intgl.

|A-64 Software Conventions
and Runtime Architecture Guide

August 1999

Order Number: 245256-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The NAME OF PRODUCT may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’'s website at http://www.intel.com.

Copyright © Intel Corporation, 1999
*Third-party brands and names are the property of their respective owners.

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Contents

1 Introduction to the 1A-64 Software Conventions and Runtime Architecture Guide.......... 1-1
1.1 Objectives of the Runtime ArchiteCture ... 11

1.2 About the COoNVENLIONSooiiiiii e e e e e e raeeaes 1-1

1.3 Overview of the IA-64 Software Conventions and Runtime Architecture Guide 1-2

1.4 =] 10411 ao] o])2 PR PO PPPRPPRRR 1-2

2 IA-64 Processor ArCHItECIUIEoooiviiiiiiii e 2-1
2.1 Application State and Programming Model..........cceuvvvvieeeiiiiiiciiiiiieeeee e 2-1

2.2 Floating-point Programming MoOdeleeevieeiiiiiiiiiiiiceeeee e 2-2

3 Y71 o g0 Y 1 o T [SRR 3-1
3.1 Program SEOMENTSccoiiiiiiiieieee et s s s s s e s e s e s e e e e e e e eeaeaeeeeeeraeenennrnrnrenes 3-1

3.2 [(01 =Tox (o] g = 1T 1S PRSP 3-2

3.3 (D=1 - WY | (o Tot= i o] o PSR PSP 3-4

331 Global Variablescooiiiiiiie e 3-4

3.3.2 LOCAl SEALIC DALA ...eeeevvveiieiiiiiiie et 3-4

3.3.3 Constants and LiteralS..........occveeiiiiiiiieeniiiiee e 3-4

3.34 Local Memory Stack Variables............cccoccviviiiie e 3-4

4 D= = W R (Y o] (=11=] 1 =i o) o PR 4-1
4.1 FUNAMENTAL TYPESeteeeeeeieie ettt e e e e eee e e e e e e e e annes 4-1

4.2 AQOIEOALIE TYPES .o e e e e e e e e e e et e eeeeeaeaaaeaa 4-2

4.3 2 1= o [SRS 4-5

4.4 FOrtran Data TYPES ...t e e e e e e e e e e e e e e e e eeeaeeees 4-8

5 T oIS (=T U 7= Vo = PP 5-1
5.1 V1170 o1 T PP SESRR 5-1

5.2 GENEIAl REQISIEIS .uviiiiiiii e e et ee e e e e e e e se s e e e e aaeeeassannnanes 5-1

5.3 Floating-point REQISTEISccvcei i r e e e e e e e s e nanes 5-2

5.4 Predicate REQISIEISuuiiiiiiii e e e e e s e e e ae e e e e e aans 5-3

5.5 BranCh REQISIEISuuiiiiiiiiiie e e e e e e e s s r e e e e e e e e eenanns 5-3

5.6 APPlICAtION REGISIEIS....uviiiiieeiii ettt s e et e e e e s e e e e e e e e e e e e sanaans 5-4

6 =0 1S3 (=) = Uod P 6-1
6.1 INput and LOCAl REQISIEIS.......cceei it ee e e e s ar e e e e e e e e e 6-1

6.2 (O 101 010 2 (T 1) (= £ PSSR 6-1

6.3 ROtAtING REGISIEIS ... e e e e e s e r e e e eeeeeeas 6-2

6.4 Frame MATKETSoouuiiiieiiiiie ettt s e e e b e e e e eneeees 6-2

6.5 Backing Store for Register Stackcccveviivveeiiiiiiiieeecee e 6-3

7 Y 1T g0 VS - o] PRSP 7-1
7.1 Procedure FrameS...........ooooiiiiiiii it e e e e e e e e e e e e e e b 7-1

8 ProCeaure LINKAGEccooi ittt ettt et e e sib e e s sanbnee e 8-1
8.1 External Naming CONVENTIONS.........c.cuuuiiiiiieeeeeeiieciiiiiiee e e ee e e e e e s s snnrnnneereeeeeeeeenanns 8-1

8.2 LN o T =T) (] SRS 8-1

8.3 TYPES Of CallS. .o e e e e e e e e e e 8-1

IA-64 Software Conventions and Runtime Architecture Guide iii

10

11

8.4 CalliNg SEUUENCE ...ttt e e e e e eareaaaaa e an 8-2
8.4.1 DIreCt CallSeeeeieiiieee e s 8-2

8.4.2 INAITECT CallS....eiiiiiiiei et 8-4

8.5 Parameter PaSSINg.......oouiiiiiiieiiiee ettt e e e 8-5
8.5.1 Allocation of Parameter SIOtS..........cocovvieiiiiiiiieiiiiieee e 8-6

8.5.2 ReQISter PArameters ... 8-7

8.5.3 Memory Stack Parameters.........cooouiuiiiiiiiiieieeeeee e 8-10

8.5.4 Variable Argument LiStScoooiiiiiiiiiiiiieeee e 8-10

8.55 Pointers to Formal Parameterscccovveiiiiiiee e 8-10

8.5.6 Languages Other than C..........coooiiiiiiiiiii e 8-10

8.5.7 Rounding Floating-point Valuesccuvuiiieiiiiiiiieeeeeeeee e 8-11

8.5.8 EXAMPIES. ...ttt 8-11

8.6 RETUIN VAIUES ...t 8-13
8.7 Requirements for Unwinding the Stack.............cccociiiiii 8-14
(6o]e[1aTe @] 1177=T 01 i o] T PO P TSP P O PPPPPRTPPI 9-1
9.1 SamMPple COAE SEQUENCESooieiiieiiiiiiiiee ettt e e e e e e e e e eeeeeaaaeeeeaans 9-1
9.1.1 Addressing “own” Data in the Short Data Areaccccccoeeeiiiiivinnnee. 9-1

9.1.2 Addressing External Data or Data in a Long Data Area.................... 9-1

9.1.3 Addressing Literals in the Text Segment............cccoiiieeeieiiniineee 9-2

9.1.4 Materializing FUNCtion POINTEISueviiiiiiieii e 9-2

9.15 Direct Procedure CallScoooiiiiiiieiiiiiieiieee e 9-2

9.1.6 Indirect Procedure CallS...........covviiiiiiiiiiiiiiie e 9-2

9.1.7 JUMP TADIES ...t 9-3

9.2 Y o= To N =1 1 o] o TP UP T SUUUPUPRRTTRT 9-3
9.3 Multi-threaded COUE.........uiiiiiiiiiiee e 9-4
9.4 SEMP AN TONGIMIP .t e e e e e e e e e e e e e enas 9-4
9.5 Up-level RefereNCiNg.......coo i 9-4
9.6 CH+ CONVENTIONS ittt ettt s e e e s b e e e nanns 9-5
CoNtexXt MAaNAGEIMENT.......oeiiiiiiiiiii e e e 10-1
10.1 ProcesS/thread CONEXLuuuviiiiieeiiiiiiiiiieir e e e e et r e e e e e e s e eeaeeee s 10-1
10.2 User-level thread SwitCh, COrOULINESceeeiiiiiiiie e 10-2
0 R~ 1y a] o4 (o T 11 1] o PSSR 10-2
Stack Unwinding and Exception Handlingccccoiiieiiiiiiee e 11-1
111 UnNwinding the SEACKccoiiiiiiiiiiiiec e 11-2
1111 INTGAL CONEEXL....eiiiiiiiiiie e 11-2

11.1.2 Step t0 Previous Frame..........ooeiiiiiieiniiieee e 11-2

11.2 Exception Handling Frameworkccoveieiiiiiiiiiiiiie e 11-3
11.3 Coding Conventions for Reliable Unwinding.............c.oocooeeiiiiiiiiiiie e, 11-4
11.31 Conventions for Prologue Regions..........c.ceveviiiiieeniiiiie e 11-5

11.3.2 Conventions for Body REQIONS..........ccooviiiiiiiiiiiiieen e 11-7

11.3.3 Conventions for the Spill Area in the Memory Stack Frame............ 11-7

114 DaAta SITUCTUIES .ooeeiiiiiiiiite ettt ettt e e e e e e e 11-8
1141 UNWIN TabIE ..o 11-8

11.4.2 UNwind DeSCIPLOr AT Aevieiiiiiiiie ittt 11-10
11.4.2.1 Region header reCordscocueeeeiiiiieeeiiniieee e 11-10

11.4.2.2 Descriptor records for prologue regionsccccceeeennee. 11-11

11.4.2.3 Rules for Using Unwind DesCriptors..........cccveeeeiiivieeennnns 11-15

11.4.2.4 Descriptor Records for Body Regionsc..ccoecvuvvneee. 11-16

IA-64 Software Conventions and Runtime Architecture Guide

intel.

11.4.2.5 Processing Unwind DeSCHpPtOrS.........ceievieeeiiniiiiiiiiieeaenn. 11-18

11.4.3 Language-specific data areaccoovveuuvvieiiiiiieiie e 11-18

12 DYNAMIC LINKING ..ttt e e e e e et e e e e e e e e e s e e ananaebeeas 12-1
12.1 Position-Independent COUE.........uuiiiiieeeeeeiii e e e e 12-1

12.2 Procedure Calls and Long Branch Stubsccccccvveeiiiiiiiiieccee s 12-1

12.3 Access to the Data SEQMENT.......ccviiiieii i a e 12-1

12.3.1 Access to Constants and Literals in the Text Segment................... 12-2

12.3.2 Materializing FUNCLiON POINTEIScoooiviiiieeeee e 12-2

D 11 T o o] 081 (1 1SS 12-2

12.5 The dynamiC lI0ader.......ccooi it 12-2

13 SYSIEM INEEITACES. . .ic it er e e e e e e s e e rareeaeaeeeeannnnnne 13-1
R 00 R o (0T [= T TS =V g (o I 13-1

13.1.1 Initial MemOry StacKccuvviiiiiiieee e 13-1

13.1.2 Initial Register VAlUES.........c.uuviviiiie et 13-1

13.2 SYSEM CallS ..oeiiiiiiiiiiiie e e e e 13-2

13.3 Traps @nd SIGNAIS ...eceiiieeiie it 13-2

A Standard HEAEr FlESoouiiiiiiiiiiie et e et A-1
Al Implementation LIMILSeiiiiiiiai e A-1

A.2 Floating-Point DefinitioNSoooiiiii e A-1

A.3 Variable Argument LiSt MACIOSuuuiiiiiiiaiaiiiiiiieeee e e A-2

A4 SEMPILONGJMIP ettt ettt e e e e e e e e e e e e e e e e aaeeesaaannnbbneeeees A-3

B Unwind Descriptor RECOId FOIMAL........uuuiiiiiieeieiiiiciiiie e e e e se s e e e e e e e B-1
B.1 OVEBIVIBW ...ttt e e e e ettt et e e e e e e e e e e aa bttt e et e aaaaeeeaaannnneneneeaeas B-1

B.2 Region Header RECOIUS........iii i e e s B-2

B.3 Descriptor Records for Prologue RegIiONS.........cocuiiiiiiiiiiiaei e B-3

B.4 Descriptor Records for Body REQIONScooiiiiiiiiiiiiiieeaeees e B-7

B.5 Descriptor Records for Body or Prologue RegioNScccvvevvivieieiniiiiiee e B-8

IA-64 Software Conventions and Runtime Architecture Guide Y

Figures

Vi

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
6-1
7-1

8-2
8-3

8-5
111
11-2

Structure Smaller Than a Word..........cooovviiiiiiiiiee e 4-2
NN o T = To (o [oo OSSPSR 4-3
L1 C=T g =TI =T o 1 o SR 4-3
Internal and Tail Paddingcccuuviiiiiiiie e 4-4
UNION AlIOCALION ...t 4-4
210N 10T] o T= T T o PSP 4-5
Bit Field AllOCALION.........coiiieiiie e 4-6
Boundary AIGNMENT........cieiii it er e e e e e e e s e e e e e e e e e e e ennes 4-6
Storage UNit SNATINGuveiiiiiiiei e e e e e 4-7
(@] TTo] a1 Y| [oTox= 11 1] o H O PUTT P PR 4-7
Unnamed Bit FIelUS.......oooiiiiiee e 4-7
Operation of the RegisSter StaCKcoeiiiiiiiiiii e 6-2
ProCedure framMEeoooi i 7-1
Direct procedure CallSuuiiiiiiiiieee e 8-2
Indirect Procedure CallS..........ooueeiiiiiiiiee e 8-4
Parameter Passing in General Registers and Memoryccccoooeeeeieieeeniinnns 8-5
Examples of “LSB” AlIGNMENTooiiiiiiiiiee e 8-8
Example of “Byte 07 AIGNMENT........ooiiiiiiiiii e 8-9
Components of the exception handling mechanismccccoooiinnnis 11-5
Unwind table and example of language-specific data area.............ccccccceeeeeen. 11-9

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Tables

10-1
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
13-1
B-1

Y0 11T = L (=T 0] o] £ SRS 2-2
Program SEgMENLSccooiiiiiiiiiiiee e e s s s s s e aaranarn 3-1
PrOtECHION AFBASc.iiiiiieiie ettt 3-2
Alignment Requirements for Global Objectsccccevvveeeiiiiiicce e 3-4
Scalar Data types Supported by [A-64cccveveiiieiee e 4-1
Bit FIeld BASE TYPES ..vuuriiiiiiieeeeii ittt iie et e e e e e s s setteee e e e e e e s e s s s snnsneanneeneeeeeesennnnns 4-5
(o iz T g D= 1= T Y/ o1 PP 4-8
GENEIAl REQISIEIS .uviiiiiiiei e ittt e e e s e e e er e e e e e e e e s anannrene 5-1
Floating-Point REGISIEISccoiiiiii ettt e e 5-3
Predicate REQISIEISu it ee e e e e e e 5-3
BranCh REQISIEISttt e e e e e e e e aaaes 5-4
APPlICALION REGISTEIS. .. .eeiiiiiieie it a e e e e e 5-4
Rules for Allocating Parameter SIOtS.........cooiiaaiiiiiiiiiiee e 8-6
Rules for REtUIN VAIUEScooiiiiiiieii e 8-13
Resources to be saved on context SWItChescccccevviiiieiiiiiie e, 10-1
Region Header RECOIUS........coi ittt e e 11-10
Prologue Descriptor Records for the Stack Frame...........ccccccoeeiiiiiiiiiennnn. 11-11
Prologue Descriptor Records for the Return Pointer.............cooociiieeieennne 11-12
Prologue Descriptor Records for the Previous Function State....................... 11-12
Prologue Descriptor Records for Predicate Registers.........cccooeuiiiiieeiieennnns 11-12
Prologue Descriptor Records for GRs, FRs, and BRS ... 11-13
Prologue Descriptor Records for the User NaT Collection Register 11-14
Prologue Descriptor Records for the Loop Counter Register.............cccoeuneee 11-14
Prologue Descriptor Records for the Floating-Point Status Register 11-14
Prologue Descriptor Records for the Primary unat Collection........................ 11-15
Prologue Descriptor Records for the Backing Store.........cccccoovviiiiieeieiaennennne 11-15
Body Region DescCriptor RECOISuuiiiiaiiaeiiiiciiiiieee e 11-17
General UNWINd DESCHPLOISueiiiiiieiiiiiiiiiiiiie et e e 11-17
Initial Value of the Floating-Point Status Register...........ccocvvveeiiiiieee e 13-1
RECOI FOIMALS. ...ttt e B-1
Example ULEB128 ENCOINGScovvvieeiiiiiiiee ittt B-2

IA-64 Software Conventions and Runtime Architecture Guide Vil

viii

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Introduction to the IA-64 Software Conventions
and Runtime Architecture Guide 1

1.1

1.2

This document describes common 64-bit software conventions for the Intel 1A-64 Architecture. It
does not define operating-system interfaces or any conventions specific to any single operating
system.

The runtime architecture defines most of the conventions necessary to compile, link, and execute a
program on an operating system that supports these conventions. Its purpose isto ensure that object
modules produced by different compilers can be linked together into a single application, and to
specify the interfaces between compilers and linker, and between linker and operating system.

The runtime architecture does not specify the Application Programming Interface (API), the set of
services provided by the operating system to the program, nor does it specify certain conventions
that are specific to each operating system. Thus, conformance to the runtime architecture alone is
not sufficient to produce a program that will execute on all 1A-64 platforms. It does, however,
allow many of the development tools to be shared among various operating systems.

When combined with the instruction set architecture, an API, and system-specific conventions, this
runtime architecture leads to an Application Binary Interface (ABI). In other words, an ABI isthe
composition of an API, system-specific conventions, a hardware description, and a runtime
architecture.

Objectives of the Runtime Architecture

This document defines the software interfaces needed to ensure that software for |A-64 will
operate correctly together. The intent is to define as small a set of interface specifications as
possible, while still meeting the following goals:

* Support 64-bit addressing and data types
* High performance

¢ Ease of porting

* Ease of interfacing with |A-32

¢ Ease of implementation and use

* Complete enough to insure software compatibility

About the Conventions

ANSI C serves as the reference programming language. By defining the implementation of C data
types, the software conventions can give precise system interface information without resorting to
assembly language. Giving C language bindings for system services does not preclude bindings for
other programming languages. Moreover, the examples given here are not intended to specify any
particular C language implementation available on the system.

IA-64 Software Conventions and Runtime Architecture Guide 1-1

[]
Introduction to the IA-64 Software Conventions and Runtime Architecture Guide Int9| o

1.3

1.4

1-2

Overview of the IA-64 Software Conventions and
Runtime Architecture Guide

Chapter 1, “Introduction to the 1A-64 Software Conventions and Runtime Architecture Guide”
Chapter 2, “IA-64 Processor Architecture”

Chapter 3, “Memory Model”

Chapter 4, “Data Representation”

Chapter 5, “Register Usage”

Chapter 6, “Register Stack”

Chapter 7, “Memory Stack”

Chapter 8, “Procedure Linkage”

Chapter 9, “Coding Conventions”

Chapter 10, “Context Management”

Chapter 11, “Stack Unwinding and Exception Handling”
Chapter 12, “Dynamic Linking”

Chapter 13, “System Interfaces”

Appendix A, “Standard Header Files”

Appendix B, “Unwind Descriptor Record Format”

Terminology

The following terms will be used in the rest of this document:

Absolute address. In this document, the term absolute address refers to a virtual address, not a
physical address. It is an address within the process’ address space that is computed as an absolute
number, without the use of a base register.

Binding. The process of resolving a symbolic reference in one module by finding the definition

of the symbol in another module, and substituting the address of the definition in place of the
symbolic reference. The linker binds relocatable object modules together, and the DLL loader
binds executable load modules. When searching for a definition, the linker and DLL loader search
each module in a certain order, so that a definition of a symbol in one module has precedence over
a definition of the same symbol in a later module. This order is calldirttiang or der.

Dynamic-link library (DLL). Alibrary that is prepared by the linker for quick loading and
binding when a program is invoked, or while the program is running. A DLL is designed so that its
code is shared by all processes that are bound to it. (Also sadlest! library.)

IA-64 Software Conventions and Runtime Architecture Guide

In

t9| o Introduction to the IA-64 Software Conventions and Runtime Architecture Guide

Execution time. Thetime during which a program is actually executing, not including the
time during which it and its DLLs are being loaded.

Function pointer. A reference or pointer to afunction. A function pointer takes the form of a
pointer to aspecia descriptor (afunction descriptor) that uniquely identifies the function. The
function descriptor contains the address of the function’s actual entry point as well as its global
data pointer (gp).

Global data pointer (gp). The address of a reference location in a load module’s data
segment, usually kept in a specified general register during execution. Each load module has a
single such reference point, typically near the middle of the load module’s linkage table.
Applications use this pointer as a base register to access linkage table entries, and data that is local
to the load module.

Link time. The time when a program or DLL is processed by the linker. Any activity taking
place at link time is static.

Linkagetable. A table of addresses that contains pointers to code or data that is external to the
load module, or that cannot be addressed directly. Each load module contains a linkage table in its
data segment, which allows external references to be bound dynamically without modifying the
application’s code.

L oad module. An executable unit produced by the linker, either a main program or a DLL. A
program consists of at least a main program, and may also require one or more DLLs to be loaded
to satisfy its dependencies.

Own data. Data belonging to a load module that is referenced directly from that load module
and that is not subject to the binding order. If a module references a data item symbolically, and
another module earlier in the binding order defines an item with the same symbolic name, the
reference is bound to the data item in the earlier module. If this is the case, the data is not “own.”
Typically, own data is local in scope.

PC-relative addressing. Code that uses its own address (commonly called the program
counter, or “PC”; this is called the instruction pointer, or IP, in the |IA-64 architecture) as a base
register for addressing other code and data.

Position-independent code (PIC). This term has a dual meaning. First, position-

independent code is designed so that it contains no dependency on its own load address; usually,
this is accomplished by using pc-relative addressing so that the code does not contain any absolute
addresses. Second, it also implies that the code is also designed for dynamic binding to global data;
this is usually done by using indirect addressing through a linkage table.

Preserved register. A register that is guaranteed to be preserved across a procedure call.

Program invocation time. The time when a program or DLL is loaded into memory in
preparation for execution. Activities taking place at program invocation time are generally
performed by the system loader or dynamic loader.

Protection area. A portion of a segment that shares common access protections.

IA-64 Software Conventions and Runtime Architecture Guide 1-3

[]
Introduction to the IA-64 Software Conventions and Runtime Architecture Guide Int9| o

1-4

Region. TheIA-64 architecture divides the address space into four or eight regions. In general,
the runtime architecture is independent of which segments are assigned to which region.

Scratch register. A register that is not preserved across a procedure call.

Segment. An areaof memory that has specific attributes, and behaves as afixed unit at runtime.
All items within a segment have a fixed address relationship to one another at execution time, and
have acommon set of attributes. Items in different segments do not necessarily bear this
relationship, and an application may not depend on one. For example, the program text segment is
defined to contain the main program code, unwind information, and read-only data. The use of this
termis not related to the concept of a segment in the |A-32 architecture, nor isit directly related to
the concept of a segment in an object file.

