
The Steganographic File System

Ross Anderson1, Roger Needham2, Adi Shamir3

1 Cambridge University; rja14@cl.cam.ac.uk
2 Microsoft Research Ltd; needham@microsoft.com

3 Weizmann Institute; shamir@wisdom.weizmann.ac.il

Abstract. Users of some systems are at risk of being compelled to dis-

close their keys or other private data, and this risk could be mitigated if

access control mechanisms supported an element of plausible deniability.

However, existing plausible deniability mechanisms, such as the one-time

pad, are of rather limited scope.

In this paper, we present the steganographic �le system. This is a stor-

age mechanism designed to give the user a very high level of protection

against being compelled to disclose its contents. It will deliver a �le to

any user who knows its name and password; but an attacker who does

not possess this information and cannot guess it, can gain no informa-

tion about whether the �le is present, even given complete access to all

the hardware and software. We provide two independent constructions,

which make slightly di�erent assumptions.

1 Introduction

Much work has been done on devising mechanisms, such as digital signatures,
that can be used to provide non-repudiation; there has been much less work on
the complementary property, namely plausible deniability. Yet there are many
applications in which plausible deniability could be valuable:

{ soldiers and intelligence agents may be captured and tortured into revealing
cryptographic keys and other secret data;

{ when conducting delicate negotiations, such as between a company and a
trade union, informal o�ers may be made which will be denied in the event
of later litigation. However, the other side might obtain court orders for
access to documents;

{ police power may be abused. An individual may be arrested on `suspicion'
of a crime, found with an encrypted hard disk partition, and told that if he
does not supply the password, this will be taken as evidence of guilt. But the
encrypted �les might well contain con�dential business information sought
by people who have bribed the police;

{ private individuals have been tortured by robbers into revealing information
such as the secret codes for their bank cards and the location of safes [12].



There are few mechanisms available at present to provide protection against
these threats. Crypto keys may be kept in tamper resistant devices, but tam-
per resistance is relative, especially against a capable motivated opponent [4];
incriminating documents can be shredded, but the word processor �les used to
create them may persist for months in backup tapes (as Oliver North found
to his cost); and while the one-time pad may provide an element of plausible
deniability in communications, it is di�cult to use in data storage because the
pad must also be stored somewhere (in the next section, we will discuss one way
to overcome this di�culty). There are some deniable encryption schemes in the
literature (e.g. [5, 6, 11]) but these protocols can still generally protect only
short messages, and are not applicable to storage.

One possible defence against compulsion is dual control. Bank managers
understand that the real purpose of having a dual combination lock on the vault
is not to prevent them taking cash (they have many ways to do that!) but to
stop their families being taken hostage. The manager's inability to open the lock
on his own removes the temptation for criminals to try to force him.

Dual control may be inappropriate, such as for an attorney in single handed
practice. It may also be inadequate, for example where crypto keys are shared
between two soldiers in a signals unit who might be captured at the same time, or
where someone has abused the legal process to obtain an injunction compelling
an innocent party to disclose information against his interests. In all such cases,
it may be su�cient if the victim can convincingly simulate an inability to perform
the act required by the opponent.

These considerations motivate us to design a �le system with the following
property. A user may provide it with the name of an object, such as a �le or
directory, together with a password; and if these are correct for an object in the
system, access to it will be provided. However, an attacker who does not have
the matching object name and password, and lacks the computational power to
guess it, can get no information about whether the named object even exists.

The concept of operations is that the user of such a �le system could, if
placed under compulsion, reveal (say) the three passwords used to protect the
directories with his email archive, his tax records and his love letters, but keep
quiet about the directory containing his trade secrets. The opponent would have
no means of proving that such a directory exists.

We do not assume any properties of tamper resistance, whether of hardware
or software. We assume that the opponents who may place the user under
compulsion are competent; that they can examine the system at the level of
bits and gates, and understand all its hardware and software completely. The
only di�erence between them and the user is that the user knows one or more
passwords (or more accurately, strong passphrases).

