
Thread Segment Stacks

Markus Pizka

Technische Universit�at M�unchen, Informatik XIII

Germany, 80290 Munich

Abstract This paper presents enhanced mem-

ory management concepts and their implementa-

tion providing better support for multi threading.

The virtual address space of the multi threaded pro-

cess is dynamically partitioned by a dynamic set of

cooperating managers. Special thoughts are given to

detect and solve possible thread stack and heap over-

ows and collisions. Both stacks and heaps asso-

ciated with threads are organized non-contiguously

with linear segments to fully exploit possibly large

virtual address spaces. Crucial for the e�ciency

of this approach are modi�cations of the compiler

and parts of the runtime system. The proposed so-

lutions are implemented an evaluated on the SUN

Sparc V9 architecture.

Keywords: operating systems, multi threading,

memory management

1 New Features and Flaws

Multi-tasking operating systems (OS) usually
provide private address spaces for processes. In
order to share data amongst processes, IPC in-
terfaces such as shared mappings, signals, or
sockets along with error prone techniques like
pointer swizzling have to be used. Of course,
tight coupling of processes needed for cooper-
ative parallel algorithms can not be achieved
this way without considerable overhead. By
employing a single virtual address space (VA)
for all processes this and other problems can be
evaded. Each memory object is uniformly iden-

0This project is sponsored by the DFG (German Re-

search Council) as part of the SFB #342 { Tools and

methods for the utilization of parallel architectures.

��������������������������

������������
������������
������������

������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

stack thread 2

heap

stack

heap

stack thread 1

code code

B) Multi-ThreadingA) Sequential Proc.

Figure 1: VA partitioning

ti�ed with a unique memory address instead of
separately maintained identi�ers. Usually, the
VA of a process is partitioned as sketched on
the left hand side in �gure 1. Besides code seg-
ments, one stack and one heap grow and shrink
in opposite directions. A collision of stack and
heap implies that a servere error state has been
reached. In reality, exhausted physical mem-
ory or shared libraries mapped somewhere in
between stack and heap will cause faults in ad-
vance. Hence, this situation is usually accepted
although it decreases reliability.

In multi-threaded systems [1], each thread
needs its dedicated stack somewhere within the
shared VA. Unfortunately, multi-threading is
hardly supported by the memory management
system. As shown on the right hand side of �g-
ure 1 thread stacks eventually collide, although
the VA is far from being exhausted. Malfunc-

tions of this kind might a�ect many indepen-
dent computations making such approaches in-
su�cient reliable. As a matter of fact, this
problem stays unsolved in all implementations
known to the author. Some libraries allow the
de�nition of custom stack sizes if the default
size (varying from 16k to 1M depending on the
implementation) does not seem to be appro-
priate. This shifts the problem to the pro-
grammer contradicting the goal of simplicity
and even worse, is no solution to the problem.
In general, neither stack size demands nor the
number of threads can statically be predicted.

2 Related Work

Hardware supported paged segments as used in
former OS like MULTICS on Honeywell 6000
machines [2] would solve the problem. Thread
stacks, heaps and extensible code fragments
could be placed in separate segments but af-
ter years of predominant sequential processes
these features are missing.
Concurrent Oberon [3] substitutes segments
with compiler inlined stack checking code and
a prede�ned limit of 128k for the stack of each
\Active Object". Over
ows below the limit are
detected and corrected with additional alloca-
tions. Though consumption of physical mem-
ory is adaptive, unweakened linearity of stack
spaces disallows the exploitation of the whole
VA for stacks larger then the prede�ned limit.
Hence, demands may only vary within narrow
boundaries.
Using restricted pages at the end of the stack
for the detection of over
ows, combined with
deferred mapping as in Solaris [4], is fast and
compatible. While over
ows are handled su�-
ciently, correction of collisions is nearly impos-
sible. Collisions stay undetected till objects on
the restricted page are touched, although other
objects within the same frame and their ad-
dresses might already be used. At the time of
detection, registers and objects would have to
be examined globally along with pointer swiz-
zling. Compiler-based approaches like dynamic
stack probing in gcc [5], also su�er from late

detection.
In [6] problems of maintaining multiple stacks
are described. The proposed solution is to im-
plement the conceptual cactus stack as a per
processor meshed stack. This technique re-
quires expensive garbage collection of activa-
tion records within the meshed stack and ob-
stacles hardware protection. The technique
presented in this paper provides similar space
but superior time e�ciency.