Static. (1) Any dataor code object that is allocated at a fixed location in memory and whose
lifetimeisthat of the entire process, regardless of its scope; (2) A binding that takes place at link
time rather than program invocation or execution time.

IA-64 Software Conventions and Runtime Architecture Guide

intel.

IA-64

Processor Architecture 2

2.1

It is assumed that applications conforming to this specification will run in a software environment

provided by some operating system, and that additional conventionswill be specified as part of the
Application Binary Interface (ABI) for that operating system. It is further assumed that the

operating system will restrict the application’s access to the physical resources of the machine, by
limiting the privilege level of the application and by using virtual memory to define the address
space available to the application.

ThelA-64 Application Developer’s Architecture Guide (ADAd&fines the 1A-64 application
instruction set architecture. Programs intended to execute directly on an | A-64 processor use the
instruction set, instruction encodings, and instruction semantics defined in the ADAG. Three points
deserve explicit mention:

¢ A program may assume all documented instructions exist.
¢ A program may assume all documented instructions work.
* A program may use only the instructions defined by the architecture.

In other words, from a program’s perspective, the execution environment provides a complete and
working implementation of I1A-64.

This does not imply that the underlying implementation provides all instructions in hardware, only
that the instructions perform the specified operations and produce the specified results. The
software conventions neither place performance constraints on systems nor specify what
instructions must be implemented in hardware. A software emulation of the architecture could
conform to these conventions.

Some processors might support IA-64 as a subset, providing additional instructions or capabilities.
Programs that use those capabilities explicitly do not conform to these conventions. Executing
those programs on machines without the additional capabilities results in undefined behavior.

These conventions are intended for application use, and so use only features found in user mode.
Applications should assume that they will execute in user mode (privilege level 1, 2, or 3), and that
any attempt to use processor resources restricted to privilege level 0 will cause a trap that may
terminate the process.

Application State and Programming Model

An application may use all features of IA-64 that are described in the Application State and
Programming Model section of the ADAG.

Application use of ther eak instruction is subject to the following conventions:

¢ |Immediate operands whose three highest-order bits are 000 are reserved for architected
software interrupts. These software interrupts are listed in Table 2-1. Application programs
(typically language runtime support libraries) may check for these conditions and raise these
interrupts, but are not required to do so. Immediate operandsin this range, and not listed in the
table, are reserved for future use.

IA-64 Software Conventions and Runtime Architecture Guide 2-1

[]
IA-64 Processor Architecture I nt9| o

¢ Immediate operands whose three highest-order bits are 001 are available for application use as
software interrupts. The behavior of these interrupts, however, is ABI specific.

* |Immediate operands whose two highest-order bits are 01 are reserved for debugger
breakpoints. Use of debugger breakpointsis ABI specific.

* |Immediate operands whose highest-order bit is 1 are reserved for definition by each ABI. Itis
expected that some operating systems may use valuesin this range for system-level debugging
features and system calls.

Table 2-1. Software Interrupts

Operand Software Interrupt
0 Unknown program error (_typically an indirect branch through an uninitialized pointer, which often
leads to a bundle containing all zeroes)
1 Integer divide by zero
2 Integer overflow
3 Range check/bounds check error
4 Nil pointer dereference
5 Misaligned data
6 Decimal overflow
7 Decimal divide by zero
8 Packed decimal error
9 Invalid ASCII digit (unpacked decimal arithmetic)
10 Invalid decimal digit (packed decimal arithmetic)
11 Paragraph stack overflow (COBOL)
2.2 Floating-point Programming Model

An application may use all features of the processor architecture that are described in the Floating-
Point Programming Model section of the ADAG.

2-2 IA-64 Software Conventions and Runtime Architecture Guide

intel.

Memory Model

3

3.1

Table 3-1.

IA-64 Software Conventions and Runtime Architecture Guide

These conventions define avirtual memory system with a 64-bit virtual address space per process.
Each operating system may divide this address space into different portions, and assign specific
uses to each portion.

This chapter describes the types of memory segments and protection areas that an application
process uses, and documents the assumptions that an application may make about those segments.
From a different perspective, it documents the minimum requirements that must be satisfied by an
operating system with respect to its allocation of these program segments in the virtual address
space.

The term segment is used here to identify an area of memory that has a specific use within an
application and has no fixed address relationship to any other segment. Thus, relative distances
between any two items belonging to the same segment are constant once the program has been
linked, but the distance between two itemsin different segments is not fixed. It does not imply the
use of hardware segmentation, or any specific allocation of segments to hardware regions. In
particular, this definition of segment has no relation to the traditional 1A-32 segment, nor does it
necessarily correspond exactly to the definition of a segment in an object file.

Segments are composed of one or more protection areas. The term protection area is used to
indicate an area of memory that has common protection attributes.

Program segments

Table 3-1 lists the types of program segments that are defined by the runtime architecture, and
defines the minimum set of attributes that an operating system must provide for these segments.

Program Segments

Segment Type | Sharable Quantity Address by Contents

Text Yes 1 per load module IP or linkage table Iﬁﬁgtgmigiénfigg?;ion'

Short Data No 1 per load module ap Static data, bss, linkage tables
Long Data No any linkage table Long data, bss

Heap No any pointer Heap data

Stack No 1 per thread sp Memory stacks

Backing store No 1 per thread bsp Backing store for register stacks
Thread data No 1 per thread tp Thread-local storage

Shared data Yes any pointer Shared memory

Memory Model i nt9| o

3.2

The sharable attribute indicates whether or not the memory contained within such a segment may
be shared between two or more processes. For text segments, thisimplies that an operating system
will probably not grant write access, in order to make the text segment pure. For this reason, the
runtime architecture does not place anything into the text segment that may need to be written at
either program invocation time or execution time.

A program consists of several load modules: the main program, and one for each DLL that it uses.
Each load module consists of at least atext segment and a short data segment. The addresses of
these segments are not fixed at link time, so all accesses to these segments must be either pc-
relative (for text), gp-relative (for short data and the linkage table), or indirect viathe linkage table.
The gp register and its conventions are described in Chapter 8, “Procedure Linkage”

DLL data may be allocated at execution time. This implies that DLL data segment sizes need not
be fixed at linkage time.

Each operating system is expected to provide some form of heap management, although the
runtime architecture does not have any explicit dependencies on such. The API for obtaining heap
memory, however, is operating system dependent, and the runtime architecture places no
restrictions on the locations or contiguity of separately-allocated items from the heap.

Each thread is provided with two stacks: one for the classical memory stack, and one for the
register stack backing store. Each thread also has a separate data segment for thread-local storage.
These segments must all be allocated from the process’ virtual address space, so that one thread
may use a pointer that refers to another thread'’s local storagep Tégister and its conventions

are described i€hapter 7, “Memory Stack,’and thessp register is described @hapter 6,

“Register Stack’Thet p register is reserved to provide a handle for accessing thread-local storage,
but this usage is ABI dependent.

Like the heap, shared data segments are obtained through an operating system-specific API. The
runtime architecture places no restrictions on the locations of these segments.

Protection areas

Table 3-2 lists the minimum access protection for the protection areas defined in the runtime
architecture:

Table 3-2. Protection Areas

Segment Protection Area Min. Access
Text X
Text Constants R
Unwind Tables R
Static Data R, W
Short data Short Bss R, W
Linkage Tables R, W
Long Data R, W
Long data
Bss R, W
Heap Heap R, W

IA-64 Software Conventions and Runtime Architecture Guide

i nt9| o Memory Model

Table 3-2. Protection Areas

Segment Protection Area Min. Access
Stack Stack R, W
Backing store Backing store R, W
Thread data Thread data R, W
Shared data Shared data R, W

In order to make the most effective use of the addressing modes available in |A-64, each load
module’s data is partitioned into one short and some number of long data segments. The short data
segment, addressed by Hreregister in each load module, contains the following areas:

* A linkage table, containing pointersto imported data symbols and functions, and to datain the
text segments and long data segments.

¢ A short data area, containing small initialized “own” data items.
* A short bss area, containing small uninitialized “own” data items.

The long data segments contain either or both of the following areas:

* Along data area, containing large initialized data items, and initialized non-“own” data items
of any size.

* Along bss area, containing large uninitialized data items, and uninitialized non-“own” data
items of any size.

“Own” data items are those that are either local to a load module, or are such that all references to
these items from the same load module will always refer to these items. That is, they are not subject
to being overridden by an exported symbol of the same name in another load module. All data
items in the main program satisfy this definition, since the main program is always the first load
module in the binding sequence. Since non-“own” variables cannot be referenced directly, there is
no benefit to placing them in the short data or bss area.

Small “own” data items are placed in the short bss or short data, and are guaranteed to be within 2
megabytes, in either direction, of theaddress, so compilers may use a short direct addressing
sequence (using the add with 22-bit immediate instruction) to access any data item allocated in
these areas. The compiler should place all “own” data items that are 8 bytes or less in size,
regardless of structure, in the short data or short bss areas.

All other data items, including items that are larger than 8 bytes in size, or that require indirect
addressing because of load-time binding, must be placed in the long data or long bss area. The
compiler must address these items indirectly, using a linkage table entry. Linkage table entries are
typically allocated by the linker in response to a relocation request generated by the compiler; an
entry in the linkage table is either an 8-byte pointer to a data item, or a 16-byte function descriptor.
A function descriptor placed in the linkage table is a local copy of an “official” function descriptor
that is generally allocated by the linker or dynamic loader.

This design allows for a maximum size of 4 megabytes for the short data segment, since everything
must be addressable via theregister using the 22-bit add immediate instruction. Given that

linkage table entries are 8 byte pointers for data references, and 16 bytes long for procedure
references, this allows for up to 256,000 individually-named variables and functions. If a load
module requires more than this, the compilers will need to support a “huge” memory model, which
is not described here.

Protection areas are required to be aligned only as strictly as their contents.

IA-64 Software Conventions and Runtime Architecture Guide 3-3

Memory Model i nt9| o

3.3

3.3.1

Table 3-3.

3.3.2

3.3.3

3.3.4

3-4

Data Allocation

Global Variables

Common blocks, dynamically allocated regions (for example, from nal | oc), and external data
items greater than 8 bytes must all be aligned on a 16-byte boundary. Smaller data items must be
aligned on the next larger power-of-two boundary. Table 3-3 shows the alignment requirementsfor
different size objects.

Alignment Requirements for Global Objects

Size in bytes Alignment required

1 none

2 0 mod 2 (even addresses)
3-4 0 mod 4

5-8 0 mod 8

9 and up 0 mod 16

Access to global variables that are not known (at compile time) to be defined in the same load
module must beindirect. Each load module has alinkage table in its data segment, pointed to by
the gp register; code must |oad a pointer to the global variable from the linkage table, then access
the global variable through the pointer. Accessto globals known to be defined in the same load
module or to static locals may be made with agp-relative offset.

Local Static Data

Accessto local static data can be made with a gp-relative offset.

Constants and Literals

Constants and literals may be placed in the text segment or in the data segment. If placed in the text
segment, the access must be pc-relative or indirect using a linkage table entry.

Literals placed in the data segment may be placed in the short initialized data area if they are 8
bytesor lessin size. Larger literals must be placed in the long initialized data area or in the text

segment. Literalsin the long initialized data area require an indirect access using alinkage table
entry.

Local Memory Stack Variables

Accessis sp-relative.

Stack frames must always be aligned on a 16-byte boundary. That is, the stack pointer register must
always be aligned on a 16-byte boundary.

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Data Representation 4

4.1

Note:

Applications running in a 64-bit environment use either the “P64” or “LP64” data model: integers
are always 32 bits, while pointers are 64 bits. Long integers may be either 32 or 64 bits, depending
on the data model: they are 32 bits in “P64” and 64 bits in “LP64".

Within this specification, the terimalfword refers to a 16-bit object, the temord refers to a 32-
bit object, the terndoubleword refers to a 64-bit object, and the tegqoadword refers to a 128-hit
object.

The following sections define the size, alignment requirements, and hardware representation of the
standard C and Fortran data types.

IA-64 hardware/operating system software may have support for misaligned access, with some
added performance cost. Some implementations may emulate mis-alignment support by trapping.
The alignment rules presented in this section are to help improve performance.

Fundamental Types

Table 4-1 lists the scalar data types supported by the architecture. Sizes and alignments are shown
in bytes. A null pointer (for all types) has the value zero.

Table 4-1. Scalar Data types Supported by IA-64

Type C Size Align Hardware Representation

char 1 1 signed byte
signed char 9 yt
unsigned char 1 1 unsigned byte
short .
signed short 2 2 signed halfword
unsigned short 2 2 unsigned halfword

Integral int
signed int 4 4 signed word
enum
unsigned int 4 4 unsigned word
__int64 .
signed __int64 8 8 signed doubleword
unsigned __int64 8 8 unsigned doubleword
__int1281 . .
signed __int128 1 16 16 signed 128-bit integer
unsigned __int1281 | 16 16 unsigned 128-bit integer

; any-type * ;

Pointer 8 8 unsigned doubleword

any-type (*)) 9

IA-64 Software Conventions and Runtime Architecture Guide 4-1

Data Representation I n

Table 4-1. Scalar Data types Supported by IA-64

Type C Size Align Hardware Representation
float 4 4 IEEE single precision
double 8 8 IEEE double precision

Floating-point IEEE d _
2 ouble-extended
__float80 16 16 precision
__float128 3 16 16 quad precision
NOTES:
1. __int128is not directly supported by the hardware, and these conventions do not require an operating

system environment to support this type through emulation. Size and alignment conventions are specified
here, however, for those implementations that do choose to support this type. Note also that the (non-
standard) | ong | ong data type is not specified by these conventions, and may be implemented as a 64-bit
integer, a 128-bit integer, or not at all.

2. __fl oat 80 is the IA-64 extended 80-bit quantity, but the software standard is to treat it as a 16-byte
guantity. It is referenced using | df e and st f e instructions. This type has the same precision and range as
the 80 bit extended data type of the IA-32 architecture, but with different size and alignment.

3. __float 128 is not directly supported by the hardware, and these conventions do not require an operating
system environment to support this type through emulation. Size, representation, and alignment conventions
are specified here, however, for those implementations that do choose to support this type. A quad-precision
floating-point number is a 128-bit quantity with a sign bit, a 15-bit biased exponent, and a 112-bit mantissa
with an implicit integer bit.

4.2 Aggregate Types

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component. The size of any object, including aggregates and unions, is always a multiple of the

object’s alignment. An array uses the same alignment as its elements. Structure and union objects
can require padding to meet size and alignment constraints. The contents of any padding is
undefined.

* Anentire structure or union object is aligned on the same boundary asits most strictly aligned
member.

¢ Each member is assigned to the lowest available offset with the appropriate alignment. This
may require internal padding, depending on the previous member.

¢ A structure’s size is increased, if necessary, to make it a multiple of the alignment. This may
requiretail padding, depending on the last member.

In the following figures, members’ byte offsets appear in the upper right corners for little-endian, in
the upper left for big-endian.

struct { Byte aligned, sizeof is 1

char c; 0 0
}: c c

Figure 4-1. Structure Smaller Than a Word

4-2 IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Data Representation

struct { i Little endian, word aligned, sizeof is 8
char (o > T 5
char d; S d c
short s; a
int n; n

3

Big endian, word aligned, sizeof is 8
¢ ' 4 s
4
n
Figure 4-2. No Padding

struct { Little endian, halfword aligned, sizeof is4
char C; s 2 ad e 0
short s; P

b

Big endian, halfword aligned, sizeof is4
0 1

c pad 2 s

Figure 4-3. Internal Padding

IA-64 Software Conventions and Runtime Architecture Guide 4-3

u
Data Representation I nt9| o

Little endian, doubleword aligned, sizeof is 24
1 0
pad c

4

pad
d (low)

d (high)
18 16
struct { pad S
char c;
doubl e d; pad
short s; Big endian, doubleword aligned, sizeof is 24

1
° ¢ ! pad

8

12

20

N pad

d (high)
d (low)

16 18
S pad

8

12

20

pad

Figure 4-4. Internal and Tail Padding

Little endian, word aligned, sizeof is4
7]

0
pad c
ad ? s °
uni on { s 5
char c, j
short s;
int j;
}; Big endian, word aligned, sizeof is4
° ¢ ! pad
0 s 2 pad
0 .
J

Figure 4-5. Union Allocation

4-4 IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Data Representation

4.3 Bit Fields

C struct and uni on definitions may have bit-fields that define integral objects with a specified
number of bits. Table 4-2 defines the allowable widths and corresponding range of values for bit
fields of each base type.

Table 4-2. Bit Field Base Types

Base Type Width w Range
unsigned char 1to 8 0to 2"-1
signed char 1t08 —2Wlig 2wl g
unsigned short 1to 16 0to 2"-1
signed short 1to 16 —2Wlig 2wl g
unsigned int 1to 32 0to 2"-1
signed int 1to 32 —2Wlig 2wl g
unsigned long 1to 64 0to 2"-1
signed long 1to 64 —2Wlig 2wl g

Bit-fields obey the same size and alignment rules as other structure and union members, with the
following additions:

Byte Bit-fields are allocated from right to left (least to most significant) for little endian. They are
Order allocated left to right (most to least significant) for big-endian.

A bit-field must entirely reside in astorage unit appropriate for its declared type. For example, abit
field of type short must never cross a halfword boundary.

Bit-fields may share a storage unit with other st r uct / uni on members, including membersthat are
not hit-fields. Of course, each st r uct member occupies a different part of the storage unit.

* Unnamed bit-fields’ types do not affect the alignment of a structure or union. Zero-length
unnamed bit-fields force the alignment of subsequent members to the boundary corresponding
to the size of the unnamed bit-field.

The following figures showt r uct anduni on member byte offsets in the upper corners; bit
numbers appear in the lower corners.

Little endian
3 2 1 0
31 F1 24[23 F2 1615 F3 87 F4
OxF1F2F3F4 Big endian
0 1 2 3
F1 F2 F3 F4
0 718 1516 23|24 31

Figure 4-6. Bit Numbering

IA-64 Software Conventions and Runtime Architecture Guide 4-5

u
Data Representation I nt9| o

4-6

Little Endian,word aligned, sizeof is4

. [¢

strupt { . 31 pad 18]17 m1110 k 54 J 0
i nt] 5;
i nt k: 6;

}: hnt m Big Endian, word aligned, sizeof is4
’ 0
i k m pad
0 4]5 1011 17)18 31

Figure 4-7. Bit Field Allocation

Little Endian, doubleword aligned, sizeof is 16
8]

3 ad i
¢ 23p 1817 J ol s 9
truct | SCRAT NEA
struc
d
short s:9; pa d -
__int64 | 9; a1 pad o
char (o
short t:9;)))))
short u: o9; Big Endian, doubleword aligned, sizeof is 16
char d; 0 - ad |°
b o S gy | 17 18p P
4 t d |° pad
0 8o Pad 1510 U slo 15
® a [pad
12
Q pad 3

Figure 4-8. Boundary Alignment

IA-64 Software Conventions and Runtime Architecture Guide

intel.

struct {
char
short
b

Figure 4-9. Storage Unit Sharing

uni on {
char
short
b

Figure 4-10. Union Allocation

struct {
char
i nt
char
short
char
char

Figure 4-11. Unnamed Bit Fields

C,
S: 8;

Data Representation

Little-endian, halfword aligned, sizeof is 2

1]

S C
15 8

Big-endian, halfword aligned, sizeof is 2

0 1
Cc S
8 15

Little-endian, halfword aligned, sizeof is 2

0
pad ! o

0
pad S

15 8|7 0

0 1
c pad

S pad

0 7l 15

Big-endian, halfword aligned, sizeof is 2

Little-endian, byte aligned, sizeof is9

:0 ' c °
6 5 4

15 pad JB ' 9 0 pad d
8

e

Big-endian, byte aligned, sizeof is9

0 1

c :0
4 5

d pad ' 9 BL pad s
8

e

IA-64 Software Conventions and Runtime Architecture Guide

4-7

Data Representation

4.4

Note that unnamed bit fields do not affect the alignment of the structure.

intel.

Asthe examples show, i nt and __i nt 64 bit-fields (including si gned and unsi gned) usually pack
more densely than smaller base types. One can usechar and short bit-fieldsto force allocation
within those types, but i nt is generally more efficient.

Table 4-3 shows the correspondence between ANSI Fortran’s scalar types and the processor’s data
types. ANSI Fortran require&AL andi NTEGER to be the same size. Many Fortran compilers allow

Fortran Data Types

I NTEGER* n, LOG CAL*n, andreAL* n to specify specific processor sizes\’(Is in bytes). The
COVPLEX data type is treated exactly the same as a C structure composed oddwmembers.

Table 4-3. Fortran Data Types

. Align .

Type Fortran Size (bytes) Hardware Representation
Character CHARACTER*n n 1 byte

LOGICAL 4 4 word
Integral

INTEGER 4 4 signed word

REAL 4 4 IEEE single-precision
Floating-point DOUBLE PRECISION |8 8 IEEE double-precision

COMPLEX 8 4 2 |IEEE single-precision

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Register Usage)

5.1 Partitioning

Registers are partitioned into the following classes:

Scratch registers may be modified by a procedure call; the caller must save these registers
before a call if needed (“caller save”).

Preser ved registers must not be modified by a procedure call; the callee must save and
restore these registersif used (“callee-save”).

Automatic registers are saved and restored automatically by the call/return mechanism.

Constant or Read-only registers contain a fixed value that cannot be changed by the
program.

Special registers are used in the call/return mechanism. The conventions for these registers
are described individually below.

5.2 General Registers

General registersare used for integer arithmetic and other general -purpose computations. Table 5-1
lists the general registers.