The �rst of our constructions assumes only that there are limits to the amount
of knowledge of the plaintext that the opponent possesses, and to the number of
computations that he can perform. In the second, we will assume the existence
of a block cipher that the opponent cannot break.

2



2 A Simple Construction

Our �rst construction makes no assumptions about the existence of `good' ci-
phers. Its protection goal is that if the opponent has no knowledge of the �le-
name and password, then he can get no information about whether such a �le
is present in the system unless he already knows some of the �le contents or
tries all possible passwords. For the sake of simplicity in exposition, we will
assume a password P of k bits. We might imagine that the �lename plus a
strong passphrase has somehow been compressed to a P of k bits in length; but
we stipulate nothing about P other than that the opponent must not be able to
guess it.

The idea is to have a number of cover �les in the system, which start out as
random, and then embed the user's �les as the exclusive or of a subset of the
cover �les. This subset is chosen by the password.

To give a concrete example, suppose that all �les are of the same length and
that there are k cover �les in the system to begin with, say C0; : : : ; Ck�1. Let
the �rst user �le be F and its password be P . We then select those Cj for which
the jth bit of P is one and combine them using bitwise exclusive or; the result
is in turn XOR'ed with the user supplied �le F and the result of this operation
is �nally exclusive or'ed with one of the Cj . The result is that the user's �le F
is now the exclusive or of the subset of the Cj selected by the nonzero bits of P .
Symbolically,

F =
M
Pj=1

Cj (1)

A user can embed a number of �les as combinations of the cover �les. Adding
subsequent �les entails solving sets of linear equations to decide which combina-
tions of the Cj to alter.

An important property of this system is that if we have a linear access hierar-
chy | that is, a user storing a �le at a given security level knows the passwords
of all the �les stored at lower levels | then �les can be added in a natural
way without disturbing already hidden �les. Assuming that the k cover �les
C0; : : : ; Ck�1 are used to hide a smaller number m of user �les F0; : : : ; Fm�1,
and that each �le is n bits long, let C be the k x n matrix over GF(2) whose
i-th row is the current contents of cover �le Ci. Initially this matrix is �lled
with random bits. As we store or update an actual user �le Fj , we modify the
k cover �les in a way which is guaranteed to change Fj without a�ecting any of
the other user �les; this can be done even by someone who has access only to
�les up to a certain security level, and has no information about the contents
(or extraction method) of the \higher" �les.

The basic idea is to use an orthonormal k x k binary matrix K as the ex-
traction key. If Kj is the j-th row of K, then Fj is de�ned as the vector-matrix
product Kj x C (mod 2), which XORs the rows of C indicated by the 1's along

3



the j-th row in K. The orthonormality condition implies that Kj x Kt
i (row

times column product, giving a scalar) is 1 if i = j, and 0 otherwise.

Suppose we want to modify only the i-th user �le Fi by XORing it with the
binary di�erence �le D of length n. We change the cover �le system represented
by the matrix C by XORing to it the matrixKt

i x D (t denotes transpose, so this
is a column vector multiplied by a row vector, giving a k x n matrix). Consider
now for any j the new value of the user �le Fj , computed by Kj x (C XOR Kt

i

x D) = (Kj x C) XOR (Kj x Kt
i ) x D. The second part is zero for all i 6= j,

and D for i = j, which gives the desired e�ect on the secret �les.

What is left is to show how a user can be given only his part of the key matrix
K, without revealing other parts or asking him to memorize lots of bits. We can
use the standard trick of mapping a random initial password p0 by iterating a
one way function h (or even better, a one-way permutation) via pi+1 = h(pi).
If we now give some user the value of pi as his password, then he can compute
all the later p's but not the earlier p's. We now map each pi into a random
binary vector with an odd number of 1's (so that its dot product with itself is
1). Finally, we use the Gram-Schmidt method to orthonormalise all the vectors
from i onwards by subtracting from the candidate Ki all its components along
later Kj which the user knows by the chaining property of the pj 's. In other
words, a user who knows pi can compute all the orthonormal key vectors Kj for
j � i, but not any earlier ones.

