 bytes, additional block is allocated (by the use of i block[0]) and the pathname is stored

in it. It is called slow because the kernel needs to read additional block to resolve the pathname. The length

is again saved in i size.

10.9 i version

i version is used with regard to Network File System. I don't know its exact use.



11. Directories 12

10.10 Reserved variables

As far as I know, the variables which are connected to ACL and fragments are not currently used. They will

be supported in future versions.

Ext2fs is being ported to other operating systems. As far as I know, at least in linux, the os dependent

variables are also not used.

10.11 Special reserved inodes

The �rst ten inodes on the �lesystem are special inodes:

� Inode 1 is the bad blocks inode - I believe that its data blocks contain a list of the bad blocks in the

�lesystem, which should not be allocated.

� Inode 2 is the root inode - The inode of the root directory. It is the starting point for reaching a

known path in the �lesystem.

� Inode 3 is the acl index inode. Access control lists are currently not supported by the ext2 �lesystem,

so I believe this inode is not used.

� Inode 4 is the acl data inode. Of course, the above applies here too.

� Inode 5 is the boot loader inode. I don't know its usage.

� Inode 6 is the undelete directory inode. It is also a foundation for future enhancements, and is

currently not used.

� Inodes 7-10 are reserved and currently not used.

11 Directories

A directory is implemented in the same way as �les are implemented (with the direct blocks, indirect blocks,

etc) - It is just a �le which is formatted with a special format - A list of directory entries.

Follows the de�nition of a directory entry:

struct ext2_dir_entry {

__u32 inode; /* Inode number */

__u16 rec_len; /* Directory entry length */

__u16 name_len; /* Name length */

char name[EXT2_NAME_LEN]; /* File name */

};

Ext2fs supports �le names of varying lengths, up to 255 bytes. The name �eld above just contains the �le

name. Note that it is not zero terminated; Instead, the variable name len contains the length of the �le

name.



12. The superblock 13

The variable rec len is provided because the directory entries are padded with zeroes so that the next entry

will be in an o�set which is a multiplition of 4. The resulting directory entry size is stored in rec len. If

the directory entry is the last in the block, it is padded with zeroes till the end of the block, and rec len is

updated accordingly.

The inode variable points to the inode of the above �le.

Deletion of directory entries is done by appending of the deleted entry space to the previous (or next, I am

not sure) entry.

12 The superblock

The superblock is a block which contains information which describes the state of the internal �lesystem.

The superblock is located at the fixed offset 1024 in the device. Its length is 1024 bytes also.

The superblock, like the group descriptors, is copied on each blocks group boundary for backup purposes.

However, only the main copy is used by the kernel.

The superblock contain three types of information:

� Filesystem parameters which are �xed and which were determined when this speci�c �lesystem was

created. Some of those parameters can be di�erent in di�erent installations of the ext2 �lesystem, but

can not be changed once the �lesystem was created.

� Filesystem parameters which are tunable - Can always be changed.

� Information about the current �lesystem state.

Follows the superblock de�nition:

struct ext2_super_block {

__u32 s_inodes_count; /* Inodes count */

__u32 s_blocks_count; /* Blocks count */

__u32 s_r_blocks_count; /* Reserved blocks count */

__u32 s_free_blocks_count; /* Free blocks count */

__u32 s_free_inodes_count; /* Free inodes count */

__u32 s_first_data_block; /* First Data Block */

__u32 s_log_block_size; /* Block size */

__s32 s_log_frag_size; /* Fragment size */

__u32 s_blocks_per_group; /* # Blocks per group */

__u32 s_frags_per_group; /* # Fragments per group */

__u32 s_inodes_per_group; /* # Inodes per group */

__u32 s_mtime; /* Mount time */

__u32 s_wtime; /* Write time */

__u16 s_mnt_count; /* Mount count */

__s16 s_max_mnt_count; /* Maximal mount count */

__u16 s_magic; /* Magic signature */

__u16 s_state; /* File system state */



12. The superblock 14

__u16 s_errors; /* Behaviour when detecting errors */

__u16 s_pad;

__u32 s_lastcheck; /* time of last check */

__u32 s_checkinterval; /* max. time between checks */

__u32 s_creator_os; /* OS */

__u32 s_rev_level; /* Revision level */

__u16 s_def_resuid; /* Default uid for reserved blocks */

__u16 s_def_resgid; /* Default gid for reserved blocks */

__u32 s_reserved[235]; /* Padding to the end of the block */

};

12.1 superblock identi�cation

The ext2 �lesystem's superblock is identi�ed by the s magic �eld. The current ext2 magic number is 0xEF53.

I presume that "EF" means "Extended Filesystem". In versions of the ext2 �lesystem prior to 0.2B, the magic

number was 0xEF51. Those �lesystems are not compatible with the current versions; Speci�cally, the group

descriptors de�nition is di�erent. I doubt if there still exists such a installation.

12.2 Filesystem �xed parameters

By using the word fixed, I mean �xed with respect to a particular installation. Those variables are usually

not �xed with respect to di�erent installations.