Table 5-1. General Registers

Register Class Usage

ro constant Always 0

rl special Global data pointer (gp)

r2—r3 scratch Use with 22-bit immediate add
r4—r7 preserved

rg-11 scratch Procedure return value

ri2 special Memory stack pointer (sp)

ri3 special Reserved as a thread pointer (t p)
ri4—-r31 scratch

in0—in95 automatic Stacked input registers (see below)
locO-loc95 automatic Stacked local registers (see below)
outO—out95 scratch Stacked output registers (see below)

rl istheglobal datapointer (gp), which is designated to hold the address of the currently
addressable global data segment. Its useis subject to the following conventions:

a. On entry to a procedure, gp is guaranteed valid for that procedure.

b. At any direct procedure call, gp must be valid (for the caller). This guarantees that an
import stub (see Section 8.4.1) can access the linkage table.

IA-64 Software Conventions and Runtime Architecture Guide 5-1

Register Usage

intel.

C. Any procedure call (indirect or direct) may modify gp—unless the call is known to be local
to the load module.

d. At procedure returrgp must be valid (for the returning procedure). This allows the
compiler to optimize calls known to be local (i.e., the exceptions to Rule ‘c’).

The effect of these rules is tht must be treated as a scratch register at a point of call (i.e., it
must be saved by the caller), and it must be preserved from entry to exit.

r4—r7 are general-purpose preserved registers, and can be used for any value that needs to

be preserved across a procedure call. A procedure using one of the preserved general registers

must save and restore the caller’s original contents, including the NaT bits associated with the
registers, without generating a NaT consumption fault. This can be done by either copying the
register to a stacked register or by usingsttee spi || andi ds. fill instructions and then
savingar . unat .

r8 isusedasthestruct/uni on return pointer register. If the function being called returns a
struct Or uni on value larger than 32 bytes, then register GR 8 contains, on entry, the
appropriately-aligned address of the caller-allocated area to contain the value being returned.
(See Section 8.6.)

r8—rl1l areused for non-floating-point return values up to 32 bytes. Functions do not have
to preserve their values for the caller.

r12 isthe stack pointer, which holds the limit of the current stack frame, the address of the

stack’s bottom-most valid word. At all times, the stack pointer must point to a 0 mod 16
aligned area. The stack pointer is also used to access any memory arguments upon entry to a
function. Except in the case of dynamic stack allocation @.igoca), this register is

preserved across any functions called by the current function. A call to a function that does not
preserve the stack pointer must notify the compiler, to cause the generation of code that
behaves properly. Failure to notify the compiler leads to undefined behavior. The standard
function calling sequence does not include any method to detect such failures. This allows the
compiler to use the stack pointer to reference stack items without having to set up a frame
pointer for this purpose.

r13 isreserved for use as athread pointer. The usage of this register is ABI specific.
Programs conforming to these conventions may not modify this register.

r32—r39 (in0—in7) are used asincoming argument registers. Arguments beyond these
registers appear in memory, as explained in Chapter 8. Refer to the discussion below on
structures and unions.

r32—r127 are stacked registers. Code may allocate a register stack frame of up to 96
registerswith the al | oc instruction, and partition this frame into three regions: input registers
(ino,in1,..), local registers(l oco, | oc1, ...), and output registers (out 0, out 1, ...). Theinput
and local regions are automatic, and the output region is scratch. See Chapter 6, “Register
Stack”for more information.

5.3 Floating-point Registers

Floating-point registers are used for floating-point computations and certain integer computations,
such as multiply and divide. Table 5-2 lists the floating-point registers.

5-2

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Table 5-2. Floating-Point Registers

Register Usage

Register Class Usage

fo constant Always 0.0

fl constant Always 1.0

f2—f5 preserved

f6—f7 scratch

f8—f15 scratch Argument/return registers
f16—f31 preserved

f32-f127 scratch Rotating registers or scratch

e f2—f5andf16—f31 are preserved floating-point registers, and can be used for any value
that needs to be preserved across a procedure call. A procedure using one of the preserved

floating-point registers must save and restore the caller’s original contents without generating

a NaT consumption fault. This can be done by usingithespi I I andi df. fill instructions.

e f8—f15 areused asincoming floating-point argument registers. Floating-point arguments
are placed in these registers when possible. Arguments beyond the registers appear in memory,
as explained in Section 8.5. Within the called function, these are local scratch registers and are
not preserved for the caller.

Floating-point return values also appear in these registers. Single, double, and extended values
are all returned using the appropriate format.

e f32—f127 canbe used asrotating registers. They are available as normal scratch registersif
rotation is not being used.

5.4 Predicate Registers

Predicate registers are single-bit-wide registers used for controlling the execution of predicated
instructions. Table 5-3 lists the predicate registers.

Table 5-3. Predicate Registers

Register Class Usage
p0 constant always 1
pl-p5 preserved fixed
p6—p15 scratch fixed
pl6—p63 preserved rotating
5.5 Branch Registers

Branch registers are used for making indirect branches. Table 5-4 lists the branch registers.

IA-64 Software Conventions and Runtime Architecture Guide

Register Usage i nt9| o

Table 5-4. Branch Registers

Register Class Usage

b0 scratch Return link
bl-b5 preserved

b6-b7 scratch

* bO containsthe return address on entry to a procedure; it is a scratch register otherwise.

5.6 Application Registers

Application registers are special-purpose registers designated for application use. Table 5-5 lists
the application registers.

Table 5-5. Application Registers

Register Class Usage

ar.fpsr see below Floating-point status register

ar.rnat automatic RSE NaT collection register

ar.unat preserved User NaT collection register

ar.pfs special Previous function state

ar.bsp read-only Backing store pointer

ar.bspstore special Backing store store pointer

ar.rsc see below RSE control

ar.lc preserved Loop counter

ar.ec automatic Epilog counter (preserved in ar . pf s)
ar.ccv scratch Compare and Exchange comparison value
ar.itc read-only Interval time counter

ar.kO-ar.k7 read-only Kernel registers

o ar.fpsr isthefloating-point status register. This register is divided into several fields:

Trap Disable Bits (bits 5—0).The trap disable bits must be preserved by the callee,
except for procedures whose documented purpose is to change these hits.

Status Field 0.The control bits must be preserved by the callee; except for procedures
whose documented purpose is to change these bits. The flag bits are the IEEE floating point
standard sticky bits and are part of the static state of the machine.

Status Field 1.Thisstatusfield is dedicated for use by divide and square root code, and
must always be set to standard values at any procedure call boundary (including entry to
exception handlers). These standard values are: trap disable set, round-to-nearest mode, 80-bit
(extended) precision, widest range for exponent on, and flush-to-zero mode off. The flag bits
are scratch.

Status Fields 2 and 3The control bits in these status fields must agree with the control
bitsin status field 0, and the trap disable bits should always be set at procedure calls and
returns. The flag bits are always available for scratch use.

5-4 IA-64 Software Conventions and Runtime Architecture Guide

i nt9I ® Register Usage

e ar.rnat holdsthe NaT bits for values stored by the register stack engine. These bits are
saved automatically in the register stack backing store.

e ar.unat holdsthe NaT bits for values stored by the st 8. spi I | instruction. As a preserved
register, it must be saved before a procedure can issue any st 8. spi | | instructions. The saved
copy of ar. unat in a procedure’s frame hold the NaT bits from the registers spilled by its
caller; these NaT bits are thus associated with values local to the caller’s caller.

e ar.pfs contains information that records the state of the caller’s register stack frame and
epilog counter. It is overwritten on a procedure call; therefore, it must be saved before issuing
any procedure calls, and restored prior to returning.

e ar.bsp containsthe address in the backing store corresponding to the base of the current
frame. This register may be modified only as a side effect of writing ar . bspst or e while the
Register Stack Engine (RSE) isin enforced lazy mode.

e ar.bspstore containsthe address of the next RSE store operation. It may be read or written
only whilethe RSE isin enforced lazy mode. Under normal operation, this register is managed
by the RSE, and application code should not write to it, except when performing a stack
switching operation.

e ar.rsc istheregister stack configuration register. Thisregister is divided into several fields:
M ode. Thisfield controls the RSE behavior, and has scratch behavior. On areturn, this field
may be set to a standard value.

Privilege level. Thisfield controls the privilege level at which the RSE operates, and may
not be changed by non-privileged software.

Endian mode. Thisfield controls the byte ordering used by the RSE, and should not be
changed by an application.

L oad distance. Thisfield is used by a RSE control instruction, and has scratch behavior.

IA-64 Software Conventions and Runtime Architecture Guide 5-5

Register Usage

5-6

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Register Stack 6

6.1

6.2

General registers 32 through 127 form aregister stack that is automatically managed across

procedure calls and returns. Each procedure frame on the register stack is divided into two

dynamically-sized regions—one for input parameters and local variables, and one for output
parameters. On a procedure call, the registers are automatically renamed by the hardware so that
the caller’s output registers form the base of the callee’s new register stack frame. On return, the
registers are restored to the previous state, so that the input and local registers are preserved across
the call.

Theal | oc instruction is used at the beginning of a procedure to allocate the input, local, and output
regions; the sizes of these regions are supplied as immediate operands. A procedure is not required
to issue aal | oc instruction if it does not need to store any values in its register stack frame. It may
still read values from input registers, but it may not write to a stack register without first issuing an

al I oc instruction.

Figure 6-1 illustrates the operation of the register stack across an example procedure call. In this
example, the caller allocates eight input, twelve local, and four output registers, and the callee
allocates four input, six local, and five output registers.

The actual registers to which the stacking registers are physically mapped are not directly
addressable by the application software.

Input and Local Registers

The hardware makes no distinction between input and local registers. The caller’s output registers
automatically become the callee’s entire register stack frame on a procedure call, with all registers
initially allocated as output registers. An oc instruction may increase or decrease the total size

of the register stack frame, and may adjust the boundary between the input and local region and the
output region.

The software conventions specify that up to eight registers are used for parameter passing. Any
registers in the input and local region beyond those eight may be allocated for use as preserved
locals. Floating-point parameters may produce “holes” in the parameter list that is passed in the
general registers; those unused input registers may also be used for preserved locals.

The caller’s output registers do not need to be preserved for the caller. Once an input parameter is
no longer needed, or has been copied elsewhere, that register may be reused for any other purpose
within the procedure.

Output Registers

Up to eight output registers are used for passing parameters. If a procedure call requires fewer than
eight general registers for its parameters, the calling procedure does not need to allocate more than
are needed. If the called procedure expects more parameters, it will allocate extra input registers;
these registers will be uninitialized.

IA-64 Software Conventions and Runtime Architecture Guide 6-1

Register Stack i nt9| o

32 r40 52
Input Local Output Caller’'s Frame

32
Callee’s Frame before alloc Output

32 36 r42
Callee’s Frame after alloc Input Local Output

Figure 6-1. Operation of the Register Stack

6.3

6.4

A procedure may also allocate more than eight registersin the output region. While the extra

registers may not be used for passing parameters, they can be used as extra scratch registers. On a
procedure call, they will show up in the called procedure’s output area as excess registers, and may
be modified by that procedure. The called procedure may also allocate few enough total registers in
its stack frame that the top of the called procedure’s frame is lower than the caller’s top of frame,
but those registers will become available again when control returns to the caller.

Rotating Registers

A subset of the registers in the procedure frame may be designated as rotating registers. The
rotating register region always starts wittz, and may be any multiple of eight registers in

number, up to a maximum of 96 rotating registers. The renaming is under control of the Rotating
Register Base (RRB).

If the rotating registers include any or all of the output registers, software must be careful when
using the output registers for passing parameters, since a hon-zero RRB will change the virtual
register numbers that are part of the output region. In general, software should either ensure that the
rotating region does not overlap the output region, or that the RRB is cleared to zero before setting
output parameter registers.

Frame Markers

The current application-visible state of the stack frame is stored in an architecturally inaccessible
register called the current frame marker. On a procedure call, this register is automatically saved by
copying it to an application register, the previous function siat@f(s). The current frame marker

is modified to describe a new stack frame whose input and local area is initially zero size, and

IA-64 Software Conventions and Runtime Architecture Guide

i nt9| o Register Stack

whose output areais equal in size to the previous output area. On return, the previous frame state
register is used to restore the current frame marker to its earlier value, and the base of the register
stack is adjusted accordingly.

It isthe responsibility of aprocedure to save the previous function state register before issuing any
procedure calls of its own, and to restore it before returning.

6.5 Backing Store for Register Stack

When the depth of the procedure call stack exceeds the capacity of the physical register file, the
hardware frees physical registers by saving them into amemory stack. This backing store is distinct
from the memory stack described in the next chapter.

Asreturns unwind the procedure call stack, the hardware also restores previously-saved physical
registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to application software.

While the RSE is running, application software may not examine the contents of the backing store,

and may not make any assumptions about how much of the register stack is still in physical

registers or in the backing store. In order to examine previous stack frames, application software

must synchronize the RSE with thef 1 ushr s instruction. Synchronizing the RSE forces all stack

frames up to, but not including, the current frame to be saved in backing store, allowing the

software to examine the contents of the backing store without asynchronous operations modifying

the memory. Modifications to the backing store require setting the RSE to “enforced lazy mode”
after synchronizing it, which prevents the RSE from doing any operations other than those required
by calls and returns. The procedure for synchronizing the RSE and setting the mode is described in
Section 10.2, “User-level thread switch, coroutines” on page 10-2

The backing store grows towards higher addresses. When the RSE is synchronized and in enforced
lazy mode, the top of the stack corresponding to the top of the previous procedure frame is
available in the Backing Store Pointegsq) application register.

Even when the RSE is in enforced lazy modep#ipemust always point to a valid backing store
address, since the operating system may need to start the RSE to process an exception.

A NaT collection register is stored into the backing store after each group of 63 physical registers.
For each register stored, its NaT bit is shifted into the collection register. Whesp tteaches the
doubleword just before a 64 doubleword boundary, the RSE stores the collection register. Software
can determine the position of the NaT collection registers in the backing store by examining the
memory address. This process is described in greater detail in the ADAG.

IA-64 Software Conventions and Runtime Architecture Guide 6-3

Register Stack

6-4

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Memory Stack !

7.1

The memory stack is used for local dynamic storage, spilled registers, and parameter passing. Itis

organized as a stack of procedure frames, beginning with the main program’s frame at the base of

the stack, and continuing towards the top of the stack with nested procedure calls. At the top of the
stack is the frame for the currently active procedure. (There may be some system-dependent frames
at the base of the stack, prior to the main program’s frame, but an application program may not
make any assumptions about them.)

The memory stack begins at an address determined by the operating system, and grows towards
lower addresses in memory. The stack pointer regigtealways points to the lowest address in
the current, top-most, frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from the stack pointer, and
removes its frame from the stack on exit by restoring the previous valpéusiually by adding its
frame size, but a procedure may save the original valgie when its frame size may vary).

Because the register stack is also used for the same purposes, not all procedures will need a stack
frame. Every non-leaf procedure, however, needs to save at least its return link and the previous

frame marker either on the register stack or in the memory stack, so there is an activation record for
every non-leaf procedure on one or both of the stacks.

Procedure Frames

A procedure frame consists of five regions, as illustrated in Figure 7-1.

frame size
16
bytes
scratch outgoing frame dynamic local
area parameters marker allocation storage

previous sp

lower addresses

Figure 7-1. Procedure frame

These regions are:

e Local storage. A procedure may store local variables, temporaries, and spilled registersin
thisregion.

IA-64 Software Conventions and Runtime Architecture Guide 7-1

Memory Stack i nt9| o

» Dynamically-allocated stack storage. Thisis avariable-sized region (initially zero
length), that can be created by the C library al | oca routine and similar routines.

* Frame marker. This optional region may contain information required for unwinding
through the stack (for example, a copy of the previous stack pointer).

» Outgoing parameter s. Parametersin excess of those passed in registers are stored in this
region of the stack frame. A procedure accesses its incoming parameters in the outgoing
parameter region of its caller’s stack frame.

e Scratch area. This 16-byte region is provided as scratch storage for procedures that are
called by the current procedure. Leaf procedures do not need to allocate this region. A
procedure may use the 16 bytes at the top of its own frame as scratch memory, but the contents
of thisareaare not preserved by a procedure call.

The stack pointer must always be alighed at a 16-byte boundary. Thisimpliesthat all stack frames
must be amultiple of 16 bytesin size.

An application may not write to memory below the stack pointer, since this memory area may be
written to asynchronously (for example, as aresult of exception processing).

M ost procedures are expected to have afixed size frame, and the conventions are biased in favor of
this. A procedure with a fixed size frame may reference al regions of the frame with a compile-
time constant offset relative to the stack pointer. Compilers should determine the total size required
for each region, and pad the local storage area to make the total frame size amultiple of 16 bytes.
The procedure may then create the frame by subtracting an immediate constant from the stack
pointer in the prologue, and remove the frame by adding the same immediate to the stack pointer in
the epilogue.

If a procedure has avariable-size frame (for example, it containsacall to al I oca), it should make a
copy of sp to serve as aframe pointer before subtracting the initial frame size from the stack
pointer. It may then restore the previous value of the stack pointer in the epilogue without regard
for how much dynamic storage has been allocated within the frame. It may also use the frame
pointer to access the local storage region, since offsets from sp will vary.

A frame pointer, as described above, is not required, however, provided that the compiler uses an
equivalent method of addressing the local storage region correctly before and after dynamic
allocation, and provided that the code satisfies conditions imposed by the stack unwind
mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters, and frame marker
regions, which are always located relative to the current stack pointer must be relocated to the new
top of stack. If the scratch area and outgoing parameter area are both clear of any live values, there
is no actual work involved in relocating these areas. For procedures with dynamically-sized

frames, it is recommended that the previous stack pointer value be stored in alocal stacked general
register instead of the frame marker, so that the frame marker is also empty. If the previous stack
pointer is stored in the frame marker, the code must take care to ensure that the stack is aways
unwindable while the stack is being expanded (see Chapter 11, “Stack Unwinding and Exception
Handling”).

Other issues depend on the compiler and the code being compiled. The standard calling sequence
does not define a maximum stack frame size, nor does it restrict how a language system uses any
stack frame region beyond those purposes described here. For example, the outgoing parameter
region may be used as scratch storage whenever it is not needed for passing parameters.

7-2 IA-64 Software Conventions and Runtime Architecture Guide

intel.

Procedure Linkage 8

8.1 External Naming Conventions

The standard naming convention, referred to as the “C” convention, specifies that all external
symbols have linkage names identical to the source language identifier. There are no leading or
trailing underscores. Other languages may establish other conventions, but they should provide a
mechanism to define and reference symbols with “C” linkage.

8.2 The gp Register

Every procedure that references statically-allocated data or calls another procedure requires a
pointer to its data segment in theregister, so that it can access its static data and its linkage
tables. Each load module has its own data segment, agridsgister must be set correctly prior to
calling any entry point within that load module.

The linkage conventions require that each load module define exacty oa&ie to refer to a
location within its short data segment. It is expected that this location will be chosen to maximize
the usefulness of short-displacement immediate instructions for addressing scalars and linkage
table entries. The DLL loader will determine the absolute value @pthegister for each load

module after loading its data segment into memory.

For calls within a load module, tle register will remain unchanged, so calls known to be local
can be optimized accordingly.

For calls between load modules, #peregister must be initialized with the corrggtvalue for the
new load module, and the calling function must ensure that itgpwalue is saved and restored.

8.3 Types of Calls

The following types of procedure calls are defined:

 Direct calls. Direct calls within the same load module may be made directly to the entry
point of the target procedure. In this case, the gp register does not need to be changed.

» Direct dynamically-linked calls. These callsare routed through an import stub (which
may be inlined at compiletimeif the call isknown or suspected to be to another load module).
Theimport stub obtains the address of the main entry point and the gp register value from the
linkage table. Although coded in source as adirect call, dynamically-linked calls become
indirect.

 Indirect calls. A function pointer must point to a descriptor that contains both the address
of the function entry point and the gp register value for the target function. The compiler must
generate code for an indirect call that setsthe new gp value before transferring control to the
target procedure.

» Special calls. Other special calling conventions are allowed to the extent that the compiler
and the runtime library agree on convention, and provided that the stack may be unwound

IA-64 Software Conventions and Runtime Architecture Guide 8-1

Procedure Linkage

intel.

Caller

Prepare call
* setup args
* save regs, gp

Call

v —

Import Stub

* load entry addr
* load new gp

* mov b=

e br

Callee

Entry

« alloc reg frame
 alloc mem framg
e save rtn BR
* save regs

e brcall | | _ _ _ _ _ _ _ _

After the call <
* restore regs, gp

v

qle

Caller’s load mod

Callee’s load module

procedure body

Exit

* restore regs

e restore rtn BR

» de-alloc mem
frame

e brret —

Figure 8-1. Direct procedure calls

through such a call. Such calls are outside the scope of this document. See Section 8.7 for a
discussion of stack unwind requirements.

8.4 Calling Sequence

Direct and indirect procedure calls are described in the following sections. Since the compiler is
not required to know whether any given call islocal or to another load module, the two types of
direct calls are described together in the first section.

8.4.1 Direct Calls

Direct procedure calls follow the sequence of steps shown in Figure 8-1. The following paragraphs

describe these steps in detail .

Preparation for call. Valuesin scratch registers that must be kept live across the call must be
saved. They can be saved by copying them into local dynamic registers, or by saving them on the
memory stack. If the NaT bits associated with any live scratch registers must be saved, the
compiler should usest 8. spi || orstf.spill instructions. The User NaT collection register itself
is preserved by the call, so the NaT bits need no further treatment at this point.

If the call is not known (at compile time) to be within the same load module, the gp register must be

saved.

The parameters must be set up in registers and memory as described in Section 8.5.

8-2

IA-64 Software Conventions and Runtime Architecture Guide

tel.

Procedure Linkage

Procedurecall. All direct calls are made with abr . cal | instruction, specifying BR O (also
known asr p) for the return link.

For direct local calls, the pc-relative displacement to the target is computed at link time. Compilers
may assume that the standard displacement fieldinthebr . cal | instruction is sufficiently wideto
reach the target of the call. If the displacement istoo large, the linker must supply a branch stub at
some convenient point in the code; compilers must guarantee the existence of such a point by
ensuring that code sections in the relocatabl e object files are no larger than the maximum reach of
thebr. cal | instruction. With a 25-bit displacement, the maximum reach is 16 megabytes in either
direction from the point of call.