This gives us a linear hierarchy of access rights, where each user has access
to all the �les from some index onwards. We cannot extend it all the way to
k secret �les, since when K2;K3; : : : ;Kk are known binary vectors and K1 is
known to complement them to an orthonormal basis, it is uniquely de�ned. But
if we ensure that the number m of secret �les is a number randomly chosen in
1; : : : ; k=2, the orthonormalization process is very likely to succeed, and it will
be exponentially hard in k to �nd one more key vector given all the later key
vectors.

To extend this `multilevel secure' �le system to provide the plausible deniabil-
ity which we seek, the user must have a number of passwords pi rather than just
one (or two) of them. The pi can therefore be generated at random rather than
by repeated hashing, and users can manage them in any of the standard ways:
a number of the pi could be stored on disc, encrypted under user passphrases,
together with a number of nulls (objects that look like encrypted passwords but
are not), so that the opponent cannot tell how many genuine ones there are.
Alternatively, mnemonics can be used to map the pi to passphrases, in which
case there would be no need to keep passwords encrypted on the disk. The rest
of the linear algebra goes over as before.

Linear algebra also gives us a known-message attack: if the size of the pass-
word is k and the opponent knows more than k bits of plaintext, then after
obtaining all the random �les from the computer he can write k linear equations
in the k unknown bits of the key. This is why we add the explicit assumption
that the opponent knows nothing about the plaintext. If this assumption holds,

4



then the scheme appears vulnerable only to an opponent who can guess the
password.

Requiring that the opponent be totally ignorant of the �le contents may be
simple where these contents consist of random data such as crypto keys, but
could often be onerous. For example, a tax inspector searching for early drafts
of a set of accounts might know the location and value of the tax reference
number in the �les in question, and this could be enough to break the system
for (say) k = 100. There is a simple practical solution: to disallow knowledge of
the plaintext by preencrypting it with a key derived from the password. We will
discuss below how an alternative construction is available, given the assumption
that strong ciphers exist.

Meanwhile, we have shown how a simple steganographic �le system can be
constructed; it enables a user under compulsion to reveal (say) seventeen pass-
words that retrieve �les on his tax a�airs, love a�airs, and so on, but hold back
the eighteenth password which would have revealed the design for the new se-
curity system that the opponent was interested in. On the assumptions above,
and absent implementation defects, there is no way that the opponent can tell
that a valid eighteenth combination of �lename and passphrase exists at all in
the system.

In a practical system, we may wish to provide for �les of di�erent lengths,
and we will also probably want the granularity of protection to correspond to
directories rather than individual �les. This can be accommodated in the above
system by packing each directory into one of the �les Fj whose length might
be �xed at (say) 10MB; 100 such directories easily �t on a typical modern PC
with 3.5 GB of hard disk, leaving plenty of room for the operating system and
non-secret software and data. We could then end up with a hierarchy of several
dozen directories for `tax', `love letters', `company secrets' and so on, will only
have to remember one passphrase for each level at which disclosure is to be
made. Disc space is nowadays so cheap that having to allocate large �xed size
directories is not a real problem for most applications; however there are two
problems, one major and one minor.

The minor problem is that it might not always be convenient to have a strict
linear access hierarchy, and the major problem is that there would be a signi�cant
performance penalty: reading or writing a �le would involve reading or writing
about 50 times and if this involved processing the entire directory contents it
would entail about 500MB read or written on average. It need not however,
since the modi�cation or access can be done on arbitrarily narrow \slices" of the
k x n matrix C. For example, if the modi�cation vector D is nonzero in a single
bit (say, the q-th), then the product kti x D is nonzero only in its q-th column,
and thus both the computation and the data access are unnecessary except at
these k bytes.

A further reduction in the overhead of reading and writing can be obtained
by doing arithmetic over a �eld other than GF(2). This makes it possible to
separate the security parameter from the number of levels in the access hierarchy.