3 Thread Context Managers

To enforce transparent, scalable and adapt-
able resource management in parallel and dis-
tributed environments, we developed a re
ec-
tive management architecture [7, 8, 9, 10]. The
key idea is to associate a dedicated manager

with each
ow of control. One thread and all
its termination dependent [11] passive objects
are clustered to thread-contexts (TC). Each TC
is guided by exactly one manager, which has to
satisfy all demands for resources of its TC. Be-
sides standard tasks such as allocating memory
for the stack, heap and code, a manager might
also have to enforce access restrictions. Con-

icts, such as over
ows or concurrent heap al-
locations are conceptually solved by inter man-
ager cooperation. Crucial for the e�ciency of
this approach is a systematic realization of the
conceptual managers. Any software instance
involved in resource management is regarded as
implementing parts of managers. At runtime,
each thread is guided by a small data struc-
ture | thread control block (TCB) | repre-
senting the anchor of the manager implementa-
tion. Fields within the TCB provide access to
thread speci�c runtime data structures, such as
pointers to heap and stack space of the thread.

4 VA Management

For the dynamic distribution of virtual ad-
dresses to TCs, the VA is structured into dis-
joint memory regions. A virtual memory re-
gion is a complete interval of addresses starting
and ending on page boundaries. According to

C D

B

ε

εεε

ε

E

F

a

b

c d f

e

A

Figure 2: Spreading the VA across threads

the management model introduced in section
3 the task of VA distribution as distributed
among the managers (see �g. 2). At �rst, the
complete range of addresses is assigned to man-
ager a of the root TC A. Subsequently created
TCs are provided with regions for autonomous
use by their creators. If the initial provision
proofs to be insu�cient additional regions are
dynamically requested either from the creator
or reclaimed from children. At the time of ter-
mination, each TC returns its regions back to
its creator.
The implementation of this concept is based on
maintaining all currently unallocated regions
in a region pool encapsulated in the region al-

locator.

4.1 Segments

A virtual memory segment is a complete inter-
val of virtual addresses consisting of at least
one virtual memory region. A segment stack

contains individual segments which are dynam-
ically pushed and popped. Additionally, the
top most segment may grow and shrink. No-
tice, virtual addresses within a segment stack
need neither be monotonous nor linear.
With its regions, each manager autonomously
maintains two segment stacks to provide stack
and heap memory to its TC. Every segment
has a header specifying its size and a link. The
header is placed at the highest address in case
of stack, respectively the lowest address in case
of heap to enable linear segment extensions for
downward growing stacks and upward grow-
ing heaps. In case of an over
ow of the top

heap info
size

previous
size

last seg

1st heap seg

top heap seg

heap link

previous
size

size

previous
size

last seg

1st stack seg

2nd stack seg

top stack seg

stack info

stack link

stack link

LOW ADDRESS

HIGH ADDRESS

TCB

Figure 3: Per thread segment stacks

segment, it is �rst tried to linearly extend the
top segment by requesting a connecting region
from the region allocator. Otherwise, a non-

linear extension is performed by pushing the
region received as the new top segment onto
the segment stack. An under
ow occurs, if
the stack pointer or the heap limit drop below
(above for heap) the start of the top segment.
Reductions triggered by under
ows can as well
be linear (shrinking top) or non-linear (top is
popped).

Figure 3 illustrates stack and heap space
based on segment stacks. The link �eld of bot-
tom elements references for performance rea-
sons the top segment. Management data usu-
ally kept in a static data part, e.g. heap library
variables, are placed in the information part of
the bottom segments. The �gure also depicts a
non-monotonous stack space for this TC. The

top stack segment starts and ends above its
preceding segment.

All kind of memory in this system is mmap'ed.
Fast access to the TCB is crucial. We modi�ed
GNU gcc to use a hardware register to hold the
current TCB [12].

4.2 Unlimited Thread Stacks

Segment stacks allow to lazily adapt mem-
ory consumption without a rigid limit. Each
thread is started with a single stack segment
whose size is determined at compile time. At
runtime, segment crossings are monitored and
the usually linear stack space becomes eventu-
ally split to �t on separate segments.

Only three possibilities for segment crossings
must be considered. First, when a call level is

entered, the stack pointer (SP) is decremented
(downward growing stacks) to allocate the ac-
tivation frame. Second, dynamic stack objects,
such as �elds with statically unknown ranges,
are allocated by decrementing SP. While these
two operations may cause over
ows, leaving a

call level is the source for under
ows. A sound
possibility to split the stack is between acti-
vation frames. Dynamic stack objects could as
well be separated with the e�ect of an awkward
heap alike management within stack, causing
strong internal fragmentation. As placing dy-
namic stack objects on stack is not essential,
we decided to transparently place such objects
in heap space. This, in turn has the advanta-
geous e�ect that at most each call level entry
and exit must be monitored.

4.2.1 Compiler Modi�cation

A hardware integrated compare logic check-
ing SP against segment limits would be de-
sirable but is not available. Hence, monitor-
ing must be prepared by the compiler with in-
lining code around around call instructions or
into the prologue and epilogue of subprograms.
Latter was chosen because it reduces code size
and is eligible of supporting extensibility where
the caller might have no knowledge about the
callee.