Direct callsto other load modul es cannot be statically bound at link time, so the linker must supply
an import stub for the target procedure; the import stub obtains the address of the target procedure
from the linkage table. Thebr . cal I instruction can then be statically bound using the pc-relative
displacement to the import stub.

Thebr. cal I instruction saves the return link in the return BR, saves the current frame marker in
thear. pf s register, and sets the base of the new register stack frame to the beginning of the output
region of the old frame.

Import stub (direct external callsonly). Theimport stub is alocated in the load module of
the caller, so that thebr. cal I instruction may be statically bound to the address of the import stub.
It must access the linkage table viathe current gp (which meansthat gp must be valid at the point of
call), and obtain the address of the target procedure’s entry point gpdvékie. The import stub
then establishes the new value and branches to the target entry point.

If the compiler knows or suspects that the target of a call is in a separate load module, it may wish
to generate calling code that performs the functions of the import stub, saving an extra branch. The
detailed operation of an import stub, however, is ABI specific.

When the target of a call is in the same load module, an import stub is not used (which also means
thatgp must be valid at the point of call).

Procedure entry. The prologue code in the target procedure is responsible for allocating the
register stack frame, and a frame on the memory stack, if necessary. It may use the 16 bytes at the
top of its caller’'s memory stack frame as scratch area.

If it is a non-leaf procedure, it must save the return BR and previous frame marker, either in the
memory stack frame or in a local dynamic GR.

The prologue must also save any preserved registers that will be used in this procedure. The NaT
bits for those registers must be preserved as well, by copying to local stacked general registers, or
by usingst 8. spi || orstf.spill instructions. The User NaT collection register. (inat) must

be saved first, however, since it is guaranteed to be preserved by the call.

Procedure exit. The epilogue code is responsible for restoring the return BR and previous frame
marker, if necessary, and any preserved registers that were saved. The NaT bits must be restored
using the ds. fill oridf.fill instructions. The User NaT collection register must also be

restored if it was saved.

If a memory stack frame was allocated, the epilogue code must deallocate it.

Finally, the procedure exits by branching through the return BR witbrthet instruction.

After thecall. Any saved values (including) should be restored.

IA-64 Software Conventions and Runtime Architecture Guide 8-3

Procedure Linkage

In

Caller

Y

Function
Pointer

Function Descriptor

Prepare call

* load func. ptr.
* load entry addr
* setup args

* mov b=
 save regs, gp
* load new gp

Call
* br.call

Caller’s load module

Callee’s load module

y

entry point

Callee

gp value

Entry

+ alloc reg frame
 alloc mem framsg
e save rtn BR

* save regs

procedure body

After the call
* restore regs, gp

v

Exit

* restore regs

e restore rtn BR

» de-alloc mem
frame

e brret —

Figure 8-2. Indirect Procedure Calls

8.4.2

8-4

Indirect Calls

Indirect procedure calls follow nearly the same sequence, except that the branch target is

established indirectly. This sequenceisillustrated in Figure 8-2.

Function Paointers. A function pointer is always the address of a function descriptor for the
target procedure. The function descriptor must be allocated in the data segment of the target
procedure, because it contains pointers that must be relocated by the DLL loader.

The function descriptor contains at least two 64-bit double-words: the first is the entry point
address, and the second is the gp value for the target procedure. An indirect call will load the gp
value into the gp register before branching to the entry point address.

In order to guarantee the uniqueness of afunction pointer, and because its value is determined at
program invocation time, code must materialize function pointers only by loading a pointer from
the data segment. The object file format will provide appropriate rel ocations for this pointer.

Preparation for call. Indirect calls are made by first loading the function pointer into a general
register, loading the entry point address and the new gp value, then using the Move to Branch
Register operation to move the address of the procedure entry point into the BR to be used for the

cal.

Valuesin scratch registers that must be kept live across the call must be saved. They can be saved
by copying them into local dynamic registers, or by saving them on the memory stack. If the NaT

bits associated with any live scratch registers must be saved, the compiler should usest 8. spi | | or
stf.spill instructions. The User NaT collection register itself is preserved by the call, so the NaT
bits need no further treatment at this point.

IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Procedure Linkage

Parameter Slots

slot 0

slotl | slot2 | dlot3 | dot4 | dot5 | dot6 | Slot 7 | Sot8 | dot9 | sot 10| slot 11

General Registers

outO

outl out?2 out3 out4 out5 out6 out?7

Memory Stack

sp +8 +16 +24 +32 +40 +48

Figure 8-3. Parameter Passing in General Registers and Memory

8.5

Unlessthe call is known (at compile time) to be within the same load module, the gp register must
be saved before the new gp valueis loaded.

The parameters must be set up in registers and memory as described in Section 8.5.

Procedurecall. All indirect calls are made with the indirect form of thebr. cal | instruction,
specifying BR 0 (also known asr p) for the return link.

Thebr. cal | instruction saves the return link in the return BR, saves the current frame marker in
thear. pf s register, and sets the base of the new register stack frame to the beginning of the output
region of the old frame. Because the indirect call sequence obtains the entry point address and new
gp value from the function descriptor, control flows directly to the target procedure, without the
need for any intervening stubs.

Procedure entry, exit, and return. The remainder of the calling sequence is the same as for
direct calls.

Parameter Passing

Parameters are passed in a combination of general registers, floating-point registers, and memory;,
as described below, and asillustrated in Figure 8-3.

The parameter list isformed by placing each individual parameter into fixed-size elements of the
parameter list, referred to as parameter dots. Each parameter dot is 64 bits wide; parameters larger
than 64 bits are placed in as many consecutive parameter slots as are needed to contain the entire
parameter. The rules for allocation and aignment of parameter slots are given later in this section.

The contents of the first eight parameter slots are always passed in registers, while the remaining
parameters are always passed on the memory stack, beginning at the caller’s stack pointer plus 16
bytes. The caller uses up to eight of the registers in the output region of its register stack for integer
parameters, and up to eight floating-point registers for floating-point parameters.

IA-64 Software Conventions and Runtime Architecture Guide 8-5

[]
Procedure Linkage I nu ®

8.5.1

To accommodate variable argument lists in the C language, there is afixed correspondence
between parameter dots and output registers used for general register arguments. Thisalows a
procedure to spill its register parameters easily to memory before stepping through the parameter
list with a pointer. Also because of variable argument lists, floating-point parameters are sometimes
passed in both general output registers and in floating-point registers.

There is no fixed correspondence between parameter slots and floating-point parameter registers.
Parameters passed in floating-point registers always use the next available floating-point parameter
register, starting with f 8.

A procedure may assume that the NaT bits on its incoming general register arguments are clear,
and that the incoming floating-point register arguments are not NaTVals. A procedure making a
call must ensure only that registers containing actual parameters are clear of NaT bits or NaTVals;
registers not used for actual parameters may contain garbage.

Allocation of Parameter Slots

Parameters slots are allocated for each parameter, based on the parameter type and size, treating
each parameter in sequence, from left to right. The rules for allocating parameter slots and placing
the contents within the slot are given in Table 8-1.

Table 8-1. Rules for Allocating Parameter Slots

Type Size (Bits) Allocation gllgrpsber of Alighment
Integer/Pointer 1-64 Next Available 1 LSB
Integer 65-128 Next Even 2 LSB
Single-Precision Floating-Point 32 Next Available 1 LSB
Double-Precision Floating-Point | 64 Next Available 1 LSB
Double-Extended Floating-Point | 80 Next Even 2 Byte 0
Quad-Precision Floating-Point 128 Next Even 2 Byte O
Aggregates any Next Aligned (size+63)/64 Byte O

NOTE: These rules are applied based on the type of the parameter after any type promotion rules specified by
the language have been applied. For example, a short integer passed without a function prototype in C
would be promoted to the i nt type, and would be passed according to the rules for the i nt type.

The alocation column of the table indicates how parameter slots are allocated for each type of
parameter.

* “Next Available” means that the parameter is placed in the slot immediately following the last
slot used.

* “Next Even” means that the parameter is placed in the next available even-numbered slot,
skipping an odd-numbered slot if necessary. If an odd-numbered slot is skipped, it will not be
used for any subsequent parameters.

* “Next Aligned” means that the allocation is dependent on the external alignment of the
aggregate; that is, on the alignment boundary required for the aggregate as a whole. For
aggregates with an external alignment of 1-8 bytes, the “Next Available” policy is used; for
aggregates with an external alignment of 16 bytes, the “Next Even” policy is used.

IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Procedure Linkage

This placement policy ensures that parameters will fall on anatural alignment boundary if passed
in memory.

The alignment column of the table indicates how parameters are aligned within a parameter slot.
There are two kinds of alignment, “LSB” and “Byte 0.”

* “LSB” alignment specifies that the least-significant bit of the parameter is aligned with the
least-significant bit of the argument slot or slots (i.e., right aligned). Parameters shorter than 64
Byte or 12_8 bits are padded on the left; the padding is undefined. Whe_n a pair of parameter slpts is
Order required, the even-numbered parameter slot contains the most-significant bits in big-endian
environments, and the least-significant bits in little-endian environments. See Figure 8-4 for
examples.

* “Byte 0" alignment specifies that byte 0 of the parameter is aligned with byte O of the
parameter slot. Parameters that are not a multiple of 64 bits in length are padded at the end; the
Byte padding is undefined_. In big-enc_iian enyironments, the padqling vinI be at the right end of the
Order final parameter slot; in little-endian environments, the padding will be at the left end of the
final parameter slot. See Figure 8-5 for an example.

8.5.2 Register Parameters

The first eight parameter slots (64 bytes) are passed in registers, according to the rules in this
section.

* These eight argument slots are associated, one-to-one, with the stacked output GRS, as shown
in Figure 8-3.

* Integral scalar parameters, quad-precision (128-bit) floating-point parameters, and aggregate
parameters in these slots are passed only in the corresponding output GRs. Aggregates
consisting solely of floats, of doubles, or of double-extended val ues are an exception; see
below.

¢ |f an aggregate parameter straddles the boundary between slot 7 and slot 8, the part that lies
within thefirst eight dotsis passed in GRs, and the remainder is passed in memory, as
described in the next section.

Single-precision, double-precision, and double-extended-precision floating-point scalar parameters
in these dots are passed according to the available formal parameter information at the point of call
(for example, from a function prototype).

If an actual parameter is known to correspond to afloating-point formal parameter, the following
rules apply:

* Theactual parameter is passed in the next available floating-point parameter register, if oneis
available. Floating-point parameter registers are alocated as needed from the range f 8- f 15,
starting with £ 8.

¢ If al available floating-point parameter registers have been used, the actual parameter is
passed in the appropriate general register(s). (This case can occur only as aresult of
homogeneous floating-point aggregates, described below.)

If afloating-point actual parameter is known to correspond to a variable-argument specification in
the formal parameter list, the following rule applies:

* Theactua parameter is passed in the appropriate general register(s).

IA-64 Software Conventions and Runtime Architecture Guide 8-7

Procedure Linkage

8-8

int

double

__int128

31 0
MSB LSB

dot 0
63 3231 0
Padding (undefinenim SB L Sk

Byte 0 Big-Endian Byte 7
Byte7 Little-Endian Byte (

6362 5251 0

S| Exp. |MSB Significand L SH

sot 0
6362 5251 0

S| Exp. |MSB Significand LSB

Byte 0 Big-Endian Byte 7
Byte7 Little-Endian Byte (

127 0
MSB . LSB
I

slot 0 sot 0

63 0 63 0
MSB L SH
ByteO Big-Endian Byte 7
slot 1 dot 1

63 0 63 0

LSB MSB
Byte 8 Big-Endian Byte 15 Byte 15 Little-Endian Byte §

Figure 8-4. Examples of “LSB” Alignment

IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Procedure Linkage

8079 6463 0
_ float80 |S| Exp. [MSB Significand LS%
|
|
dot 0 dot 0
63 0 63 0
S| Exp. |MSB Significand MSB Significand L SH
Byte 0 Big-Endian Byte 7 Byte 7 Little-Endian e
slotlL slot 1
63 0 63 0
L SH Padding (undefined) Padding (undefined) S| Exp.
Byte 8 Big-Endian Byte 15 Byte 15 Little-Endian Byte §

Figure 8-5. Example of “Byte 0” Alignment

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter
isavarargs parameter, it must generate code that satisfies both of the above conditions. (The

compiler’s determination may be based on prototype declarations, language standard assumptions,
analysis, or other user options or information.)

When floating-point parameters are passed in floating-point registers, they are passed in the
register format, rounded to the appropriate precision. When passed in general registers, floating-
point values are passed in their memory format.

Parameters allocated beyond the eighth parameter slot are never passed in registers, even when
floating-point parameter registers remain unused.

Aggregates whose elements are all single-precision, all double-precision, or all double-extended-
precision values (but not quad-precision), are treated specially. These “homogeneous floating-point
aggregates” (HFAs) may be arrays of one of these types, structures whose only members are all one
of these types, or structures that contain other structures, provided that all lowest-level members
are one of these types, and all are the same type. (This definition includes Fortran COMPLEX data,
except COMPLEX*32.) The following additional rules apply to these types of parameters (but

only to the portion of an aggregate that lies within the first eight argument slots):

The following rules apply to floating-point aggregates:

¢ |f an actual parameter isknown to correspond to an HFA formal parameter, each element is
passed in the next available floating-point argument register, until the eight argument registers
are exhausted. The remaining elements of the aggregate are passed in output GRS, according to
the normal conventions.

* If an actual parameter is known to correspond to a variable-argument specification, the
aggregate is passed as any other aggregate.

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter
is avarargs parameter, the elements of the aggregate must be passed in both the corresponding
output GRs and in floating-point argument registers.

IA-64 Software Conventions and Runtime Architecture Guide 8-9

[]
Procedure Linkage I nu ®

Note:

8.5.3

8.5.4

Byte
Order

8.5.5

8.5.6

8-10

Because HFAs are mapped to parameter slots as aggregates, single-precision HFAs will be
allocated with two floating-point values in each parameter slot, but only one value per register.
Thus, the available floating-point parameter registers may become exhausted before the end of the
first eight parameter slots, and additional members of the HFA must be passed in general registers.

It is possible for the first of two valuesin a parameter slot to occupy the last available floating-
point parameter register. In this case, the second value is passed in its designated GR, but the half
of the GR that would have contained the first value is undefined.

Memory Stack Parameters

The remainder of the parameter list, beginning with slot 8, is passed in the outgoing parameter area

of the memory stack frame, as described in Section 7.1, “Procedure Frames” on page 7-1
Parameters are mapped directly to memory, with slot 8 placed at logatian slot 9 atsp+24,

and so on. Each argument slot is stored in memory as a 64-bit storage unit according to the byte
order of the current environment.

Variable Argument Lists

The rules above support variable-argument list functions in both the K&R and the ANSI C
languages. When an ANSI prototype is in scope, all register parameters corresponding to a
variable-argument specification are passed in GRs; when no prototype is in scope, floating-point
parameters are copied in both GRs and FRs because of the possibility that the callee is expecting a
variable argument list.

Thus, a function with variable arguments may assume that the variable arguments that lie within
the first eight argument slots can all be found in the stacked input @Rsn7. It may then store
these registers to memory, using the 16-byte scratch aresfandi n7, and using up to 48 bytes

at the base of its own stack frameifeo— n5, as necessary. This arrangement places all the
variable parameters in one contiguous block of memory.

When storing registers to memory for this purpose, the code must usestiei | | instruction,
since the registers are not guaranteed to contain valid values.

In a big-endian environment, the alignment and padding rules require the code that steps through
the argument list to distinguish between aggregates and integers smaller than 8 bytes. Aggregates
will be left-aligned within an 8-byte slot, while integers will be right-aligned.

Examples of the macros from the dar g. h> header file are given in Appendix A.

Pointers to Formal Parameters

Whenever the address is formed of a formal parameter that is passed in a register, the compiler
must store the parameter to the stack, as it would for a variable argument list.

Languages Other than C

Most languages other than C can usually be treated as if prototypes are always in scope, avoiding
the need to pass floating-point parameters in both GRs and FRs. For example, because Fortran
passes floating-point parameters by value only when calling an intrinsic function, it may safely
assume that the callee is expecting the parameter in an FR.

IA-64 Software Conventions and Runtime Architecture Guide

u
I nt9| o Procedure Linkage

A compiler for another language may need to honor the variable-argument list conventions,
however, if it provides a mechanism for calling C procedures that may have variable-argument
lists.

8.5.7 Rounding Floating-point Values
Floating-point parameters passed in floating-point registers should always be explicitly rounded to
the proper precision expected by the language. There should be no difference in behavior between

afloating-point parameter passed directly in registers and afloating-point parameter that has been
stored to memory and rel oaded.

8.5.8 Examples
The following examples illustrate the parameter passing conventions.
Scalar integers and floats, with prototype:

extern int func(int, double, double, int);
func(i, a, b, j);

The parameters are passed as follows:

i outO0
a f8
b fo
i out 3

Scalar integersand floats, without prototype:

extern int func();
func(i, a, b, j);

The parameters are passed as follows:

i outO0
a outl and 8
b out2 and f9
i out 3

Aggregates passed by value:

extern int func();
struct { int array[20]; } a;
func(i, a);

The structure’s external alignment is only 4 bytes, so no padding is required in the parameter list.
The parameters are passed as follows:

i out 0

a.array[0-13] outl —out 7
a.array[14-19] In memory, at sp+16 through sp+39

IA-64 Software Conventions and Runtime Architecture Guide 8-11

[]
Procedure Linkage I nu ®

Aggregates passed by value:

extern int func();
struct { __float128 x; int array[20]; } a;
func(i, a);

The structure’s external alignment is 16 bytes, so parameter slot 1 is skipped. The parameters are
passed as follows:

i out 0

a. X out2—out3

a.array[0-7] out4 —out 7

a.array[8-19] In memory, at sp+16 through sp+63

Floating-point aggregates, without prototype:

struct s { float a, b, c; } x;
extern func();
func(x);

The parameters are passed as follows:

x.a outo andfs
x.b outd andf9
X.C outl andfi0

In little-endian environments, x.a and x.c arein theleast-significant bits of outo and out1 ,
respectively, whilex.b isinthe most-significant bits of outo . In big-endian environments, x.a and
x.c areinthe most-significant bits of outo and out1 , respectively, whilex.b isin the least-
significant bits of outo . The figure below illustrates this.

Big-endian qruct Little-endian
0
X.a
= x.b
8
X.C
63 3231 v 0 63 v 3231 0
out0 outO
v outl outl v

Floating-point aggregates, with prototype:

struct s { float a, b, c; } x;
extern void func(struct s);

8-12 IA-64 Software Conventions and Runtime Architecture Guide

8.6

Table 8-2.

Byte
Order

IA-64 Software

func(x);

The parameters are passed as follows:

Return Values

Values up to 256 hits and certain aggregates are returned directly in registers, according to therules

Procedure Linkage

in Table 8-2.
Rules for Return Values
Type Size (Bits) Location of Return Value | Alignment
Integer/Pointer 1-64 r8 LSB
Integer 65-128 18, r9 LSB
Sln_gle-PreC|S|on Floating- 32 i8 N/A
Point
Do_uble-Precision Floating- 64 f8 N/A
Point
Do_uble-Extended Floating- 80 8 N/A
Point
Qu_ad-PreC|S|on Floating- 128 18, 19 Byte 0
Point
Single-Precision HFA 32-256 f8—f15 N/A
Double-Precision HFA 64-512 f8—f15 N/A
Double-Extended HFA 128-1024 f8—f15 N/A
Aggregates 1-64 8 Byte O
Aggregates 65—-256 r8-rll Byte 0
Aggregates >256 Memory Byte O

When multiple registers are used to return a numeric value, the lowest-numbered register contains
the most-significant bits in big-endian environments, and the least-significant bitsin little-endian
environments. When multiple registers are used to return an aggregate, the lowest-numbered
register containsthefirst eight bytes of the aggregate. In big-endian environments, the padding will
be at theright end of thefinal register used; in little-endian environments, the padding will be at the
left end of the final register used.

Integral return values smaller than 32 bits must be zero-filled (if unsigned) or sign-extended (if
signed) to at least 32 bits.

Conventions and Runtime Architecture Guide 8-13

[]
Procedure Linkage I nu ®

8.7

8-14

Homogeneous floating-point aggregates, as defined in Section 8.5, are returned in floating-point
registers, provided the array or structure contains no more than eight individual values. The
elements of the aggregate are placed in successive floating-point registers, beginning withf . If the
array or structure contains more than eight elements, it is returned according to the rule below for
aggregates larger than 256 hits.

Return values larger than 256 bits (except HFAs of up to 8 elements) are returned in a buffer
allocated by the caller. A pointer to the buffer is passed to the called procedureinr 8. Thisregister
is not guaranteed to be preserved by the called procedure (that is, the caller must preserve the
address of the buffer through some other means). The return buffer must be aligned at a 16-byte
boundary. A procedure may assume that the return buffer does not overlap any datathat isvisible
to it through any other names.

A procedure may assume that any procedure it callswill return avalid value (i.e., the NaT bits are
clear if thereturn isin general registers, and floating-point values returned are not NaTVals).

Requirements for Unwinding the Stack

Certain constraints must be met in order to unwind the stack successfully at any time, both by
standard procedure calls as described here, and by special-purpose calling conventions. Chapter 11,
“Stack Unwinding and Exception Handlingiescribes how the unwind process works and the
format of the unwind data structures. To meet the needs of the stack unwind mechanism, the
following rules must be followed at all times:

* Thepreviousfunction stateregister (ar . pf s) must be preserved prior to any call. The compiler
must record, in the unwind data structures, where this register is stored, and over what range of
code the saved vaueisvalid.

* For special callsusing areturn BR other than bo, the compiler must record the BR number
used for the return link.

* The return BR must be preserved prior to any call involving the same BR. The compiler must
record where the return BR is stored and over what range of code the saved value isvalid.

¢ |f aprocedure has a memory stack frame, the compiler must record either: (1) how large the
frameis, or (2) that a previous frame pointer is stored on the stack or in ageneral register.