5



The reason we have 100 cover �les is to have a complexity of 2100 in guessing
the linear combination. This also gives us 100 levels in the hierarchy, which
is likely to be too large. Instead, we can use 16 cover �les which are added
with coe�cients from, say, GF(28) or GF(251) (the largest single byte prime).
Guessing a vector of 16 such coe�cients has probability about 2�128, and we
have about 8 levels in the access hierarchy. In terms of e�ciency, to compute
one byte of real �le we need only 16 bytes (one from each cover �le). This is
probably a good choice of parameters. However, we still have a 16-fold penalty
on reading and writing, and are constrained to a linear access hierarchy. This
motivates us to ask if there is another way of implementing a steganographic �le
system.

3 An Alternative Construction

One might ask: why not just �ll the whole hard disk with random bits, and then
write each �le block at an absolute disk address given by some pseudorandom
process, such as by encrypting the block's location in the �le using as a key
a one-way hash of the �lename and the directory password? The block could
also be encrypted using a key derived using a similar process, and so | on the
assumption that we have a block cipher which the opponent cannot distinguish
from a random permutation | the presence or absence of a block at any location
should not be distinguishable.

The problem with such a na��ve approach is that, thanks to the birthday theo-
rem in probability theory, we would start to get `collisions' (where we overwrote
already written data) once we had written a little more than

p
N blocks, where

there are N blocks in the disk. Given that a modern hard disk might have a
million blocks, it would be `full' after somewhat over a thousand of them had
been written | a very wasteful use of resources.

However, there is a solution: write the block at more than one location. If, for
example, we write each block in two pseudorandomly chosen locations, then both
of these blocks will be overwritten by a third when the number of blocks is ap-
proximately that required to produce triples under resampling, namely O(N2=3).
It is straightforward to add redundancy to each block before encrypting it, so
that the system can identify when a block has been overwritten and look for it
in the other location instead.

Continuing in this way, we might hope that if we write to ten locations, then
before all locations containing a block are accidentally overwritten, we could
write O(N9=10) blocks, and so on. However, the situation is somewhat more
complicated.

Suppose that thatK di�erent blocks are written and that we write each block
m times, giving a total of mK write operations (including overlaps). Consider
the probability that an individual block will be overwritten by subsequent writes.
If there areM of these, then the total number of distinct blocks that are written
ni times out of the total of N blocks is [1]:

6



�(n1; n2; : : : ; nM ) = 1=NM

�
N

n1; n2; : : : ; nM

�
M !QM

i=1(i!)
ni

(2)

which can be approximated for computational purposes as:

�(n1; n2; : : : ; nM ) ' 1=(NmeM
2=2N )

MM�n1QM
i=1(i!)

nini!
(3)

so the total number of distinct blocks that are overwritten is:

�(M;N) =

MX
1

�(n1; n2; : : : ; nM ) (4)

where the sum is over all possible combinations of the nj . The probability that
one of the k versions of block number j survives this overwriting process is given
by 1 � [�((j � 1)m;N)]k, and indeed the probability p that any one of the K
�les gets overwritten is:

p =

KX
j=1

[�((j � 1)m;N)]k (5)

No analytic solutions are known for equations of type (2){(5), and so we
do not expect to �nd a closed form solution for the number m of replications
that will maximise the `load factor' of our system | this is K=N , the ratio of
the total number of di�erent blocks stored to the total disc space allocated to
the system. However, a numerical model suggests the following results. If we
consider the disk to be full the �rst time a block is corrupted (in that all copies
of it are overwritten), then the load factor is rather low, with about 7% load
achieved for m = 4 over a range of values for the number of blocks N from
20,000 to 1,000,000. This �gure improves dramatically as soon as we allow even
a small number of blocks to become corrupted; and if we allow 10% of blocks to
be corrupted, we can obtain a raw load factor of 20% | giving an e�ective load
factor of perhaps 15% once forward error correction is applied. These �gures
are somewhat tentative and we expect that they could be improved given an
implementation. There are however some remarks that can be made in advance
of that.

Firstly, this construction largely overcomes the performance problem of our
previous construction. Files are still read and written multiple times, but the
multiple is now about 5 rather than the 16{50 range of the �rst construction.
Furthermore, we have a critical trick, in that when operating in a given directory
(i.e., using a single user password, and operating at a single security level), we
keep a Larson table which tells us which block to look at �rst [10].

