
The Kernel and the VFS

A Filesystem Engineer's
Perspective

Darmstadt, September 1999

sct@redhat.com

1

Contents

A brief history of Linux...
The recent age
Exciting new stuff
Even more exciting stuff coming up Real
Soon Now

l

l

l

l

2



History: The Good Old
Days

Linux users and developers were once the
same people.
Really high hardware requirements: 386, a
few KB of memory and a hard disk not much
faster than a floppy.
Filesystems were developed according to:

What was cool
What was the primary OS
What made the world's best development
workstation

l

l

l

l

l

l

3

History: People start
getting serious...

Hey, somebody's using my code in their
business!!!
"Early adopters" included software
developers, Universities and ISPs
Lots of new networking code improvements
Filesystem was largely good enough for most
people
Primary filesystem requirement was low
latency, not scalability

l

l

l

l

l

4



History: Not so very long
ago

A miracle occurs. People start running
Oracle on Linux. Everybody else joins in.
Suddenly, filesystem requirements jump.
Dramatically.
The developers are now coding primarily to
other people's needs, not their own
That's OK, the new problems are Cool And
Interesting:

Silly levels of performance
Massive scalability
Enterprise Availability and Manageability

l

l

l

l

l

l

l

5

So what is new in 2.2?
The "dentry"

"It's something new"
This is not Unix-like: no (superblock, inode)
indexing
The VFS passes around pathname
components as top-level entities now

Networked filesystems love this!

Name lookups from cache can now bypass
the individual filesystems entirely
Lots of hooks for odd name aliasing
behaviour

l

l

l

l

l

l

6



2.2: What else?

Two other major additions:
Fine-grained SMP locking

Covers the inode cache and IO request layers

File "read actors"
Support sendfile
In 2.3, used to support khttpd

Also lots of new compatibility filesystems and
partitioning support

l

l

l

l

l

l

l

7

2.3: Hey Everybody, we
Fixed the Page Cache!

(...finally...)
The buffer cache can be aliased on top of
page cache memory

Caches the on-disk locations of recent filesystem
IOs
More and more VFS operations can bypass the
underlying filesystem entirely
No more double buffering!
Separate page-cache SMP locks
The filesystems can relinquish control of caching
and worry only about physical storage.

l

l

l

l

l

l

l

8



2.3: The Magic Kiobuf

The Kiobuf:
An abstraction between memory ownership
and IO on that memory
The IO layers don't need to care where
memory is owned:

IO direct from userspace
mmaped kernel buffers
fd-passing for memory which never visits user
space

Useful for filesystem, framebuffers,
networking...

l

l

l

l

l

l

l

9

And for our next trick...

What new things are coming right up?
Block devices:

Shared disk/networked RAID for shared-nothing
clustering
LVM and Snapshots

Filesystems:
kiobuf-based full async IO and iobuf passing
Shared disk and distributed filesystems for
shared-everything clustering
Faster, bigger: XFS? GFS? Veritas? cXFS?
Maybe we'll even get NFS to work (NFSv4 is
coming!)

l

l

l

l

l

l

l

l

l

10