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Coding Conventions 9

This chapter discusses general coding conventions and presents some example code sequences for
various tasks. The code sequences shown in this chapter are intended to serve as guidelines and
examples rather than as required coding conventions. The requirements are documented in other
chapters in this document.

9.1 Sample Code Sequences

In the sample code sequences in this section, registers of the form t1, t2, etc., are temporary
registers, and may be assigned to any available scratch register. The code sequences show
necessary cycle breaks, but no other scheduling considerations have been made. It is assumed that
these code sequences will be scheduled with surrounding code to make best use of the processor
resources.

9.1.1 Addressing “own” Data in the Short Data Area

“Own” short data may be addressed with a simple direct reference relative to the gp register, as
illustrated below.

addl t1=@prel (var),gp ;; // calc. address of var
| d8 I ocO=[1t1] // 1oad contents of var

“Own” long data may be addressed either via the linkage table, as sh&eation 9.1.20r
directly as illustrated below.

nov| t1=@prel (var) ;; /1 formgp-relative offset of var
add t2=t1,gp ;; // calc. address of var
| d8 | ocO=[12] /1 1oad contents of var

9.1.2 Addressing External Data or Data in a Long Data Area

When data is hot known to be defined in the current load module (i.e., it is not “own”), or if it is too
large for the short data region, it must be accessed indirectly through the linkage table, as shown
below.

addl tl=@toff(var),gp ;; // calc. address of LT entry
| d8 t2=[t1] ;; // 1 oad address of var
| d8 | ocO=[12] /1 1oad contents of var

IA-64 Software Conventions and Runtime Architecture Guide 9-1

|]
Coding Conventions I nu ®

9.1.3 Addressing Literals in the Text Segment

Literalsin the text segment may be addressed either through the linkage table, asin Section 9.1.2
above, or with pc-relative addressing, as shown below. Note that the first two instructions may be
moved towards the beginning of the procedure, and the base address of the literal area, inlocO, can
be shared by other literal referencesin the same procedure.

L1: nmov r3=ip ;; /1 get current IP
addl locO=litbase-L1,r3 ;; // calc. addr. of lit. area
add s t2=(lit-litbase),locO ;; // calc. address of lit.
| d8 locl=[12] /1 load value of literal
9.1.4 Materializing Function Pointers

Function pointers must always be obtained from the data segment, either as an initialized word or
through the linkage table, as shown in the following examples:

Materializing function pointersthrough linkage table:

addl tl=@toff(@ptr(func)),gp ;; // calc address of LT entry
| d8 | ocO=[t 1] /1 load function pointer

Materializing function pointersin data:

fptr:
dat a8 @tpr(func) // initialize function ptr

9.15 Direct Procedure Calls

The following code sequence illustrating adirect procedure call assumes that the parameters have
already been placed in the proper locations.

nov | ocO=gp ;; /] save current gp

br.call rp=func ;; /1 make the call

nov gp=l ocO /Il restore gp
9.1.6 Indirect Procedure Calls

The indirect procedure call sequence must load the function’s entry point and gp value from the
function descriptor. In this example, the function pointer is assumed to have been loaded into
register locO.

9-2 IA-64 Software Conventions and Runtime Architecture Guide

9.1.7

9.2

Coding Conventions

nov locl=gp ;; // save current gp

| d8 t1=[1o0c0],8 ;; /1 1oad entry point

| d8 gp=[loc0] ;; /1 1oad new gp val ue
nov b6=t1 ;; /1 nmove ep to call BR
br.call rp=bé ;; /1 make the cal

nov gp=l ocl /] restore gp

Jump Tables

High-level language constructs such as case and switch statements, where there are severa
possiblelocal targets of abranch, may use anumber of different code generation strategies, ranging
from sequential conditional branches to a direct-lookup branch table.

If the compiler chooses to generate a branch table, the table should be placed in the text segment,
and each table entry should be a 64-bit byte displacement from the base of the branch table to the
branch target for that entry. This allows the displacements to be statically determined at link time,
and no relocations will need to be applied at program invocation time. With displacements relative
to the base address of the branch table, the code can easily add the displacement obtained from the
table to the base address of the table to compute the target branch address.

A sampleindirect branch is shown below. The branch table is assumed to be an array of 64-bit
entries, each of which isan offset, relative to the beginning of the branch table, to the branch target.
The branch table index is assumed to have been computed or loaded into register locO.

addl locl=@toff(brtab),gp // calc. address of

- /1 linkage table entry

| d8 loc2=[locl] ;; // 1oad addr. of br. table

shl add | oc3=l ocO, 3,1 0c2 ;; I/ calc. address of branch
// table entry

| d8 locd4=[loc3] ;; // 1oad branch table entry

add | oc5=l oc4,l0c2 ;; // calc. target address

nov b6=l oc5 ;; /'l nmove address to bé6..

br. cond b6 ;; /1 ...and branch

Alternatively, the code could use a pc-rel ative addressing sequence to obtain the base address of the
jump table, using code similar to that in Section 9.1.3.

Speculation

Data speculation, using advanced load instructions, across procedure calls will not work correctly
if thetarget of the advanced load is not one of the registersin the in/local region of the register
stack frame. Upon return from the procedure call, the information in the ALAT could refer to an
unchecked (or uncleared) advanced load to the same register from within the called procedure,
rather than the information from the original load prior to the call.

Speculation recovery code may be placed within the procedure, outside the procedure but
contiguous with it, or in a completely different section of memory. In any case, the target of the
check instruction must be placed in or contiguous with the procedurein order to guarantee that a

IA-64 Software Conventions and Runtime Architecture Guide 9-3

|]
Coding Conventions I nu ®

9.3

9.4

9.5

22-bit pc-relative displacement in the check instruction will reach thetarget. If the recovery codeis
distant, the target of the check instruction may be a small piece of “trampoline” code that branches
to the recovery code.

If a speculative load is issued to an unaligned address, the OS may deliver a NaT. An application
cannot expect to use a user-level trap handler to emulate the unaligned load unless the code is
compiled with recovery code.

Multi-threaded Code

In multi-threaded applications, the use of the volatile type qualifier should be interpreted to mean
that the variables designated with that type may be modified asynchronously by any thread. The
compiler must observe ordering restrictions with respect to loads and stores, and should not remove
otherwise unnecessary memory references to these variables.

In addition, the compiler must generate appropriate ordered load and store instructions to prevent
the hardware from executing volatile references out of order. All loads to a volatile type must use
acquire semantics (using the “.acq” completer), and all stores to a volatile type must use release
semantics (using the “.rel” completer). These completers ensure that no load will complete prior to
an earlier load with acquire, and no store will complete prior to a subsequent store with release.

The use of a memory fence operation prior to a load with acquire implements stronger ordering, but
is not required by these conventions.

setimp and longjmp

The contents of a procedure’s register stack frame are not preserved in a jump buffer by a call to
setj np. If the compiler has a temporary value live in a stacked register before theseallp,

with a subsequent use after the calldg np, that value will not be saved and restored by a

set j np/l ongj np. Instead, after bongj np, the register will have whatever value it had at the point

in time when ongj np was called. If the original value reaches all subsequent call points in the
procedure, the code will behave as expected. If the register is reused or otherwise modified,
however, the value in that register followingaagj np is unpredictable.

To keep a stacked register live across a caktpnp, the compiler can do one of three things: (1)
dedicate that register for the rest of the procedure, (2) copy it to a real preserved register (r4—r7), or
(3) spill it to a dedicated memory stack location. Alternatively, the compiler can simply
rematerialize it after the call @t np.

Up-level Referencing

Local variables visible to nested procedures must be saved in memory at any procedure call or
exception control point; a procedure’s local registers are not visible to its nested procedures.

These conventions suggest, but do not require, the use of a static link passed as an implicit

parameter to nested procedures. The static link can be used by the nested procedure to access local
variables in its enclosing scope. The rules for forming and passing static links are as follows:

IA-64 Software Conventions and Runtime Architecture Guide

[]
I nt9I ® Coding Conventions

* A level-one procedure (outermost) calling alevel-two procedure should pass, asthe static link,
the address of a known reference point within its stack frame (for example, its frame pointer).

* A nested procedure calling another procedure at the same level should pass, as the static link,
the static link that it received.

* A nested procedure calling a procedure nested within it should store the static link that it
received at a known place within its own stack frame, then pass, as the static link to the new
procedure, the address of a known reference point within its own stack frame (for example, a
pointer to the static link that it saved).

* A nested procedure calling aless-deeply nested procedure must follow the chain of static links
to obtain the correct static link to pass.

When forming function pointers that refer to nested procedures, the same rules apply. The static
link must be determined at the time the function pointer is materialized, and stored with the
function pointer.

To referencelocal variablesin enclosing scopes, the chain of static links must be followed to obtain
a pointer to the enclosing scope’s stack frame. The compiler can determine statically the offset of
the desired local variable relative to the reference point used for the static link.

An alternate implementation is a display pointer, also passed as an implicit parameter to each
nested procedure.

9.6 C++ Conventions

The “this” pointer is passed as an implicit first parameter to all non-static class member functions.

Any object that requires a copy constructor must be passed by copy-reference rather than by value
(that is, the compiler must copy it to a temporary location in memory and pass the address of this
location in the argument list). This guarantees that the object will have a valid memory address as
required by the copy constructor. The temporary location should be in the caller's memory stack
frame.

IA-64 Software Conventions and Runtime Architecture Guide 9-5

Coding Conventions

9-6

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Context Management 10

10.1 Process/thread context

The following table lists the resources that constitute the context that is visible to the user-mode

process or thread (not including the program'’s address space). These are the registers that must be
saved and restored on an asynchronous context switch (i.e., a context switch triggered by an
outside event, such as a signal). For a synchronous context switch (i.e., a direct call to a context-
switch routine), scratch registers do not need to be saved.

Table 10-1. Resources to be saved on context switches

Resource Synchronous Asynchronous

Instruction pointer (i p) . .
Global data pointer (gp) . .
Stack pointer (sp) . .
Thread pointer (t p) . .
Backing store pointer (ar . bsp/ ar . bspst ore) . .
Floating-point status register (ar . f psr) . .
RSE NaT collection register (ar . r nat) . .
User NaT collection register (ar . unat) . .
Previous function state (ar . pf s) . .
Current frame marker .
RSE control register (ar . r sc) .
Loop counter (ar. | ¢) . .
Epilogue counter (ar . ec) .
Compare and exchange comparison value (ar . ccv) .
Preserved general registers (r 4- r 7) (including NaT bits) . .
Scratch general registers (r 2-r 3, r8-r11, r14-r31) (including .
NaT bits)

Preserved floating-point registers (f 2-f 5, f16-f31) . .
Scratch floating-point registers (f 6- f 15, f 32-f127) .
Preserved predicate registers (p1- p5, pl6-p63) . .
Scratch predicate registers (p6- p15) .
Preserved branch registers (b1- b5) . .
Scratch branch registers (b0, b6-b7) .

Note: The User NaT collection register must be saved separately from the NaT bits for the general
registers, since it contains the NaT bits for preserved general registers that a procedure has spilled
on behalf of its caller. This register must be saved before any general registers are saved, as the
saving of general registers writes to this register. Once the general registers have been saved as part

IA-64 Software Conventions and Runtime Architecture Guide 10-1

u
Context Management I nt9| ®

10.2

10.3

10-2

Note:

of the state save procedure, the User NaT collection register will contain the NaT bits for the
newly-saved registers, and can then be saved again.

User-level thread switch, coroutines

Thread switches and coroutine calls can be done with a procedure call, so nho scratch registers need
to be saved as part of the context. The first part of this routine saves the current thread context on
the stack:

1. Savear.rsc,ar. bsp and ar. pfs.
2. Useflushrs instruction to flush dirty registers to the backing store.
3. Set the RSE in enforced lazy mode by clearing both r sc. mode hits.

4. Savear.rnat and other registers that must be saved for a synchronous context switch.

At this point, the RSE is frozen, and all dynamic registers up to the current procedure frame are
saved in the backing store. We can how change the memory stack pointer (sp) to point to the new
thread’s stack, and restore the new thread’s context from there:

1. Invalidate the ALAT using thienval a instruction.
2. Restorar . bspst ore (the savedr . bsp).

3. Restorear.rnat andar. pfs.
4

. Restorexr . rsc. If eager loads are enabled, it will begin restoring dynamic registers from
previous stack frames. Otherwise, it will restore registers from the backing store when needed
for a return branch.

(€2}

. Restore the remaining preserved registers.

6. Return to the new thread.

setjmp/longjmp

Thej npbuf structure declared kj npbuf . h> needs to contain the state listed in Table 10-1 for a
synchronous context switch. The instruction pointg) is the return BR from the call $@t j mp. It
must also contain the signal mask @ogset j np/ si gl ongj np).

Saving and restoring this context is similar to a thread switclngj rp must also invalidate the
ALAT.

When the NaT bits for the preserved registers are saved, care should be taken that the
representation is not dependent on the address of the jump buffer itsel8.the 11 instruction
saves the NaT bit in the user NaT collection register based on the memory address.

The user NaT collection register is itself a preserved register, and must be saved in the jump buffer
before any preserved general registers are spilled. The saved copy of the user NaT collection
register should not be adjusted for the jump buffer address—this adjustment should be made only
for the NaT bits resulting from the stores of the preserved registers into the jump buffer.

IA-64 Software Conventions and Runtime Architecture Guide

intgl.
Stack Unwinding and Exception
Handling 11

Stack unwinding is the process of tracing backwards through a process’ stack of activation records.
Every procedure in an IA-64 program has at least a frame on the register stack, and may also have
a frame on the memory stack. In order to print a stack trace, debuggers require the ability to
identify every frame on these stacks, and to show the process context associated with each one.
Exception handling often requires the ability to remove a number of frames from the stack and to
transfer control to an exception handling routine that may have been far down the stack.

For the register stack, the. pf s register contains sufficient information to identify the previous
frame, given the state of the current register stack frame. This works for only one level of nesting,
however, since there is no architected stack off s registers. Thus, in order to unwind the

register stack, we must impose a convention for saving and recoverktg ghe register in each
frame.

For the memory stack, there is no architected mechanism for recordisyguakie for each stack

frame, or for associating memory stack frames with register stack frames. While different
procedures will need differently-sized stack frames, we expect that most procedures will allocate a
frame whose size does not change while the procedure is active. Thus, for most procedures, we can
simply record this fixed frame size in a static table, and use the instruction pointer (IP) as a key to
this table. For procedures whose frames can vary in size, we must impose a convention for saving
and recovering thep value for the previous frame on the stack.

As the stacks are unwound, it is also necessary to recover the values of preserved registers that
were saved by each procedure in the activation stack, so that debuggers have access to correct
values of local variables, and so that exception handlers can operate correctly. This requirement
also imposes conventions for saving and recovering the values of these preserved registers.

In all cases, we wish to retain as much flexibility as possible for the compiler in its use of registers
and code generation. Thus, these conventions allow the compiler to save the necessary values in a
variety of locations, and with a variety of code sequences. We use the IP as a key for locating an
unwind table entry that describes everything necessary for locating the previous register and
memory stack frames, as well as the previous IP. The compiler is responsible for generating this
static unwind table entry for each procedure that it generates code for.

In most operating environments, unwinding the stack will be done via an unwind library that can be
called from the process itself, from a debugger, or for exception handling. It operates on context
records; the primary routine reconstructs the context for a previous frame given the context for its
descendent frame. Because the structure of a context record, and the interface between the
operating system and exception handling mechanism is environment dependent, this unwind
library is also environment-dependent, and is not defined as part of the runtime architecture. This
chapter describes the framework for unwinding the stack and for processing exceptions, including
the format of the static unwind tables constructed by the compilers, and the code generation
conventions imposed as a result.

IA-64 Software Conventions and Runtime Architecture Guide 11-1

u
Stack Unwinding and Exception Handling Int9| o

11.1

11.1.1

11.1.2

11-2

Unwinding the Stack

The process of unwinding the stack begins with an initial context record describing the process
state in the most recent procedure activation, at the point of interruption. From thisinitial state, the
stack is unwound one procedure frame at atime, using static information generated by the
compilers about each procedure to help it reconstruct a context record describing the previous
procedure, which is suspended at a point just after the procedure call or an asynchronous
interruption.

Initial Context

Every stack unwind starts with an initial context, obtained from one of three sources:

¢ The debugger. The context record is obtained from the operating system through the
debugging API.

¢ The unwind library. The context is constructed as for the first half of a user-mode thread
switch.

* From exception handler. The context is constructed by the operating system and passed to the
exception handler.

Step to Previous Frame

This process builds a context record corresponding to the next older frame on the stack. This
context record can, in turn, be used to unwind to the next frame. The following steps will
reconstruct the context for the previous frame:

1. Findthereturn link in the current context, and set | P in the previous context to that address.

2. Find the previous frame marker in the current context (e.g., inthear . pf s register), and copy it
to the current frame marker (cf m) in the previous context.

3. Determine the value of gp for the new | P, and set gp in the previous context to that value.
4. Setsp in previous context to sp from current context plus the current memory frame size.

5. Setar. bsp inthe previous context to ar . bsp from the current context minus size of the input/
local region of the frame (taking NaT collections that may have been saved to the backing
storeinto account). The frame size can be calculated from the frame marker.

6. Find the saved copies of the preserved registersin the current context, and copy them to the
previous context.

The bottom of the call stack isidentified by a saved return link of 0.

The information needed to execute these steps correctly is recorded by the compilersin static
unwind information, stored in the text segment of the program itself. The structure of this
information is described in Section 11.4. Each text segment contains atable of unwind information,
and the dynamic loader is expected to provide an API for finding the unwind table, given a known
IP. This APl is specific to the operating environment, and is not described here.

When a process is delivered an asynchronous interruption (viaa mechanism that is environment
dependent), the full process context needs to be saved so that the process can continue executing
correctly once the interruption has been handled. Typically, this context will be saved on the
memory stack, and anew procedure frame will be constructed for the interruption handler. The first

IA-64 Software Conventions and Runtime Architecture Guide

Int9| o Stack Unwinding and Exception Handling

procedure frame in the interruption processing must be marked in such away that the unwind
routine can recognize that unwinding past the point of interruption requires arestoration of the full
context. This, unfortunately, is aso an environment-dependent operation, and cannot be described
in the runtime architecture.

When the operating system delivers a context to the application, it may be necessary for the register
stack backing store to be split into two or more non-contiguous pieces. An application that
examines its backing store should be prepared to deal with this; this also is an environment-
dependent operation.

11.2 Exception Handling Framework

The exception handling model for 1A-64is partitioned into alanguage-independent component and
alanguage-dependent component. The language-independent component is responsible for
fielding an exception, searching for an exception handler, and unwinding the stack prior to
processing an exception. Each source language that supports exception handling must provide, as
part of its runtime library, a “personality” routine that implements the language-dependent
component of this model.

This document uses the C++ exception handling mechanism as an example of the
language-dependent component. The description of the C++-specific data structures and
routines should be treated as an example, rather than a specification of the C++ design.
Text that discusses language-specific implementation appears indented and italicized like
this paragraph.

The exception handling model is oriented around procedure frames on the memory and register
stacks. Each frame corresponds to an activation of a procedure, which may or may not have
associated exception handling requirements. A procedure may have two kinds of exception
handling requirements:

* It may allocate some objects that require deallocation or some other form of cleanup if the
procedure or any of its blocks are terminated abnormally.

* |t may have one or more try regions, which are regions of code that specify an action to be
taken if an exception occurs while control iswithin them.

In either of these cases, the compiler records the requirementsin the static unwind information for
the procedure, and stores areference to the personality routine for that procedure. Typically, a
language will use a single personality routine for all procedures, but thisis not a requirement (for
example, alanguage may define a separate personality routine for procedures that require cleanup,
but have no try regions.)

Try regions may be nested both statically, within the procedure, and dynamically, through
procedure calls. When an exception occurs, each try region isinspected to determineif it has
specified an action for that particular exception. The try regions are inspected in order, beginning
with the innermost region.

InC++, atry/ cat ch statement defines a try region, and the filter controls which
exceptions are to be caught and handled within that region.

Exceptions are raised by invoking a routine in the language-independent component called the
exception dispatcher, which initiates the process of handling the exception. Synchronous
exceptions may be raised directly by the application through a language-specific construct;
asynchronous exceptions may be raised in response to hardware-detected traps or faults.

IA-64 Software Conventions and Runtime Architecture Guide 11-3

u
Stack Unwinding and Exception Handling Int9| o

In C++, synchronous exceptions can be raised with thet hr ow statement. This statement
creates an exception object, which is matched against the prototype in each cat ch clause
for each activet ry statement. C++ does not define asynchronous exceptions.

The dispatcher unwinds each frame on the stack non-destructively, beginning with the topmost
frame, searching for frames with one or more try regions. For each frame that has exception
handling information, the dispatcher invokes the personality routine, which determines which try
regions, if any, are currently active. For each active try region, starting with the most deeply nested
one, the personality routine determines whether to dismiss the exception, handle it, or continue the
search with the next try region, or with the previous frame on the stack. If the personality routine
doesfind atry region with a handler for the exception, it invokes the unwinder to unwind the stack
a second time. During this second unwind, the unwinder invokes the personality routines for each
frame again so that cleanup actions may be executed as necessary. When the unwind reaches the
frame that contains the exception handler, control is transferred to the handler.

The relationships among these components areillustrated in Figure 11-1. The shaded boxes
identify the components that are specific to C++.

11.3 Coding Conventions for Reliable Unwinding

This section describes the coding conventions that must be observed to guarantee unwindability
from every point in the program. For the purposes of unwinding, we divide every procedure up into
one or more regions, which are classified as either “prologue” or “body” regions.

A “prologue” region is one where the register stack and memory stack frames are established and
where key registers are saved. In order to unwind correctly when the IP is is one of these regions,
the unwinder must have a detailed description of the order of operations within the region, so that it
knows what state has changed, and which registers have been saved at any given point in that
region.