The block size is determined by using the s log block size variable. The block size is 1024*pow

(2,s log block size) and should be between 1024 and 4096. The available options are 1024, 2048 and 4096.

s inodes count contains the total number of available inodes.

s blocks count contains the total number of available blocks.

s first data block speci�es in which of the device block the superblock is present. The superblock is

always present at the �xed o�set 1024, but the device block numbering can di�er. For example, if the block

size is 1024, the superblock will be at block 1 with respect to the device. However, if the block size is 4096,

o�set 1024 is included in block 0 of the device, and in that case s first data block will contain 0. At

least this is how I understood this variable.

s blocks per group contains the number of blocks which are grouped together as a blocks group.

s inodes per group contains the number of inodes available in a group block. I think that this is always the

total number of inodes divided by the number of blocks groups.

s creator os contains a code number which speci�es the operating system which created this speci�c �lesys-

tem:

� Linux :-) is speci�ed by the value 0.

� Hurd is speci�ed by the value 1.

� Masix is speci�ed by the value 2.



12. The superblock 15

s rev level contains the major version of the ext2 �lesystem. Currently this is always 0, as the most recent

version is 0.5B. It will probably take some time until we reach version 1.0.

As far as I know, fragments (sub-block allocations) are currently not supported and hence a block is equal

to a fragment. As a result, s log frag size and s frags per group are always equal to s log block size

and s blocks per group, respectively.

12.3 Ext2fs error handling

The ext2 �lesystem error handling is based on the following philosophy:

1. Identi�cation of problems is done by the kernel code.

2. The correction task is left to an external utility, such as e2fsck by Theodore Ts'o for automatic

analysis and correction, or perhaps debugfs by Theodore Ts'o and EXT2ED by myself, for hand

analysis and correction.

The s state variable is used by the kernel to pass the identi�cation result to third party utilities:

� bit 0 of s state is reset when the partition is mounted and set when the partition is unmounted. Thus,

a value of 0 on an unmounted �lesystem means that the �lesystem was not unmounted properly - The

�lesystem is not "clean" and probably contains errors.

� bit 1 of s state is set by the kernel when it detects an error in the �lesystem. A value of 0 doesn't

mean that there isn't an error in the �lesystem, just that the kernel didn't �nd any.

The kernel behavior when an error is found is determined by the user tunable parameter s errors:

� The kernel will ignore the error and continue if s errors=1.

� The kernel will remount the �lesystem in read-only mode if s errors=2.

� A kernel panic will be issued if s errors=3.

The default behavior is to ignore the error.

12.4 Additional parameters used by e2fsck

Of-course, e2fsck will check the �lesystem if errors were detected or if the �lesystem is not clean.

In addition, each time the �lesystem is mounted, s mnt count is incremented. When s mnt count reaches

s max mnt count, e2fsck will force a check on the �lesystem even though it may be clean. It will then zero

s mnt count. s max mnt count is a tunable parameter.

E2fsck also records the last time in which the �le system was checked in the s lastcheck variable. The

user tunable parameter s checkinterval will contain the number of seconds which are allowed to pass since

s lastcheck until a check is reforced. A value of 0 disables time-based check.



13. Copyright 16

12.5 Additional user tunable parameters

s r blocks count contains the number of disk blocks which are reserved for root, the user whose id number

is s def resuid and the group whose id number is s deg resgid. The kernel will refuse to allocate those

last s r blocks count if the user is not one of the above. This is done so that the �lesystem will usually not

be 100% full, since 100% full �lesystems can a�ect various aspects of operation.

s def resuid and s def resgid contain the id of the user and of the group who can use the reserved blocks

in addition to root.

12.6 Filesystem current state

s free blocks count contains the current number of free blocks in the �lesystem.

s free inodes count contains the current number of free inodes in the �lesystem.

s mtime contains the time at which the system was last mounted.

s wtime contains the last time at which something was changed in the �lesystem.

13 Copyright

This document contains source code which was taken from the Linux ext2 kernel source code, mainly from

/usr/include/linux/ext2 fs.h. Follows the original copyright:

/*

* linux/include/linux/ext2_fs.h

*

* Copyright (C) 1992, 1993, 1994, 1995

* Remy Card (card@masi.ibp.fr)

* Laboratoire MASI - Institut Blaise Pascal

* Universite Pierre et Marie Curie (Paris VI)

*

* from

*

* linux/include/linux/minix_fs.h

*

* Copyright (C) 1991, 1992 Linus Torvalds

*/

14 Acknowledgments

I would like to thank the following people, who were involved in the design and implementation of the ext2

�lesystem kernel code and support utilities:



14. Acknowledgments 17

� Remy Card

Who designed, implemented and maintains the ext2 �lesystem kernel code, and some of the ext2 utilities.

Remy Card is also the author of several helpful slides concerning the ext2 �lesystem. Speci�cally, he is

the author of File Management in the Linux Kernel and of The Second Extended File System

- Current State, Future Development.

� Wayne Davison

Who designed the ext2 �lesystem.

� Stephen Tweedie

Who helped designing the ext2 �lesystem kernel code and wrote the slides Optimizations in File

Systems.

� Theodore Ts'o

Who is the author of several ext2 utilities and of the ext2 library libext2fs (which I didn't use, simply

because I didn't know it exists when I started to work on my project).

Lastly, I would like to thank, of-course, Linus Torvalds and the Linux community for providing all of us

with such a great operating system.

Please contact me in a case of an error report, suggestions, or just about anything concerning this document.

Enjoy,

Gadi Oxman <tgud@tochnapc2.technion.ac.il>

Haifa, August 95