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

extd. frame (part 1)

extd. frame (part 2)

%sp overflow

%l0-24

-16

-8

-4

top - 0

-24 (64bit aligned)

next frame

%fp
reg save area

%fp+92

%fp+64

arguments on stack

addr of allocated segment

old stack limit

old stack pointer

reserved

reserved

-12

on frame of caller
addressable fields

%l0

%sp

end of new segment.

size = 120 bytes

8k-120 < size < 8k

%fp-8

addr of previous seg hdr

size of this segment

float move area

display, local variables

reg save, call args, etc.
SP

FP

AP

contd. callee fram
e

Figure 4: Non-linear stack extension

Stack addressing had to be changed. Usu-
ally, a single frame pointer (FP) points in be-
tween two frames. Negative o�sets reference
local objects, while arguments are found via
positive o�sets. Now, the size of the possible
gap between arguments and locals is statically
unknown. This requires an explicit argument
pointer (AP). On Sparc V9, we utilize regis-
ter %l0 as FP and changed the semantics of
%fp to AP instead of using a new register for
the AP. This approach provides compatibility
(debugger, libraries, etc.) and better perfor-
mance. The activation frame layout was ex-
tended with a
ag determining whether the
frame has caused a non-linear extension. While
over
ows are checked against the stack limit
recorded in the TCB under
ows are detected
via the extension
ag. Due to alignment rea-
sons more than one bit must be allocated. This
property is exploited for faster segment deallo-
cation by storing the address of the allocated

segment instead of just a boolean value. All of

these modi�cations were made to the low-level
back-end of the GNU gcc compiler. Among
the bene�ts are support for many languages
(C, C++, INSEL, etc.) at once and compat-
ibility with all compiler optimizations such as
function inlining or leaf functions.

Correcting an over
ow requires calls of sub-
programs consuming further stack space. This
is accomplished by maintaining a reserved area

at the end of the current stack segment. The
technique implemented ensures, that at least
the size of the reserved portion (currently 8k)
minus the minimal frame (currently 120 bytes)
is available for the over
ow handler. It can eas-
ily be proofed, that over
ows are always han-
dled within this space. In case of non-linear ex-
tensions, the reserved area is temporarily lost.
Linear extensions simply move the reserved
area to the new end of the segment without
losses.

4.2.2 Performance Considerations

The computational costs for dynamic stack
checking are comparably low. In the aver-
age case of no extension, 5 + 3 additional in-
structions incur. The e�ect on real programs
is debatable. Tests with a simple parallel
prime generator indicate an insigni�cant over-
head (40.3 versus 40.5 seconds). Widening the
scope of checks could further reduce this over-
head. I. e. checks are only needed at points of
recursion.

Internal fragmentation only occurs in case
of non-linear extensions. Let f be the average
frame size, r the size of the reserved area, and
s the average segment size. Following formula
is an approximation of the internal stack frag-
mentation, if every extension was non-linear:

Favg =
r + ((s� r) mod f)

s
; 8k�120 < r < 8k

If f = 256; r = 8192, and s = 32k in-
ternal fragmentation would be 25%. Non-
linear extensions are problematical in two
ways. First, they may cause noticeable frag-
mentation, which can be optimized by choosing
adequate segment sizes. Second, in contrast

to linear extensions, non-linearly extended seg-
ments become freed as soon as the call-level
causing the extension is left and might already
be reallocated with the next call leading to un-
favorable thrashing . This situation is avoided
by exploiting the region allocator to provide
regions at preferred addresses.

4.3 Segmented Heap

We investigated existing libraries concerning
their eligibility to serve as a starting point
for the implementation of the heap segment
stack. Because of its excellent performance [13]
and its both, short and understandable source
code, D. Lea's freely available memory alloca-
tor G++ malloc [14] was selected. It structures
heap space into free and allocated chunks. A
special free chunk, called top chunk (TC), is
used to grow and shrink the heap. It is split
and coalesced as chunks are (de-)allocated at
the top end of the heap while being increased
and decreased at the upper end with the sys-
tem call sbrk.

In contrast to stacks, the separate manage-
ment of each application-level object in a chunk
allows to easily spread a heap across segments,
because splitting can be performed between ar-
bitrary chunks. Obviously, linear extensions
and reductions simply increase and decrease
TC's upper limit, identically to sbrk.