A “body” region does not change the state of either stack frame, and does not save any additional
preserved registers. Thus, the unwinder needs to know only the state of the frame for the entire
region, and the relative location of the IP within the region is irrelevant.

For both types of regions, the unwinder needs to know the state of the stack frames and preserved
registers upon entry to the region. There are four ways to establish the entry state for an unwind
region:;

* Thefirst regionin the procedure assumes that both stack frames are unallocated, and no
registers have been saved upon entry to the region.

* A region may modify the state of the stack frames and preserved registers; each subsequent
region takes the previous region’s exit state as its entry state.

* When control does not flow into aregion from directly above it, the region may specify an
alternate predecessor region whose exit state is used instead.

¢ Zero-length prologue regions may be inserted just prior to a prologue or body region to set up
the correct entry state.

Regions may begin and end at arbitrary instructions, without regard to bundle boundaries or cycle
breaks.

11-4 IA-64 Software Conventions and Runtime Architecture Guide

u
Int9| o Stack Unwinding and Exception Handling

User Code System Code
Application
Code *
Raise
Exception

Per sonality .
Routine. | Dispatcher

Filter Unwinder

Y

Per sonality
Routine

#

Cleanup Exception
Actions Handler

Figure 11-1. Components of the exception handling mechanism

11.3.1 Conventions for Prologue Regions

A typical prologue region will do some or al of the following steps:

* Allocate anew register stack frame. The placement of this step is not important to the unwind
process (although it must precede any other operations in the prologue that require the use of
local stack registers).

¢ Allocate anew memory stack frame. For fixed-size frames, the stack pointer (sp) must be
modified in a single instruction (either with a single add immediate, or by performing
intermediate calculations in a scratch register before modifying sp). The location of this
instruction and the fixed frame size must be recorded in the unwind descriptor. For variable-
size frames, the stack pointer must be saved in ageneral register that is kept valid throughout
the remainder of the prologue region and the following body region(s). This copy of the
previous stack pointer is called psp. The location of the copy instruction, and the GR number
must be recorded in the unwind descriptor.

IA-64 Software Conventions and Runtime Architecture Guide 11-5

u
Stack Unwinding and Exception Handling Int9| o

11-6

* Savethe previous function state (ar . pf s), either in ageneral register or on the memory stack.
The location of thisinstruction, and the GR number or stack offset must be recorded in the
unwind descriptor. Normally, the previous function state is copied to a GR by theal | oc
instruction that allocates a new register stack frame. If the previous function state isto be
stored in the memory stack, however, the location of the instruction that stores the GR to
memory should be recorded, and the original pf s may not be modified until after the store.

* Savethereturn pointer (r p), either in a general register or on the memory stack. The location
of thisinstruction, and the GR number or stack offset must be recorded in the unwind
descriptor. Saving to the memory stack requires two steps—one to copy it to a GR, and another
to store it; the location of the store is the one to record, and the origimaly not be modified
before the store.

* Save preserved registers, either on the memory stack or in local registersin the current register
stack frame. In general, the location of each instruction used to save a preserved register, and
the GR number or stack offset must be recorded. There are five groups of preserved registers:
GRs, FRs, BRs, predicates, and ARS (ar . unat ,ar.rnat,ar.lc,ar.fpsr,ar. bsp, and
ar. bspst or e). The predicates must be copied as awhole to a GR with asingle Move from
Predicates instruction; if they are to be stored on the memory stack, the Store instruction isthe
one to record. Any arbitrary subset of preserved GRs, FRs, and BRs may be saved in a
prologue, but they must be saved in ascending order by register number within each group
(saves from different groups may be interleaved). Saving a BR to memory (other than r p)
requires two steps—a move to GR, and a store; the location of the store is the one to record,
and the value of the BR may not be modified until the store is completed.

The unwinder must also know where preserved registers are saved in the memory stack frame,
because it needs to reconstruct the values of these registers as it unwinds the stack. The
conventions for the spill area are discussed below.

A prologue region may also contain any amount of other code that is irrelevant to the unwind
process. For better efficiency during the unwind process, however, the size of the prologue region
should be kept as small as possible, and it should be defined to end immediately after the last of the
above steps.

Prologue regions may occur in the interior of a procedure. These typically represent register spill
sequences that have been “shrink-wrapped” into a small block of conditional code.

The encoding of the unwind descriptors for prologue regions recognizes several common cases that
reduce the size of the unwind information significantly. Compilers are encouraged to observe these
conventions for low optimization levels and whenever it would not adversely affect the quality of
optimization. These cases include:

* The prologue savesr p, ar . pf s, psp, and the predicates (as needed) in consecutive registersin
the ing/locals area of the current register stack frame.

* The prologue saves all of its subset of preserved registers before modifying any of them. In
this case, the locations of individual save instructions do not need to be recorded, and the
restrictions on their relative ordering are eliminated.

* A leaf procedure that does not create a memory stack frame or save any preserved registers
does not require any unwind descriptors.

IA-64 Software Conventions and Runtime Architecture Guide

In

11.3.2

11.3.3

®

Stack Unwinding and Exception Handling

Conventions for Body Regions

In general, body regions may do anything that does not invalidate the state of the stack frames and
preserved registers as recorded for that region. In particular, abody region must obey the following
restrictions:

* |f the memory stack frame isfixed size, it may not modify the sp register.

¢ |f the memory stack frame is variable size, it may modify sp at any point, but it may not
modify the psp value, which must be undisturbed in a known place throughout the region.

* |t may not modify the previous frame marker in its known location. If the previous frame
marker is still in ar . pf s, this means that there may not be any callsin the region.

* It may not modify thereturn IPin its known location. If the return IPis still inr p, this means
that there may not be any callsin the region.

* It may not modify any preserved registers that have not been saved prior to entry to the region.

* |t may not modify the saved copies of any preserved registers that have been saved prior to
entry to the region.

A body region may restore ar . pf s, r p, and any preserved registers, aslong as the saved copies
remain valid. Thus, the unwinder does not need a specific “epilogue” region that is distinct from
the body region.

The memory stack pointesy) is typically restored just before executing a return branch. In a

normal epilogue at the end of a body region, the compiler may place the instruction that restores the
previoussp value anywhere within a few instructions of the end of the region; the unwind

descriptor format provides a place to record the exact location of this instruction. If the procedure
has a memory stack frame, and has returns in the middle of the body, the compiler must separate
the procedure into separate body regions, each ending at the point of each return.

Conventions for the Spill Area in the Memory Stack Frame

The spill area for preserved general registers, floating-point registers, and branch registers is near
the base of the stack frame, in a continuous range ending, by default, at the base of the stack frame
plus 16 bytespsp+16). In other words, the 16-byte scratch area in the caller’s stack frame normally
contains the last 16 bytes of the spill area. If the scratch area is needed for saving register
parameters for a variable-argument list procedure, the spill area may be moved so that it ends at a
lower address, but the ending address must be a fixed location relative to the base of the frame

(psp).

Locations in the spill area are reserved for each preserved GR, FR, and BR that is saved anywhere
within the procedure (including shrink-wrapped regions). Locations are allocated, from low

address to high, first for general registers, then for branch registers, and finally for floating-point
registers. Registers are saved in numerical order, lower-numbered registers at lower addresses. The
spill area must end at a 16-byte boundary, so that all the floating-point spill locations are 16-byte
aligned.

It is not required that all registers preserved in the spill area be consecutive from each register file.
If, for example, GR 4 and GR 7 are preserved, but GR 5 and GR 6 are not, space is allocated only
for GR4 and GR 7.

IA-64 Software Conventions and Runtime Architecture Guide 11-7

u
Stack Unwinding and Exception Handling Int9| o

A compiler may need to spill scratch registersin addition to preserved registers. There are no
required conventions for spilling scratch registers, since they do not need to be recovered during a
stack unwind. It is expected, however, that general register spills will be adjacent to the preserved
genera register spill areain order to make the best use of the User NaT collection register.

Normally, the unwinder expects to find the NaT bits for the preserved registers in the User NaT

collection register, ar . unat . If the total spill areafor general registers (scratch and preserved

combined) exceeds 64 double-words, the compiler may be forced to save the User NaT collection

register in order to spill up to an additional 64 general registers. In this overflow situation, the

compiler must manage two or more NaT collections by swapping them in and out of the single

collection register. The NaT collection that contains the NaT bits for the preserved registersis

called the “primary unat collection,” and the unwinder must know where to find these bits. In
procedures where the NaT collection register is multiplexed, the compiler must record the location
of the primary unat collection in the unwind information.

11.4 Data Structures

The exception handling mechanism uses three data structures:

¢ Anunwind table, which allows the dispatcher and unwinder to associate an | P value with a
procedure and its unwind and exception handling information. Every procedure that has either
amemory stack frame or exception handling requirements, or both, has one entry in this table.
(If the compiler has generated more than one non-contiguous region of code for a procedure,
there will be one entry in thistable for each region.) Each unwind table entry pointsto an
information block that contains the other two data structures.

¢ A set of unwind descriptors for each procedure.
* Anoptiona language-specific data area for each procedure.

The dispatcher and unwinder both use the unwind table to locate an unwind entry for a procedure,
given an IP value. The unwinder also uses the unwind descriptor list so that it can properly unwind
the stack from any point in the procedure.

The language-specific data areais used to store cleanup actions and atry region table.

11.4.1 Unwind Table

The unwind table entries contain three fields, asillustrated in Figure 11-2; each field is a 64-bit
doubleword. Thefirst two fields define the starting and ending addresses of the procedure,
respectively, and the third field points to a variable-size information block containing the unwind
descriptor list and language-specific data area. The ending address is the address of the first bundle
beyond the end of the procedure. These values are all segment-relative offsets, not absolute
addresses, so they do not require run-time relocations. The unwind table is sorted by the procedure
start address. The shaded area in the figure represents the language-specific data area.

If aleaf procedure has no stack frame, has no exception handling requirements, and keepsitsreturn

pointer in bo, no unwind table entry is necessary for the procedure. The unwinder must assume
these conditions when the | P does not correspond to any procedure table entry.

11-8 IA-64 Software Conventions and Runtime Architecture Guide

intel.

Stack Unwinding and Exception Handling

Unwind Table Info. Block tent | cent
start v| f |ulen Start
try/catch end

end unwind region
info ptr. descriptors table catch
per sonality handler
start

language- cleanup
specific action end

dataarea table
action

Figure 11-2. Unwind table and example of language-specific data area

Thefirst doubleword of the information block consists of three fields: a 16-bit version number for
the unwind descriptors, 16 flag bits, and a 32-bit length field. These fields may be accessed with
the following macros:

#defi ne UNW VER(x) ((x) >> 48)

#defi ne UNW FLAG MASK 0x0000f f f f 00000000L

#defi ne UNW FLAG OSMASK 0x0000f 00000000000L

#defi ne UNW FLAG EHANDLER(X) ((x) & 0x0000000100000000L)
#defi ne UNW FLAG UHANDLER(x) ((x) & 0x0000000200000000L)
#def i ne UNW LENGTH(x) ((x) & 0x00000000f f ffffffL)

The unwind version number identifies the version of the unwind descriptor format. For this
specification, the version number is 1.

The unwind length field identifies the length (in doublewords) of the unwind descriptor area.

Two flag bits are currently defined, and the four defined by UNw FLAG osmask are reserved for
implementation-specific use; the remaining bits are reserved for future use. The EHANDLER flag is
set if the personality routine should be called during search for an exception handler. The UHANDLER
flag is set if this routine should be called during the second unwind. If neither bit is set, thereisno
frame handler for this procedure, and the personality routine identifier should be omitted, along
with the entire language-specific data area.

In C++, the EHANDLER bit is set if the procedure contains any t ry/ cat ch regions, and the
UHANDLER hit is set if there are any cleanup actions.

The personality routine identifier is accessed by adding the size of the unwind descriptor area
(ulen, which is a count of doublewords, not bytes), plus the size of the header doubleword, to the
information block pointer. Thisidentifier contains the 64-hit gp-relative offset of a doubleword in
the linkage table that contains a function pointer, which in turn points to the function descriptor of
the personality routine. The function pointer itself must be in the data segment because it may need
relocation. The dispatcher should call thisroutine during the first unwind only if the EHANDLER bit is
set, and during the second unwind only if the UHANDLER hit is set. The language-specific data
immediately follows the personality routineidentifier, so the address of this area must be made
available to the personality routine.

IA-64 Software Conventions and Runtime Architecture Guide 11-9

u
Stack Unwinding and Exception Handling Int9| o

11.4.2 Unwind Descriptor Area

The unwind descriptor area contains a contiguous sequence of records describing the unwind
regions in the procedure. Each group of records begins with aregion header record identifying the
type and length of the region. The region header record is followed by any number of descriptor
records that supply additional unwind information about the region.

The unwind descriptor records are divided into three categories: region header records, descriptor
records for prologue regions, and descriptor records for body regions. This section describes the
record types in each of these categories, lists rules for using unwind descriptor records, and
explains how the records should be processed.

The information is encoded in variable-length records with a record type and one or more
additional fields. The length of each record isimplicit from the record type and itsfields. All
records are an integral number of bytes in length. In the descriptor record tables in the next three
sections, the third column lists the format of each record type. These record formats are described
in Appendix B.

Since the unwind descriptor area must be a multiple of 8 bytes, the last unwind descriptor must be
followed by zero bytes as necessary to pad the area to an 8-byte boundary. These zero bytes will be

interpreted as prologue region header records, specifying a zero-length prologue region, and serve
as no-ops.

11.4.2.1 Region header records
The region header records are listed in Table 11-1.

Table 11-1. Region Header Records

Record Type Fields Format Description

prologue rlen R1/R3 Defines a general prologue region.

Defines a prologue region with a mask of
prologue_gr rlen, mask, grsave R2 saved registers, and a set of GRs used for
saving preserved registers.

Thefields in these records are used as follows:

* rlen containsthe length of the region, measured in instruction slots (three slots per bundle,
counting X-unit instructions as two slots).

* mask indicates which registers are saved in the prologue. The pr ol ogue_gr region typeis
used for entry prologues that save one or more preserved registersin the local register area of
the register stack frame. This field defines what combination of r p, ar. pf s, psp, and the
predicates are preserved in standard GRs in the local area of the register stack frame. This
mask is four hits; see Appendix B, “Unwind Descriptor Record Formafgr the allocation of
these bits. Other registers may be preserved in the prologue, but additional descriptor records
are required for registers other than these four.

e grsav identifiesthefirst GR used to save the preserved registersidentified in the mask field.
Normally, this should identify a register in the procedure’s local stack frame (i.e., it should be
greater than or equal to 32). Leaf procedures, however, may choose to use any consecutive
sequence of scratch registers.

11-10 IA-64 Software Conventions and Runtime Architecture Guide

intel.

11.4.2.2

Stack Unwinding and Exception Handling

By default, the entry state for aregion is assumed to match the exit state of the preceding region.
The exit state of aregion is determined as follows:

* For prologue regions, the exit state is the logical combination of the entry state and the state
maodifications performed by the prologue. The descriptor records following the region header
record describe these modifications.

* For body regions with no epilogue code, the exit state is the same as the entry state.

* For body regions with epilogue code, the exit state is the same as the entry state of the
corresponding prol ogue whose effect is being undone. When shrink-wrap regions are nested, it
is possible to reverse the effects of multiple prologues at once.

Descriptor records for prologue regions

This section lists the descriptor records that may be used to describe prologue regions. In the
absence of any descriptor records or information in the region header record, a prologue is assumed
to create no memory stack frame and save no registers. Descriptors need to be supplied only to
override these defaults.

The following descriptor records are used to record information about the stack frame and the state
of the previous stack pointer (psp).

Table 11-2. Prologue Descriptor Records for the Stack Frame

Record Type Fields Format Description

Specifies a fixed-size memory stack frame, when sp is

mem_stack_f t, size P7 modified, and size of frame.

Specifies a variable-size memory stack frame, and when

mem_stack_v t P7 .
psp is saved.
psp_gr or P3 Specifies GR where psp is saved.
psp_sprel spoff p7 Specifies memory location where psp is saved, as an sp-

relative offset.

The fields in these records are used as follows:

e { describesatime, t, when a particular action occurs within the prologue. Thetimeis
specified as an instruction slot number, counting three slots per bundle. The first instruction
slot in the prologue is numbered 0. For procedures with a memory stack frame, the instruction
that modifies sp (fixed-size frame) or that saves psp (variable-size frame) must be identified
with either amem st ack_f or amem st ack_v record. In al other cases, if thetimeis not
specified, the unwinder may assume that the original contents of the register is valid through
the end of the prologue, and that the saved copy is valid by the end of the prologue.

e Size containsthe fixed size of the memory stack frame, measured in 16-byte units.

e gr identifiesagenera register, or thefirst in aconsecutive group of general registers, thet is
used for preserving the value of another register (asimplied by the record type). Typically, this
field will identify a general register in the procedure’s local stack frame. A leaf procedure,
however, may choose to use scratch registers. (A non-leaf procedure may also use scratch
registers through a body region that makes no calls, but it would need to move any values
saved in scratch registers to a more permanent save location prior to making any calls. It
would need a second prologue region to describe this movement.)

IA-64 Software Conventions and Runtime Architecture Guide 11-11

Stack Unwinding and Exception Handling

intel.

» spoff identifies alocation in the memory stack where aregister or group of registers are
spilled to memory. Thislocation is specified relative to the current stack pointer. See
Appendix B, “Unwind Descriptor Record Formatgr the encoding of this field.

The following descriptor records are used to record the state of the return painter (

Table 11-3. Prologue Descriptor Records for the Return Pointer

Record Type Fields Format Description
rp_when t P7 Specifies whenr p is saved.
rp_gr or P3 Specifies GR where r p is saved.
rp_br br P3 Specifies alternate BR used as return pointer.
Specifies memory location where r p is saved, as a psp-
rp_psprel pspoff P7 re?ative offset. Y P PP
Specifies memory location where r p is saved, as an sp-
rp_sprel spoff P8 re?ative offset. Y P P

The fields in these records are used as follows:

* br identifiesabranch register that contains the return link, when the return link is not either
inbo or saved to another location.

» pspoff identifiesalocation in the memory stack where aregister or group of registers are
spilled to memory. The location is specified relative to the previous stack pointer (which is
equal to the current stack pointer plus the frame size). See Appendix B, “Unwind Descriptor
Record Format,for the encoding of this field.

The following descriptor records are used to record the state of the previous function state register
(ar. pfs).

Table 11-4. Prologue Descriptor Records for the Previous Function State

Record Type Fields Format Description
pfs_when t P7 Specifies when ar . pf s is saved.
pfs_gr gr P3 Specifies GR where ar . pf s is saved.
Specifies memory location where ar . pf s is saved, as a
pfs_psprel pspoff P7 psp-relative offset.
pfs_sprel spoff P8 Specme; memory location where ar . pf s is saved, as an
sp-relative offset.

The following descriptor records are used to record the state of the preserved predicates.

Table 11-5. Prologue Descriptor Records for Predicate Registers

Record Type

Fields

Format

Description

preds_when

P7

Specifies when the predicates are saved.

IA-64 Software Conventions and Runtime Architecture Guide

Stack Unwinding and Exception Handling

Table 11-5. Prologue Descriptor Records for Predicate Registers

Record Type Fields Format Description
preds_gr ar P3 Specifies GR where predicates are saved.
preds_psprel pspoff p7 ﬁsserig;s{i\%eg;f(;;ytlocation where predicates are saved, as a
preds_sprel spoff P8 Specifies memory location where predicates are saved, as an

sp-relative offset.

The following descriptor records are used to record the state of the preserved general registers,
floating-point registers, and branch registers.

Table 11-6. Prologue Descriptor Records for GRs, FRs, and BRs

Record Type Fields Format Description
fr_mem rmask P6 Specifies which preserved floatlng-‘pomt registers are spilled
to memory by this prologue, as a bit mask.
grmask, Specifies which preserved general and floating-point registers
frgr_mem P5 . ?)
frmask are spilled to memory by this prologue, as a bit mask.
Specifies which preserved general registers are saved in
gr_gr grmask, gr P9 other general registers, as a bit mask, and GR where first
preserved GR is saved.
gr_mem rmask P6 Specifies Wh|c_:h preserved gener_al registers are spilled to
memory by this prologue, as a bit mask.
br mem brmask P1 Specifies Wh|c_:h preserved branc_h registers are spilled to
- memory by this prologue, as a bit mask.
Specifies which preserved branch registers are saved in
br_gr brmask, gr P2 general registers by this prologue, as a bit mask, and GR
where first BR is saved.
spill_base pspoff p7 Spe(_:lfles base of spill area in memory stack frame, as a psp-
relative offset.
spill_mask imask P4 Specifies when preserved registers are spilled, as a bit mask.

The fields in these records are used as follows:

* rmask, frmask, grmask, brmask

identify which preserved FRs, GRs, and BRs are

saved by the prologue region. The f r _memrecord uses a short r mask field, which can be used
when a subset of floating-point registers from the rangef 2-f 5 is saved. Thefr gr _memrecord
can be used for any number of saved floating-point and genera registers. The gr _nemrecord
can be used when only general registers (r 4— 7) are saved.

¢ imask

identifies when each preserved FR, GR, and BR is saved. It contains atwo-bit field

for each instruction slot in the prologue, indicating whether the instruction in that slot saves
one of these preserved registers. The length of thisfield isimplied by the size of the prologue
region as given in the region header record. It contains two bits for each instruction slot in the
region, and the length of the field is rounded up to the next whole byte boundary.

If a prologue saves one or more preserved FRSs, GRs, or BRs, and the spi I | _mask record is
omitted, the unwinder may assume that the original contents of those preserved registers are valid
through the end of the prologue, and that the saved copies are valid by the end of the prologue.

There may be only one spi 11 _base and onespi | | _mask record per prologue region.

IA-64 Software Conventions and Runtime Architecture Guide

11-13

Stack Unwinding and Exception Handling

intel.

Each gr _gr and br _gr record describes a set of registers that is saved to a consecutive set of
general registers (typically in the local register stack frame). To represent registers saved to non-
consecutive general registers, two or more of each of these records may be used.