Larson's system was designed to allow any record in a database to be retrieved
with only one disk access. The basic idea is that a record is written at one of

7



m locations on disc, which are speci�ed pseudorandomly as in our construction,
and a table is kept in memory telling the user at which location to look. In more
detail, a record with key K is hashed to provide a `probe sequence' of m values
h1(K) : : : hm(K), plus a `signature sequence' of m values s1(K) : : : sm(K); the
latter are each of k bits in length. A table of 2k values is kept in memory. A
record with the key K is stored at the address h1(K), unless it is already full,
in which case an attempt is made to store it at h2(K), and so on. The signature
sequence is then used to encode the record's location in the table in memory. If
all the addresses h1(K) : : : hm(K) are occupied, then the system declares `disk
full'. Experiments by Larson and Kajla showed that with values of m in the
range 10{25, the disk would not be full until 80{90% of its blocks were occupied.

So a Larson table at a given security level (i.e., directory) can be built when-
ever the directory is opened and which points to locations which contain a true
copy of each block; these can simply be the �rst uncorrupted copy of the block
that can be found. This block can also be written �rst should the application
write the block back. This table building can be carried out as a background
process, so there need only be a performance penalty for those �les which the
user opens immediately on changing to a new directory. The table builder can
also alarm when it �rst �nds that a block has been completely corrupted (the
disk is full) or that the limits of the error correction code are being reached (the
disk is nearly full).

The performance of �le systems based on Larson tables is relatively well
understood. Reading a �le that is stored at hashed absolute locations indexed
by a Larson table is often faster than with a conventional �le system, as the table
can be held in memory and only one disk access is needed to read any block. On
the other hand, writing is slightly slower. In the context of the steganographic
�le system, there is extra overhead when we close a �le; blocks that have been
written need to be replicated. We expect that the replication can largely be
done in background, unless the user closes a �le and changes immediately to a
directory with a lower classi�cation.

Secondly, as in our �rst construction, the assumption of a linear access hi-
erarchy enables us to improve things substantially. In the present construction,
the improvement is that we can greatly increase the load factor. Consider the
lowest level in the hierarchy; the password for this directory will be known to all
higher level processes, and so will always be available whenever a �le is being
written. Thus higher level processes can avoid the blocks of the lowest level �les,
and in consequence the lowest level directory can be implemented using Larson
tables directly with no replication. A load factor at this level of 85% rather
than 15% can therefore be expected. Similarly, high level processes can avoid
overwriting existing copies of �les at medium levels. Thus one might end up
with the amount m of replication increasing with the security level; determining
optimal values will probably require an implementation.

Of course the lowest level password would be divulged at once by a user
under compulsion; but in the absence of compulsion, the present construction

8



can ensure that the lowest level in the system is not only secure but highly
e�cient. Although writing a �le would be slightly slower than in a standard non-
secure operating system, reading might well be quicker. In a typical application
where the bulk of the data on a system is stored at the lowest level and only a
small amount at higher levels, the performance penalty (in terms of both time
and space) could be very low.

Thirdly, even when the disk is full (in the sense that a block has been cor-
rupted, or that the capacity of any error correction code used has been exceeded),
most of the user �le content will still be recoverable; in particular the most re-
cently written �les are very likely to be intact. So the availability of �les degrades
gracefully, unlike in the previous construction.

Many further optimisations are possible. Even without a linear access hier-
archy, we might still bene�t from having a high performance lowest level; and
we might de�ne directories at higher levels using orthogonal families of codes
rather than purely pseudorandom replication in order to increase e�ciency. No
doubt implementation will uncover many more optimisations: we leave that for
future papers.

4 Relevance to Classical Steganography

The classical way of hiding information in a deniable way would be to use a
steganographic program to embed the information in large �les such as audio or
video [3]. This has a number of problems. Firstly, one can only hide so much
information, or its presence becomes noticeable; and if the opponent is allowed to
subject these objects to small distortions of his choice, then the usable bandwidth
can be very low indeed [8]. Secondly, our aim here has been to design a practical
system, and that means one that can be implemented so that normal Unix
or Windows applications might run on top of it. Command-line �le recovery
using a steganographic tool is inconvenient in such an environment; transparent
operation is greatly preferable. Thirdly, given the assumption that the opponent
knows the system, one might as well dispense with the cover objects and write
the secret information to disk directly.