Several modi�cations were made to support
positive or negative holes caused by non-linear
extensions (see �gure 5). If TC is non-linearly
extended, the e�ectual TC is converted into
an ordinary free chunk, which can be used to
satisfy subsequent allocations. Its chunk in-
formation (size, etc.) is placed at the highest
address of the old top segment. Above the seg-
ment header of the new segment, a special hole
chunk is installed and the allocation causing
the over
ow is performed. The remainder of
the segment is used as the new TC. The hole
chunk serves two purposes. First, it stores the
information about the old TC. Second, it has
a
ag set, that prevents this chunk from being
coalesced with other chunks than the TC. Heap
trimming operations, succeeding deallocations

discontinous
top extension

addr of previous seg hdr

size of this segment

addr of previous seg hdr

size of this segment

segtop - 8

contd. heap arena

+8

+8

segtop

(user data + management info)

used and unused chunks

+16

info about last chunk in segment (size, etc)

heap (arena) information

causing the overflow
chunk of the object

+ ~1k

hole chunk (hole flag, addrress of old top)

new top chunk

Figure 5: Heap extension

with coalescences, decrease TC's upper limit if
its size exceeds a certain limit. Each time TC is
trimmed, it is also checked, whether TC could
be coalesced with the hole chunk, which would
mean that no chunks are allocated within this
segment. If this is the case, a non-linear re-
duction is performed instead of just linearly
reducing the segment size. Before returning
regions to the node region pool, the old TC is
re-established based on information stored in
the hole chunk and at the end of the previous
segment.

The computational overhead introduced
with the segmented heap organization is ne-
glectable. Similarly to stack space, fragmen-
tation increases with the amount of non-linear
extensions which can be controlled with the re-
gion allocator. In contrast to stack space, there
is no reserved area in heap space being wasted.
Furthermore, lazy reduction can be employed
by deferring heap trimming which nearly elim-
inates the thrashing e�ect explained in 4.2.2.

5 Conclusion

The memory management techniques pre-
sented, support parallelism as an integral part
of the OS architecture. The motivation is to
free the application level from repetitive and
error prone management tasks. The program-
mer is not burdened with stack size require-
ments. Instead, the OS performs adaptive seg-
mentation to fully exploit the address space for
concurrent computations dynamically varying
in size and number. Memory consumption cor-
responds to application-level requirements and
these features do not induce signi�cant over-
head. Instead of constructing layers and to pre-
serve compatibility to a certain degree, exist-
ing tools are modi�ed according to the changed
requirements. Existing binaries can be inte-
grated into the system but to fully pro�t from
these new features, applications have to be re-
compiled. Implementation and evaluation of
segmented stacks as well as modi�cations of
the malloc library, are mostly �nished with the
exception of linear stack extensions.

References

[1] IEEE. IEEE 1003.1c-1995: Information

Technology | Portable Operating System

Interface (POSIX) - System Application

Program Interface (API) Amendment 2:

Threads Extension (C Language). IEEE
CS Press, 1995.

[2] A. S. Tanenbaum. Modern Operating Sys-

tems. Prentice Hall, New Jersey, 1992.

[3] P. Reali A. R. Disteli. Combining Oberon
with active objects. In Proc. of JMLC,
Linz, Austria, March 1997. Springer.

[4] SunSoft, Mountain View, CA. Solaris

Multithreaded Programming Guide, 1995.

[5] R. M. Stallman. Using and Porting GNU

CC. Free Software Foundation, November
1995.

[6] G. Hogen and R. Loogen. A new stack
technique for the management of runtime

structures in distributed environments.
Technical Report 93-03, RWTH Aachen,
1993.

[7] C. Eckert and H.-M. Windisch. A top-
down driven, object-based approach to
application-speci�c operating system de-
sign. In Proc. of IWOOOS, Sweden, Au-
gust 1995.

[8] C. Eckert and H.-M. Windisch. A new
approach to match operating systems to
application needs. In Proc. of the ISMM,
Washington, DC, October 1995.

[9] S. Groh. Designing an e�cient resource
management for parallel distributed sys-
tems by the use of a graph replacement
system. In Proc. PDPTA, pages 215{225,
August 1996.

[10] S. Groh and M. Pizka. A di�erent ap-
proach to resource management for dis-
tributed systems. In Proc. of PDPTA,
July 1997.

[11] M. Pizka and C. Eckert. A language-based
approach to construct structured and e�-
cient object-based distributed systems. In
Proc. of HICSS-30, volume 1, pages 130{
139, Maui, Hawai, January 1997. IEEE CS
Press.

[12] Markus Pizka. Design and implemen-
tation of the GNU INSEL-compiler gic.
Technical Report TUM-I9713, Technische
Universit�at M�unchen, Dept. of CS, 1997.

[13] D. Detlefs, A. Dosser, and DB. G. Zorn.
Memory allocation costs in large C and
C++ programs. Software Practice and

Experience, 24(6):527{542, June 1994.

[14] D. Lea. A memory allocator, December
1996.
http://g.oswego.edu/dl/html/malloc.html.