The following descriptor records are used to record the state of the User NaT Collection register

(ar. unat).

Table 11-7. Prologue Descriptor Records for the User NaT Collection Register

Record Type Fields Format Description
unat_when t pP7 Specifies when ar . unat is saved.
unat_gr ar P3 Specifies GR where ar . unat is saved.
Specifies memory location where ar . unat is saved, as a
unat_psprel pspoff pP7 .
psp-relative offset.
unat_sprel spoff P8 Specifies memory location where ar . unat is saved, as an

sp-relative offset.

The following descriptor records are used to record the state of the Loop Counter register (ar. | ¢).

Table 11-8. Prologue Descriptor Records for the Loop Counter Register

Record Type Fields Format Description
Ic_when t P7 Specifies when ar . | ¢ is saved.
Ic_gr ar P3 Specifies GR where ar . | ¢ is saved.
Specifies memory location where ar . | ¢ is saved, as a
Ic_psprel pspoff P7 .
psp-relative offset.
Specifies memory location where ar . | ¢ is saved, as an
Ic_sprel spoff P8 .
sp-relative offset.

The following descriptor records are used to record the state of the floating-point status register

(ar. fpsr).

Table 11-9. Prologue Descriptor Records for the Floating-Point Status Register

11-14

Record Type Fields Format Description

fpsr_when t P7 Specifies when the floating-point status register is saved.

fpsr_gr ar P3 Specifies GR where the floating-point status register is
saved.

fpsr_psprel pspoff p7 Spgcme_s memory location Wher_e the floating-point status
register is saved, as a psp-relative offset.

fpsr_sprel spoff P8 Spe_:ufle'_s memory location wher_e the floating-point status
register is saved, as an sp-relative offset.

The following descriptor records are used to record the state of the primary unat collection.

IA-64 Software Conventions and Runtime Architecture Guide

In Stack Unwinding and Exception Handling

Table 11-10. Prologue Descriptor Records for the Primary unat Collection

Record Type Fields Format Description
priunat_when_gr |t P8 Specifies when the primary unat collection is copied to a GR.
priunat_when_m t P8 Specifies when the primary unat collection is saved in
em memory.
priunat_gr ar P3 Specifies GR where the primary unat collection is copied.
priunat_psprel pspoff P8 Specifies memory location where the primary unat collection

is saved, as a psp-relative offset.

Specifies memory location where the primary unat collection

priunat_sprel spoff P8 is saved, as an sp-relative offset.

The following descriptor records are used to record the state of the backing store, when it is
necessary to record a discontinuity.

Table 11-11. Prologue Descriptor Records for the Backing Store

Record Type Fields Format Description

Specifies when ar . bsp is saved. The backing store pointer
may be saved, along with the ar . bspst or e pointer and the

bsp_when t P8 ar . rnat register, to indicate a discontinuity in the backing
store.

bsp_gr ar P3 Specifies GR where ar . bsp is saved.
Specifies memory location where ar . bsp is saved, as a psp-

bsp_psprel pspoff P8 relative offset.

bsp_sprel spoff P8 Spec_:n‘les memory location where ar . bsp is saved, as an sp-
relative offset.

bspstore_when t P8 Specifies when ar . bspst or e is saved.

bspstore_gr ar P3 Specifies GR where ar . bspst or e is saved.

bspstore_psprel pspoff P8 Specifies memory location where ar . bspst or e is saved, as
a psp-relative offset.

bspstore_sprel spoff P8 Specifies memory location where ar . bspst or e is saved, as
an sp-relative offset.

rnat_when t P8 Specifies when ar . r nat is saved.

rnat_gr ar P3 Specifies GR where ar . r nat is saved.

mat_psprel pspoff P8 Specn‘les‘memory location where ar . r nat is saved, as a
psp-relative offset.

mat_sprel spoff P8 Specnﬁe; memory location where ar . r nat is saved, as an
sp-relative offset.

11.4.2.3 Rules for Using Unwind Descriptors

Preserved registers that are saved in the prologue region must be specified with one or more of the
following descriptor records:

® prol ogue_gr (rp,ar. pfs, psp, and the predicates).

* memstack_v (psp issaved in aGR).

IA-64 Software Conventions and Runtime Architecture Guide 11-15

u
Stack Unwinding and Exception Handling Int9| o

® rp_when,rp_gr,rp_psprel,Orrp_sprel (rp).

® pfs_when, pfs_gr, pfs_psprel, Of pfs_sprel (ar.pfs).

® unat _when, unat _gr, unat_psprel, Of unat _sprel (ar. unat)
® |c_when,lc_gr,lc_psprel,Oric_sprel (ar.lc).

® fpsr_when,fpsr_gr,fpsr_psprel, Of fpsr_sprel (ar . fpsr)
® fr_memfrgr_mem or gr_mem(FRsand GRS).

* br_memor br _gr (BRS).

If apreserved register is not named by one or more of these records, it is assumed that the prologue
does not save or modify that register.

The locations where preserved registers are saved are determined as follows:

1. Certain descriptor records explicitly name a save location for a register (records whose names
end with “ gr,”“_psprel ,” or “_sprel "). If a register is described by one of these records, the
unwinder uses the named location.

2. Some descriptor records specify that registers are saved to the spilt aiea r gr _nem
gr_mem br _mem). These locations are determined by the conventions for the spill area.

3. Any remaining registers that are named as saved, but do not have an explicit save location, are
assigned consecutive GRs, beginning with the GR identified lpy thegue_gr region
header record. If the prologue region uspsofiogue header record, the first GR is assumed to
be GR 32. The registers are saved as needed in the following order:

a. Return pointef,p.

Previous function stater . pf s.
Previous stack pointafsp.

. Predicates.

. User NaT collection registe,. unat .

-~ o o 0o T

Loop counterar. | c.
. Floating-point status register,. f psr.

o0 «Q

. Primary unat collection.

Note that the only way to indicate that any of the last four groups of registers are saved,
without explicitly specifying a save location, is to use one of the correspondiag
descriptor records.

11.4.2.4 Descriptor Records for Body Regions
The following table lists the optional descriptor records that may be used to describe body regions.

In the absence of these descriptors, a body region is assumed to inherit its entry state from the
previous region.

11-16 IA-64 Software Conventions and Runtime Architecture Guide

In

tel.

Stack Unwinding and Exception Handling

Table 11-12. Body Region Descriptor Records

Record Type Fields Format Description
epilogue t, ecount B2/B3 Body region contains epilogue code for one or more
prologues.
label_state label B1/B4 Labels the entry state for future reference.
copy_state label B1/B4 Use labeled entry state as entry state for this region.

e t indicatesthelocation of the instruction that restores the previous sp value, relative to the
end of the region. The number is a count of the remaining instruction slots to the end of the
region (thus, avalue of 0 indicates the final slot in the region).

e ecount indicates how many additional levels of nested shrink-wrap regions are being
popped at the end of a body region with epilogue code. A value of 0 indicates that one level
should be popped.

* |abel identifiesa previousy-specified body region, whose entry state should be copied for
this body region.

Descriptor records for body or prologue regions

This section lists the descriptor records that may be used to describe either prologue or body
regions. These descriptors provide complete generality for compilersto perform register spills and
restores anywhere in the procedure, without creating an arbitrary boundary between prologue and
body.

Table 11-13. General Unwind Descriptors

Record Type Fields Format Description
spill_psprel t, reg, pspoff X1 gf;;seecti.ﬁes when and where r eg is saved, as a psp-relative
spill_sprel t, reg, spoff X1 gf;;seecti.ﬁes when and where r eg is saved, as an sp-relative
spill_reg t, reg, treg X2 Specifies when and where r eg is saved in another register,

treg, or restored.

Specifies when and where r eg is saved, as a psp-relative

spill_psprel_p ap. t, reg, pspoff | X3 offset, under predicate qp.

Specifies when and where r eg is saved, as an sp-relative

spill_sprel_p ap. t, reg, spoff X3 offset, under predicate gp.

Specifies when and where r eg is saved in another register,

spill_reg_p ap. t, reg, treg x4 t r eg, or restored, under predicate gp.

* reg identifiestheregister being spilled or restored at the given point in the code. Thisfield
may indicate any of the preserved GRs, FRs, BRs, ARs, predicates, previous sp, primary unat,
or return pointer. See Appendix B, “Unwind Descriptor Record Formatgr the encoding of
this field.

* treg identifiesatarget register to which the value being spilled is copied. This field may

indicate any GR, FR, or BR; it may also contain the special “Restore” target, indicating the

point at which a register is restored. $gpendix B, “Unwind Descriptor Record Format,”
for the encoding of this field.

IA-64 Software Conventions and Runtime Architecture Guide 11-17

u
Stack Unwinding and Exception Handling Int9| o

e qp identifiesaqualifying predicate, which determines whether the indicated spill or restore
instruction executes. The qualifying predicate must be a preserved predicate if there are any
procedure calls in the range between the spill and restore, and it must remain live throughout
the range.

11.4.2.5 Processing Unwind Descriptors

The unwind process for a frame begins by locating the unwind table entry for agiven P, If thereis
no unwind table entry, the unwinder should use the default conditions for this frame: |eaf
procedure, no memory stack frame, and no saved registers.

If thereis an unwind table entry, the unwinder then locates the unwind information block and
checks the size of the unwind descriptor area. If thisareais zero length, the unwinder should use
the default conditions as above.

In preparation for reading the unwind descriptor records, the unwinder should start with an initial
current state record, and an empty stack of state records. A state record describes the locations of
all preserved registers at entry to aregion. Theinitial value of the current state record should
describe the frame in its default conditions.

The unwind descriptor records should be read and processed sequentially, beginning with the first
descriptor record for a procedure, continuing until the IPis contained within the current region. For
each prologue region header, the current state record should be pushed on the stack, and the
descriptor records for the prologue region should be applied to the current state record. When a
body region with epilogue code is seen, one or more states should be popped from the stack, and
the entry state for the next region is taken as the last state popped. Thisrestores the current state to
the entry state of the matching prologue.

When the current | P is within abody region, the unwinder can generate the context of the previous

frame by restoring registers as indicated by the current state record. If the body region has epilogue

code, and the IP is beyond the indicated point where sp is restored, the unwinder should assume

that sp has aready been restored, and that all registers spilled to the memory stack frame except

those between psp and psp+16 have also been restored. Registers spilled to the scratch areain the

caller’s frame may not have been restored at that point, and the unwinder should use the values in
memory.

When the current IP is within a prologue region, the unwinder must look for descriptor records that
specify a time parameter that is at or beyond the current IP. It should ignore these state
modifications when applying descriptor records to the current state. If a register is saved but does
not have a specified time, the unwind may assume that the original value is not modified within the
prologue, so it may ignore it.

The layout and size of the preserved register spill area cannot be determined without reading all the
prologue region descriptor records in the procedure, and merging the save masks for the general
registers, floating-point registers, and branch registers.

11.4.3 Language-specific data area

Thetry region table for C++ could be divided into two parts: atry/ catch tableand a
cleanup action table. Asillustrated in Figure 11-2, the table consists of two 32-bit integers
followed by the two tables. Thefirst field, t cnt , contains the number of t ry/ cat ch table
entries, and the second field, ccnt , contains the number of cleanup action table entries.
Thetry/ catch table consists of a list of four-word entries, sorted by the region end

11-18 IA-64 Software Conventions and Runtime Architecture Guide

u
Int9| o Stack Unwinding and Exception Handling

address. Thefirst two words of each entry identify the starting and ending addresses of the
region, the third word points to the catch clause, and the fourth word points to the
exception handler. The cleanup action table consists of a list of three-word entries, also
sorted by the region end address. The first two words of each entry identify the starting
and ending addresses of the region, and the third word pointsto a list of cleanup actions.

IA-64 Software Conventions and Runtime Architecture Guide 11-19

Stack Unwinding and Exception Handling

11-20

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Dynamic Linking 12

12.1 Position-Independent Code

All code conforming to these conventions must be position independent (PIC). This allows their
text segments to remain pure so they can be shared among many processes. Position-independence
imposes two requirements on generated code:

* Code that forms an absolute address referring to any address in the load module’s text or data
segments is not allowed, since the code would have to be relocated at load time, making it non-
sharable. All branches must be pc-relative, references to constants and literals in the text
segment must be either pc-relative or indirect via the linkage table, and references to the data
segment must be relative to a base register (typigaly

* Code that references symbols that are or may be imported from other |oad modules must use
indirect addressing through a linkage table. The linker is expected to resolve procedure calls
by creating import stubs, but the compilers must generate indirect 1oads and stores for data
items that may be dynamically bound. In both cases, the indirection is made through the
linkage table, allocated by the linker, and initialized by the dynamic loader; the linkage tableis
described below.

12.2 Procedure Calls and Long Branch Stubs

Normal procedure calls can be made with thebr. cal | instruction, which uses pc-relative
addressing. There are three possible cases at link time;

* If thetarget is not within the same load module, or if it is subject to pre-emption by an earlier
definition from another load module, the linker must allocate an import stub and resolve the
br. cal I instruction to the stub.

¢ |f thetarget isknown to be within the same |oad modul e and the displacement is small enough,
thisinstruction can be statically resolved to the call target.

¢ |f the target is within the same load module, but the displacement istoo large for thebr. cal |
instruction, the linker must allocate along branch stub, as described in Section 8.4, “Calling
Sequence” on page 8-Zhe long branch stub itself must satisfy the PIC requirements. If the
target is within range of the stub, the stub may use a pc-refatimstruction; otherwise, it
must load the address of the target from the linkage table.

12.3 Access to the Data Segment

The DLL's short data segment must be accessed through tegister, which is defined to point to

the short data segment on entry to any DLL proceduregd hegister is used to access both the
linkage tables and statically-allocated data. The DLL's long data segments must be accessed via the
linkage table.

There are several cases here:

IA-64 Software Conventions and Runtime Architecture Guide 12-1

Dynamic Linking i nu ®

* Global variablesthat are imported from another load module, or that are subject to pre-
emption by an earlier definition in another load module, must be accessed indirectly through
the linkage table. The compiler must generate code to |oad a pointer from the linkage table,
using gp-relative addressing, then access the data item using that pointer. The compiler does
not have to allocate the linkage table; there are rel ocations defined in the object file format that
instruct the linker to allocate alinkage table slot and supply the gp-relative address of that slot.

¢ Small, statically-allocated variables of local scope, or global variables whose definitions are
not subject to pre-emption, may be placed in the short data segment and accessed directly with
gp-relative addressing.

¢ Large variables, regardless of scope or pre-emption, must be placed in along data segment,
and accessed viathe linkage table or pointer table.

The partitioning of the datainto the short and long data segments is described in Section 3.2,
“Protection areas” on page 3-2

12.3.1 Access to Constants and Literals in the Text Segment

Constants and literals allocated in the text segment should be accessed with pc-relative addressing,
or with indirect addressing via the linkage table.

12.3.2 Materializing Function Pointers

Function pointers must be materialized by loading a word from the data segment. They may not be
materialized from immediate operands.

12.4 Import stubs

When the linker determines that a procedure call refers to an entry point in a different load module,
it resolves the reference locally by building an import stub with the same name as the intended
target. The import stub contains code that obtains the entry point and gp value from the linkage
table, then transfers control, as describe8dation 8.4, “Calling Sequence” on page.8-2

If the compiler is provided with enough information to know that a particular entry point is in a
different load module, it may generate a calling sequence that obviates the need for the linker to
build an import stub. This calling sequence, however, is ABI specific, and is not specified in this
document.

12.5 The dynamic loader

The dynamic loader is a component of the operating system software that locates all the load
modules belonging to an application, loads them into memory, and binds the symbolic references
among them. Most of the operation of the dynamic loader is specific to the particular operating
system environment, and is further described in the ABIs for those environments. The common
runtime architecture has been designed to minimize the amount of work involved in the binding
process, by concentrating most of the relocation required in the linkage tables, and by prohibiting
any items in the text segment that may require dynamic relocation.

12-2 IA-64 Software Conventions and Runtime Architecture Guide

intel.

System Interfaces 13

13.1 Program Startup

An application begins its execution at a specified program entry point, which depends on the
primary language in which the application is written. For C programs, the function mai n isthe
program entry point. On most operating systems, however, some system-dependent initialization
must take place before control istransferred to this entry point. Thisinitialization may take placein
the operating system or in the DLL loader.

This section presents ageneral overview of what an application expects when its program entry
point receives control. The ABI document for each operating system is expected to contain the
details.

13.1.1 Initial Memory Stack

The memory stack pointer, sp, must be properly aligned, and must contain an addressthat is

suitable for allocation of the program’s first stack frame. There must be a 16-byte scratch area
available for use, beginning at the addressirbut the application may make no further
assumptions about the contents of the memory stack beyond the scratch area.

13.1.2 Initial Register Values

Thesp andgp registers must be initialized correctly, as described above agglto the global
pointer value for the main program’s short data segment.

The floating-point status register should be initialized as shown in Table 13-1. The global trap
disable bits4r . f psr bits 0-5) should all be initialized to ones.

Table 13-1. Initial Value of the Floating-Point Status Register

Status Field Flags td rc pc wre ftz
sfo 000000 0 00 11 0 0
sfl 000000 1 00 11 1 0
sf2 and sf3 000000 1 00 11 0 0

The initial stack frame must be setup with 0 input and local registers, and at least 4 output registers
(as if the program entry point had been called with at least four parameters). The contents of the
parameter registersno- i n7, are system-dependent, and are typically used for transmitting the
program arguments.

IA-64 Software Conventions and Runtime Architecture Guide 13-1

u
System Interfaces I nt9I ®

13.2

13.3

13-2

System Calls

System API routines are called using the standard calling conventions described in Chapter 8,
“Procedure Linkage”Any special interfaces between these API routines and the operating system
itself is system-dependent, and these API routines are typically supplied in a system DLL.

Traps and Signals

When the operating system delivers a signal or an exception to a user process, it must make the
following available to the process:

¢ A context record, containing the full user-visible context, as described in Chapter 10, “Context
Management”

* The cause of thetrap. If the trap was caused by an instruction, the information must be
sufficient to identify the bundle and slot.

When atrap or signal handler returns, operating system help is necessary for restoring the complete
context. Thus, the operating system must build a dummy stack frame for the handler, so that a
return from the handler will transfer to an operating system entry point that can restore the full
context.

The operating system must provide a new 16-byte scratch area prior to the stack frame created for
the signal handler, so that the scratch area belonging to the interrupted procedure is not disturbed
during signal processing.

The operating system must also set the floating-point status register to the initial value specified in
Table 13-1 prior to delivering asignal or exception.

Trap handlers will often need to look at the state of the registers at the time of the trap. Since the
dynamic general registers are al hidden in the register stack backing store in memory, the
application may need to perform some careful calculations to obtain accessto the values of these
registers. In addition, the operating system may deliver a context in which the backing storeis split
into two non-contiguous areas. The system-specific runtime library should provide an API routine
to build an image of the dynamic registers from the context record.

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Standard Header Files

A.l

Implementation Limits

The following constants are defined in the <l i ni t s. h> header file.

#def i
#def i
#defi
#def i

ne
ne
ne
ne

CHAR BI T
SCHAR M N
SCHAR_MAX
UCHAR_MAX

8
(-128)
127
255

/* MB_LEN MAX determ ned by |ocale information */

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

A.2

ne
ne

ne
ne
ne

ne
ne
ne

ne _

ne
ne

CHAR M N
CHAR_MAX

SHRT_M N
SHRT_MAX
USHRT _MAX

INT_MN
I NT_MAX
Ul NT_MAX
NT64_M N
“TINT6

| 4|
"I NT64_MAX
~UINTB4_MAX

SCHAR M N
SCHAR_MAX

(-32768)
32767
65535

(- 2147483647 1)
2147483647
4294967295

(-9223372036854775807-1)
9223372036854775807
18446744073709551615

Floating-Point Definitions

The following constants are defined in the <f | oat . h> header file.

#def i
#def i
#def i
#def i
#defi
#def i
#def i
#def i
#defi
#def i
#defi
#def i
#defi

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

FLT DI G
FLT_EPSI LON
FLT_MANT DI G
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT._MN

FLT_M N_10_EXP
FLT_M N_EXP
FLT_RADI X
FLT_ROUNDS
FLT_GUARD
FLT_NORMALI ZE

DBL_DI G
DBL_EPSI LON
DBL_MANT DI G
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_M N

6 /* Max (decimal) digits of prec.

1.19209290E-07F
24

3. 40282347E+38F
38

128

1. 17549435E- 38F

15 /* Max (decimal) digits of prec.

2.2204460492503131E- 16
53

1. 7976931348623157E+308
308

1024
2.2250738585072014E- 308

IA-64 Software Conventions and Runtime Architecture Guide

*/

*/

Standard Header Files

A.3

In

#define DBL_M N_10_EXP (-307)

#define DBL_M N_EXP (-1021)

#define EXT_DI G 18 /* Max (decimal) digits of prec. */

#defi ne EXT_EPSI LON 1.0842021724855044340075E- 19W

#define EXT_MANT_DI G 64

#defi ne EXT_MAX 1.18973149535723176502e+4932W

#defi ne EXT_MAX_10_EXP (+4932)

#defi ne EXT_MAX_EXP (+16384)

#define EXT_M N 3.36210314311209350626€e- 4932W

#define EXT_M N_10_EXP (-4931)

#define EXT_M N_EXP (-16381)

#define QUAD DI G 33 /* Max (decimal) digits of prec. */

#defi ne QUAD_EPSI LON 1. 92592994438723585305597794258492732E- 34Q
#defi ne QUAD_MANT_DI G 113

#defi ne QUAD_MAX 1.18973149535723176508575932662800702E+4932Q
#defi ne QUAD MAX_10_EXP (+4932)

#def i ne QUAD_MAX_EXP (+16384)

#define QUAD_M N 3.36210314311209350626267781732175260E- 4932Q
#define QUAD M N _10_EXP (-4931)

#define QUAD_M N_EXP (-16381)

Variable Argument List Macros

The following definitions roughly define the operation of the variable argument list macros
provided in the <st dar g. h> header file. Similar definitions for K& R C may be found in

<varargs. h>.

typedef char *va_list;
#define _VA ALIGN(list, align) \
(va_list)(((unsigned int)(list) + (align) - 1) & ~((align) - 1))

#define va_start(list, parnN) (list = (va_list)(&arnN + 1))
#ifdef __ LI TTLE_ENDI AN__

#define va_arg(list, node) (\
list = VA ALIGN(list, ((sizeof(npde) > 8) ? 16 : 8)),\
*(nmode *)1ist++ \
)

#else /* __BIG ENDI AN__ */

#define va_arg(list, node) (\
list = VA ALIGN(list, ((alignof(npde) > 8) ? 16 : 8)) +\
(((sizeof(npde) < 8) && ! _ _is_aggregate(node)) ?\
8 - sizeof(mde) : 0),\
*(nmode *)1ist++ \
)
#endif /* __BIG ENDI AN __ */

The big endian version of theva_ar g macro requires built-in al i gnof andi saggr egat e functions

in the compiler; the latter returns true if the type given as the argument is an aggregate type.

