The Kernel and the VFS

A Filesystem Engineer's
Perspective

Darmstadt, September 1999

sct@redhat.com

Contents

® A brief history of Linux...

® The recent age

® Exciting new stuff

® Even more exciting stuff coming up Real
Soon Now




Miotuly. 111 UUUU Vil

Days

® Linux users and developers were once the
same people.

® Really high hardware requirements: 386, a
few KB of memory and a hard disk not much
faster than a floppy.

® Filesystems were developed according to:
® What was cool
® \What was the primary OS

® \What made the world's best development
workstation

History: People start
getting serious...

® Hey, somebody's using my code in their
business!!!

® "Early adopters" included software
developers, Universities and ISPs

® Lots of new networking code improvements

® Filesystem was largely good enough for most
people

® Primary filesystem requirement was low
latency, not scalability




NMiotlVUIy. NUL oU Vely 101y
ago

® A miracle occurs. People start running
Oracle on Linux. Everybody else joins in.

® Suddenly, filesystem requirements jump.
Dramatically.

® The developers are now coding primarily to
other people's needs, not their own

® That's OK, the new problems are Cool And
Interesting:
® Silly levels of performance
® Massive scalability
® Enterprise Availability and Manageability

So what is new in 2.2?
The "dentry"

® "|t's something new"

® This is not Unix-like: no (superblock, inode)
indexing

® The VFS passes around pathname
components as top-level entities now
® Networked filesystems love this!

® Name lookups from cache can now bypass
the individual filesystems entirely

® | ots of hooks for odd name aliasing
behaviour




L.L. VWiladal CloC T

® Two other major additions:
® Fine-grained SMP locking
® Covers the inode cache and IO request layers

® File "read actors"”
® Support sendfile
® [n 2.3, used to support khttpd

® Also lots of new compatibility filesystems and
partitioning support

2.3: Hey Everybody, we
Fixed the Page Cache!

o (.

finally...)

® The buffer cache can be aliased on top of
page cache memory

%aches the on-disk locations of recent filesystem
|Os

More and more VFS operations can bypass the
underlying filesystem entirely

No more double buffering!

Separate page-cache SMP locks

The filesystems can relinquish control of caching
and worry only about physical storage.




4.9. 111C Widgiv \NiOovul

® The Kiobuf;

® An abstraction between memory ownership
and 10 on that memory

® The IO layers don't need to care where
memory is owned:
® |O direct from userspace
® mmaped kernel buffers
® fd-passing for memory which never visits user

space

® Useful for filesystem, framebuffers,

networking...

And for our next trick...

® What new things are coming right up?

® Block devices:
® Shared disk/networked RAID for shared-nothing
clustering
® | VM and Snapshots

® Filesystems:
® kiobuf-based full async 10 and iobuf passing
® Shared disk and distributed filesystems for
shared-everything clustering
® Faster, bigger: XFS? GFS? Veritas? cXFS?
® Maybe we'll even get NFS to work (NFSv4 is
coming!)

10