However, there may well be an interesting interaction between our second
construction and the world of copyright marking. It is often a requirement that
many copyright marks be superimposed; for example, the International Federa-
tion of the Phonographic Industry stipulated this in a recent call for proposals
for audio marking schemes [9]. There are marking schemes which are linear (in
the sense of adding signals) and can accommodate this easily. However, this lin-
earity brings problems with it [7] and many researchers are working on nonlinear
schemes. The problem now is that multiple marks can interfere with each other;
and we do not want a copyright pirate to be able to remove the rightful owner's
mark by adding several marks of his own.

The insight behind our construction suggests that in such environments an
e�cient strategy may be to add a number of independent marks to each work

9



(or to each segment of a work that has to be separately marked), with each mark
replicated about six times and forward error correction used between them. (Of
course, each mark may be separately encrypted in order to prevent correlation
attacks.) In this way, we expect a good trade-o� between on the one hand having
the bandwidth to add a number of independent marks, and on the other hand
forcing a pirate who wishes to obliterate the marks (but who does not know the
key) to add so many marks at random places that the resulting distortion will
degrade or destroy the resale value of the object. Such robust marking is the
subject of separate work.

5 Conclusions

We have presented a new protection mechanism, the steganographic �le system.
It is designed to give users a high degree of protection against coercion, in that
they can plausibly deny the existence of whole directories of �les on their hard
disk, even against an opponent with complete access to the system and the re-
sources to reverse engineer every chip and understand every byte of software. We
presented two possible mechanisms, one inspired by the one-time pad and pro-
viding security exponential in its system parameters, and another based on the
computational security of block ciphers. These mechanisms tackle an important,
practical problem that has hitherto been ignored in the security literature.

Acknowledgement: We are grateful to Charalampos Manifavas for writing the
simulation that determined the available load factors for our second construction.

References

1. \Measuring the Diversity of Random Number Generators", R Anderson, R

Gibbens, C Jagger, F Kelly, M Roe, preprint, 1992

2. \Stretching the Limits of Steganography", RJ Anderson, in [3] pp 39{48

3. `Information Hiding', May 30 { June 1 1996; proceedings published by Springer as

Lecture Notes in Computer Science vol 1174

4. \Tamper Resistance | a Cautionary Note", RJ Anderson, MG Kuhn, in Proceed-

ings of the Second Usenix Workshop on Electronic Commerce (Nov 96) pp 1{11

5. `Plausible Deniability', DR Beaver, Pragocrypt 96 pp 272{288

6. \Plug and Play Encryption", DR Beaver, in Advances in Cryptology | Crypto 97,

Springer LNCS v 1294 pp 75{89

7. \Can invisible watermark resolve rightful ownerships?", S Craver, N Memon, BL

Yeo, MM Yeung, Fifth Conference on Storage and Retrieval for Image and Video

Database, 13{14 February 1997, San Jose, CA; SPIE vol 3022 pp 310{321

8. \Attacks on Copyright Marking Systems", FAP Petitcolas, RJ Anderson,

MG Kuhn, in these proceedings; this paper is also available online at

http://www.cl.cam.ac.uk/~fapp2/papers/ih98-attacks/

9. `Request for Proposals | Embedded Signalling Systems', June 97, International

Federation of the Phonographic Industry, 54 Regent Street, London W1R 5PJ

10



10. \File Organisation: Implementation of a Method Guaranteeing Retrieval in One

Access", P�A Larson, A Kajla, in Communications of the ACM v 27 no 7 (July

1984) pp 670{677

11. `Cryptography and Evidence', M Roe, Cambridge University (PhD Thesis, 1997)

12. \Developer tortured by raiders with crowbars", M Weaver, Daily Telegraph, 31

October 97

11