IA-64 Software Conventions and Runtime Architecture Guide

A4

Standard Header Files

Setjmp/Longjmp

Thefollowing definition is provided in the <set j np. h> header file.
typedef _ float80 jmp_buf[JBLEN];

The jump buffer must be long enough to contain the context defined in Section 10.3, and should
include additional space reserved for future use. It must be declared to guarantee 16-byte alignment
(for example, as an array of __f1 oat 80) . Its contents include the following registers:

eInstruction address §)—the return BR from the call tget j np
Stack pointersp)

eFrame state—ther . pf s register from the call teet j mp
*Backing store pointei(. bsp)

*General registenss-r 7

*NaT bits for general registers- r 7 (shifted to a consistent position independent of the jump
buffer address)

*Floating-point registers2- f 5 andf 16- f 31
*Floating-point status registedr(f psr)
*Predicates1- p5 andp16- p63

*Branch registersi- bs

*User NaT collection registesr(. unat)
*RSE NaT collection registe&r(. r nat)
eLoop counterdr.c)

Signal mask (fosi gset j np/ si gl ongj np)
Note that the epilog countedr(ec) is automatically preserved with the. pf s register.

The jump buffer contents should also include a “signature” to identify its version number and
architecture for compatibility with future hardware and software releases.

The size of the jump buffer (the value_oBLEN) and the locations of individual items within the
jump buffer are ABI specific.

IA-64 Software Conventions and Runtime Architecture Guide A-3

Standard Header Files

A-4

IA-64 Software Conventions and Runtime Architecture Guide

intel.

Unwind Descriptor Record Format B

B.1 Overview

The unwind descriptor records are encoded in variable-length byte strings. The various record
formats are described in this appendix.

Thefirst byte of each record is sufficient to determine its format. The high-order bit of this byte
determines whether it isaheader record (if the bit is zero), or aregion descriptor record (if thebit is
one). The remaining bits and any subsequent bytes are divided into separate fields. In most formats,
thefirst field, r, identifies the record type. The record formats are listed by the bit pattern of the
first bytein Table B-1.

Table B-1. Record Formats

Region Header Records Prologue Descriptor Records Body Descriptor Records
Bit Pattern Format Bit Pattern Format Bit Pattern Format
00-- ---- R1 100- ---- P1 10-- ---- B1
0100 O--- R2 1010 ---- P2
0110 00-- R3 1011 0--- P3
1011 1000 P4
1011 1001 P5
110- ---- P6 110- ---- B2
1110 ---- P7 1110 0000 B3
1111 0000 P8 1111 -000 B4
1111 0001 P9
1111 1001 X1 1111 1001 X1
1111 1010 X2 1111 1010 X2
1111 1011 X3 1111 1011 X3
1111 1100 X4 1111 1100 X4
1111 1111 P10

Some fields in the unwind descriptor records are variable in length. The variable-length encoding
uses the ULEB128 (Unsigned Little-Endian Base 128) encoding, described below:

¢ Divide the number into groups of 7 bits, beginning at the low-order end.

* Discard all groups of leading zeroes, but keep at least the first (low-order) group if the number
isall zeroes.

* Placeal hit totheleft of of al but the last group; place a0 bit to the left of thelast group. This
forms one or more 8-bit groups.

The following table shows example ULEB128 encodings for several numbers:

IA-64 Runtime Architecture Software Conventions Manual B-1

u
Unwind Descriptor Record Format Int9| o

Table B-2. Example ULEB128 Encodings

B.2

B-2

Value Encoding Interpretation
0 00000000 0
127 01111111 127
128 10000000 00000001 0+(1<<7)
1544 10001000 00001100 8+ (12<<7)
49,802 10001010 10000101 00000011 10+ (5<< 7) + (3 << 14)

Fieldsin the ULEB128 format always follow the fixed fields, and begin on a byte boundary.

Region Header Records

The prologue and body region header records can appear in either format R1 or R3, depending on

the magnitude of the region length field. If the region length is no greater than 31 instructions, the
R1 format may be used; otherwise, format R3 must be used.

ByteO
76543210

Format R1 [0 O|r rlen

Thisformat is used for the short forms of the pr ol ogue and body region header records. Ther bit
identifies the record type, as shown in the following table:

Record Type r
prologue 0
body 1
ByteO Bytel
76543210 76543210
Format R2 [0 10[{00| mask grsave rlen (ULEB128)

Thisformat is used only for the pr ol ogue_gr region header record. The following table shows the
meaning of the bitsin the mask field:

Mask bit Meaning when bit is set

byte 0, bit 2 r p is saved in standard GR

byte 0, bit 1 ar . pf s is saved in standard GR
byte 0, bit 0 psp is saved in standard GR

byte 1, bit 7 predicates are saved in standard GR

IA-64 Runtime Architecture Software Conventions Manual

u
Int9| o Unwind Descriptor Record Format

The gr save field identifies the general register in which the first of these values is stored.
Additional general registers are used as needed. For example, assumethat r p, ar . pf s, and the
predicates are stored, but not psp. The mask bits would be 1101, and gr save might be set to 39,
indicating that the three values are stored in r 39, r 40, and r 41, respectively.

ByteO
76543210

Format R3 [011|000] r rlen (ULEB128)

Thisformat is used for the long forms of the pr ol ogue and body region header records. The r field
identifies the record type, as shown in the following table:

Record Type r

prologue 00
body 01

B.3 Descriptor Records for Prologue Regions

ByteO
76543210

Format P1 |1 00| brmask

Thisformat isused only for the br _memdescriptor record.

Thefive bitsin the br mask field are used to indicate which of the five preserved branch registers
(b1-b5) are saved in the prologue. Bit 0 corresponds to bi; bit 4 correspondsto bs. If the bit is
clear, the corresponding register is not saved; if the bit is set, the corresponding register is saved.

ByteO Byte 1
76543210 76543210
Format P2 {1010| brmask gr

Thisformat isused only for thebr_gr descriptor record.

Thefive bitsin the brmask field are used to indicate which of the five preserved branch registers
(b1-b5) are saved in the prologue. Bit 7 of byte 1 corresponds tobi; bit 3 of byte O correspondsto

bs. If the bit is clear, the corresponding register is not saved; if the bit is set, the corresponding
register is saved.

Thegr field identifies the general register in which thefirst of these registersis stored. Additional
general registers are used as needed. For example, assume that b1, b4, and bs are stored. The mask

bits would be 11001, and gr might be set to 37, indicating that the three branch registers are stored
inr37,r38, and r39 , respectively.

IA-64 Runtime Architecture Software Conventions Manual B-3

u
Unwind Descriptor Record Format Int9| o

B-4

ByteO Bytel
76543210 76543210
FormatP3 (10110 r gr/br

Thisformat is used by the group of descriptor records that specify a GR or BR number. The record
typeisidentified by ther field, whichisread asafour bit number whose low-order bit is bit 7 of
byte 1. The following table shows the record types:

Record Type r Record Type r
psp_gr 0 rp_br 6
rp_or 1 rnat_gr 7
pfs_gr 2 bsp_gr 8
preds_gr 3 bspstore_gr 9
unat_gr 4 fpsr_gr 10
Ic_gr 5 priunat_gr 11
ByteO
76543210
FormatP4 (10111000 imask

Thisformat is used only by thespi I | _mask descriptor record. The first byteis followed by the

i mask field, whose length is determined by the length of the current prologue region as given by
the region header record. Thei mask field contains two bits for each instruction slot in the region,
and the size is rounded up to the next whole number of bytes, if necessary.

The high-order (Ieftmost) two bits of the first byte of theimask field correspond to the first
instruction slot of the region. Bit pairs are read from left to right (high-order bits to low-order bits)
within each byte, and bytes are read from increasing memory addresses. Each bit field describes
the behavior of the corresponding instruction slot as follows:

Bit Pair Meaning

00 The instruction slot does not save one of these registers

01 the instruction slot saves the next floating-point register

10 the instruction slot saves the next general register

11 the instruction slot saves the next branch register

ByteO Bytel Byte 2 Byte 3

76543210 76543210 76543210 76543210
FormatP5 |{10111/001| |grmask frmask

Thisformat is used only by thef r gr _nmemdescriptor record.

Thebitsin thegr mask field correspond to the preserved general registers (ra—7). The bitsare read
from right to left: bit 4 of byte 1 correspondstor4 , and bit 7 correspondsto r7 .

IA-64 Runtime Architecture Software Conventions Manual

tel.

Unwind Descriptor Record Format

The bitsin the frmask field correspond to the preserved floating-point registers (f2-f5 and f16-
f31). The bits are read from right to left: bit O of byte 3 correspondsto f2 , and bit 3 of byte 1
correspondsto f31 .

A value of 1in each bit position indicates that the corresponding register is saved.

ByteO
76543210

Format P6 |1 1 0|r| rmask

Thisformat is used by the fr_mem and gr_mem descriptor records. Ther bit identifies the record
type, as shown in the following table:

Record Type r
fr_mem 0
gr_mem 1

Thebitsin thermask field correspond to either the preserved general registers (ra—r7) or the set of
the first four preserved floating-point registers (2 — 5). The bits are read from right to left: bit O
corresponds te4 orf 2, and bit 3 corresponds ta@ or 5. A value of 1 in each bit position
indicates that the corresponding register is saved.

ByteO
76543210 (mem_stack_f only)
FormatP7 (1110 r t/spoff/pspoff (UL EB128) size (ULEB128)

This format is used for a number of descriptor records.rTiredd identifies the record type, as
shown in the following table:

Record Type Additional ULEB128 Fields

al

mem_stack_f 0 t, size
mem_stack_v 1 t
spill_base 2 pspoff
psp_sprel 3 spoff
rp_when 4 t
rp_psprel 5 pspoff
pfs_when 6 t
pfs_psprel 7 pspoff
preds_when 8 t
preds_psprel 9 pspoff
Ic_when 10 t
Ic_psprel 11 pspoff
unat_when 12 t
unat_psprel 13 pspoff

IA-64 Runtime Architecture Software Conventions Manual B-5

u
Unwind Descriptor Record Format Int9| o

B-6

Record Type r Additional ULEB128 Fields
fpsr_when 14 t
fpsr_psprel 15 pspoff

Stack pointer offsets (spof f) are represented as positive word offsets from the top of the stack
frame(i.e., thelocationissp + 4 * spoff). Previous stack pointer offsets (pspof f) are encoded as
positive numbers representing a negative word offset relative to psp+16 (i.e., the location ispsp +
16 — 4 * pspoff).

ByteO Bytel
76543210 76543210
FormatPg (11110000 r t/spoff/pspoff (UL EB128)

Thisformat is used for a number of descriptor records. Ther field identifies the record type, as
shown in the following table:

Record Type Additional ULEB128 Fields

-

rp_sprel 1 spoff
pfs_sprel 2 spoff
preds_sprel 3 spoff
Ic_sprel 4 spoff
unat_sprel 5 spoff
fpsr_sprel 6 spoff
bsp_when 7 t
bsp_psprel 8 pspoff
bsp_sprel 9 spoff
bspstore_when 10 t
bspstore_psprel 11 pspoff
bspstore_sprel 12 spoff
rnat_when 13 t
rnat_psprel 14 pspoff
rnat_sprel 15 spoff
priunat_when_gr 16 t
priunat_psprel 17 pspoff
priunat_sprel 18 spoff
priunat_when_mem 19 t

Stack pointer offsets (spoff) are represented as positive word offsets from the top of the stack
frame (i.e., thelocation issp + 4 * spoff). Previous stack pointer offsets (pspoff) are encoded as
positive numbers representing a negative word offset relative to psp+16 (i.e., the location ispsp +
16 — 4 * pspoff).

IA-64 Runtime Architecture Software Conventions Manual

u
Int9| o Unwind Descriptor Record Format

ByteO Bytel Byte 2
76543210 76543210 76543210
FormatP9 (11110001 [000O0|grmask |0 or

Thisformat isused only by the gr _gr descriptor record.

Thebitsin thegr mask field correspond to the preserved general registers (ra—7). The bits are read
from right to left: bit O of byte 1 correspondsto r4 , and bit 3 correspondsto r7 .

Thegr field identifies the general register in which thefirst of these registersis stored. Additional
general registers are used as needed. For example, assumethat r4 , 5, and r7 are stored. The mask
bits would be 1011, and gr might be set to 37, indicating that the three preserved general registers
are stored inr37 ,r38 , and r39 , respectively.

ByteO Byte 1l Byte 2
76543210 76543210 76543210
Format P10 1111|1111 abi context

Thisformat isreserved for ABI-specific unwind descriptor records, typically to identify aregion
whose stack frame indicates some saved context record (e.g., a Unix signal context).

The values currently defined for the abi field are shown in the following table:

Value ABI

0 Unix SVR4
1 HP-UX

2 Windows NT

Theinterpretation of the context field is ABI dependent.

B.4 Descriptor Records for Body Regions

Theepilogue , label_state , and copy_state descriptor records can each appear in two formats,
depending on the magnitudes of their fields.

IA-64 Runtime Architecture Software Conventions Manual B-7

u
Unwind Descriptor Record Format Int9| o

B.5

B-8

ByteO
76543210
Format B1 |[10|r| labe

Thisrecord is used for the short form of | abel _st at e and copy_st at e descriptor records. If the

| abel isno greater than 31, thisformat may be used; otherwise, format B4 must be used. The
record types are shown in the following table:

Format B2 |11 0| ecount t (ULEB128)

Format B3 |{1110/0000 t (ULEB128)

FormatB4 |1111(rj000 label (ULEB128)

Record Type r

label_state 0

copy_state 1
ByteO

76543210

Thisformat is used only for the short form of the epi | ogue descriptor record. If theecount fieldis
no greater than 31, this format may be used; otherwise, format B3 must be used.

ByteO
76543210

ecount (ULEB128)

Thisformat is used only for the long form of the epilogue descriptor record.

ByteO
76543210

Thisformat isused only for the long form of thel abel _st at e and copy_st at e descriptor records.
The record types are shown in the following table:

Record Type r
label_state 0
copy_state 1

Descriptor Records for Body or Prologue Regions

The record formats listed here describe general spills and restores, and may appear in either body
or prologue regions.

IA-64 Runtime Architecture Software Conventions Manual

u
Int9| o Unwind Descriptor Record Format

ByteO Bytel
76543210 76543210
Format X1 (11111001 [rlabl reg t (ULEB128)

spoff/pspoff (ULEB128)

Thisformat isused by thespi I | _psprel andspi || _sprel descriptor records, which identify when
aregister is saved by spilling to the memory stack. Ther bit identifies the record type, as shown in
the following table:

Record Type r
spill_psprel 0
spill_sprel

Thea, b, and r eg fields identify the register being spilled. The encodings are given in the following

table:

Record Type a b reg

GR 4-7 0 0 gr

FR 2-5 or 16-31 0 1 fr

BR 1-5 1 0 br

Predicates 1 1 0

psp 1 1 1

priunat 1 1 2

p 1 1 3

ar.bsp 1 1 4

ar.bspstore 1 1 5

ar.rnat 1 1 6

ar.unat 1 1 7

ar.fpsr 1 1 8

ar.pfs 1 1 9

ar.lc 1 1 10
ByteO Bytel Byte 2
76543210 76543210 76543210

Format X2 [11111010| (x|albl reg y treg t (ULEB128)

Thisformat isused only by the spi I | _r eg descriptor record, which identifies when aregister is
saved by copying to another register, or when aregister is restored from its spill location. The
register being saved or restored isidentified by the a, b, and reg fields, using the same encodings

IA-64 Runtime Architecture Software Conventions Manual B-9

u
Unwind Descriptor Record Format Int9| o

given above for Format X1. The target register to which the saved register is copied isidentified by

the x, y, and treg fields; a special encoding also indicates the “restore” operation. The encodings for
these fields are given in the following table:

Record Type X y treg

Restore 0 0 0

GR 1-127 0 0 ar

FR 2-127 0 1 fr

BR 0-7 1 0 br
ByteO Bytel Byte 2
76543210 76543210 76543210

Format X3 (11111011} |ri0 ap Ola|b reg

t (ULEB128) spoff/pspoff (UL EB128)

This format is used by thsi | | _psprel _p andspi | | _sprel _p descriptor records, which identify

when a register is saved under control of a predicater Biteédentifies the record type, as shown
in the following table:

Record Type r
spill_psprel_p 0
spill_sprel_p

Theqp field identifies the controlling predicate. The remaining fields are encoded the same as

Format X1.
ByteO Bytel Byte 2 Byte 3
76543210 76543210 76543210 76543210
Format X4 [1111/1100] |00 ap x|alb reg y treg
t (ULEB128)

This format is used only by thei I | _reg_p descriptor record, which identifies when a register is

saved to another register under control of a predicate, or when a register is restored under control of
a predicate.

Theqp field identifies the controlling predicate. The remaining fields are encoded the same as
Formats X1 and X2.

B-10 IA-64 Runtime Architecture Software Conventions Manual

	Introduction to the IA-64 Software Conventions and Runtime Architecture Guide 1
	1.1 Objectives of the Runtime Architecture
	1.2 About the Conventions
	1.3 Overview of the IA-64 Software Conventions and Runtime Architecture Guide
	1.4 Terminology

	IA-64 Processor Architecture 2
	2.1 Application State and Programming Model
	2.2 Floating-point Programming Model

	Memory Model 3
	3.1 Program segments
	3.2 Protection areas
	3.3 Data Allocation
	3.3.1 Global Variables
	3.3.2 Local Static Data
	3.3.3 Constants and Literals
	3.3.4 Local Memory Stack Variables

	Data Representation 4
	4.1 Fundamental Types
	4.2 Aggregate Types
	4.3 Bit Fields
	4.4 Fortran Data Types

	Register Usage 5
	5.1 Partitioning
	5.2 General Registers
	5.3 Floating-point Registers
	5.4 Predicate Registers
	5.5 Branch Registers
	5.6 Application Registers

	Register Stack 6
	6.1 Input and Local Registers
	6.2 Output Registers
	6.3 Rotating Registers
	6.4 Frame Markers
	6.5 Backing Store for Register Stack

	Memory Stack 7
	7.1 Procedure Frames

	Procedure Linkage 8
	8.1 External Naming Conventions
	8.2 The gp Register
	8.3 Types of Calls
	8.4 Calling Sequence
	8.4.1 Direct Calls
	8.4.2 Indirect Calls

	8.5 Parameter Passing
	8.5.1 Allocation of Parameter Slots
	8.5.2 Register Parameters
	8.5.3 Memory Stack Parameters
	8.5.4 Variable Argument Lists
	8.5.5 Pointers to Formal Parameters
	8.5.6 Languages Other than C
	8.5.7 Rounding Floating-point Values
	8.5.8 Examples

	8.6 Return Values
	8.7 Requirements for Unwinding the Stack

	Coding Conventions 9
	9.1 Sample Code Sequences
	9.1.1 Addressing “own” Data in the Short Data Area
	9.1.2 Addressing External Data or Data in a Long Data Area
	9.1.3 Addressing Literals in the Text Segment
	9.1.4 Materializing Function Pointers
	9.1.5 Direct Procedure Calls
	9.1.6 Indirect Procedure Calls
	9.1.7 Jump Tables

	9.2 Speculation
	9.3 Multi-threaded Code
	9.4 setjmp and longjmp
	9.5 Up-level Referencing
	9.6 C++ Conventions

	Context Management 10
	10.1 Process/thread context
	10.2 User-level thread switch, coroutines
	10.3 setjmp/longjmp

	Stack Unwinding and Exception Handling 11
	11.1 Unwinding the Stack
	11.1.1 Initial Context
	11.1.2 Step to Previous Frame

	11.2 Exception Handling Framework
	11.3 Coding Conventions for Reliable Unwinding
	11.3.1 Conventions for Prologue Regions
	11.3.2 Conventions for Body Regions
	11.3.3 Conventions for the Spill Area in the Memory Stack Frame

	11.4 Data Structures
	11.4.1 Unwind Table
	11.4.2 Unwind Descriptor Area
	11.4.3 Language-specific data area

	Dynamic Linking 12
	12.1 Position-Independent Code
	12.2 Procedure Calls and Long Branch Stubs
	12.3 Access to the Data Segment
	12.3.1 Access to Constants and Literals in the Text Segment
	12.3.2 Materializing Function Pointers

	12.4 Import stubs
	12.5 The dynamic loader

	System Interfaces 13
	13.1 Program Startup
	13.1.1 Initial Memory Stack
	13.1.2 Initial Register Values

	13.2 System Calls
	13.3 Traps and Signals

	Standard Header Files A
	A.1 Implementation Limits
	A.2 Floating-Point Definitions
	A.3 Variable Argument List Macros
	A.4 Setjmp/Longjmp

	Unwind Descriptor Record Format B
	B.1 Overview
	B.2 Region Header Records
	B.3 Descriptor Records for Prologue Regions
	B.4 Descriptor Records for Body Regions
	B.5 Descriptor Records for Body or Prologue Regions

