|A-64 architecture

A Detalled
Tutorial

Version 3

Sverre Jarp
CERN - IT Division
http://nicewww.cern.ch/—sverre/SJ.html

8 November 1999 1

Global Contents

= Four distinct parts:

Introduction and Overview
Multimedia Programming
Floating-Point Programming

Optimisation

AIMsS

Phase 1

= Offer programmers

Comprehension of the architecture
= Instruction set and Other features

Capability of understanding 1A-64
code

= Compiler-generated code
= Hand-written assembler code

o N Phase 2
Inspiration for writing code

= Well-targeted assembler routines
Highly optimised routines

= In-line assembly code
Full control of architectural features

Introduction
and
Overview

Architectural Highlights

= (Some of the) Main Innovations:

Rich Instruction Set
Bundled Execution
Predicated Instructions

Large Register Files

= Register Stack
»« Rotating Registers

Modulo Scheduled Loops
Control/Data Speculation
Cache Control Instructions
High-precision Floating-Point

Compared to 1A-32

Many advantages:
= Clear, explicit programming

After all, this is EPIC:
“Explicit Parallel Instruction Computing”

Register-based programming
Keep everything in registers (As long as possible)

Obvious register assignments
Integer Registers for Multimedia (Parallel Integer)

FP Registers for all FP work (a la SIMD)
Exception: Integer Multiply/Divide

All instructions (almost) can be predicated
Much more general than CONDITIONAL MOVES

Architectural support for software pipelining
Modulo scheduling

Start with simple example

Routine to initialise a floating-point value:
long Indx =5 ; // Choice may be 0 -7
double My fp = getval(Indx);

.proc

getval:
alloc r3=ar.pfs, 1, 0,0, 0

(p0O) movl r2=Table

(p0O) and r32=7,r32 // Choiceis0—-7

(p0O) shladd r2=r32,4,r2 // Index table

(p0O) Idfd f8=[r2] // Load value

(p0O) mov ar.pfs=r3

(p0O) br.ret.sptk.few bO / return

'32? ;10 Not strictly

Table: . needed for
real8 5.99 leaf
real8 routines

Initial explanation

Lots of detalils

) _ Application registers
Register = Many questions
allocation
getval:
alloc r3=ar.pfs,R_input,R_local,R_output,R_input+R_local
(p0O) movl r2=Table
Enforced (pO) and r32=7,r32 // Choiceis0—7
Bundle |— ;;
Break (p0O) shladd r2=r32,4,r2 // Index table
(p0O) Idfd f8=[r2] // Load value
(p0O) mov ar.pfs=r3
(p0O) br.ret.sptk.few bO // return
A v\

Predicated execution Branch return

User Register Overview

128
Integer Registers

128
Floating Point Registers

64
Predicate Registers

8
Branch Registers

128 NN Perf. Mon.
Application Registers Data Reg’s

NN
CPUID Registers

8 November 1999

CPUID reqisters

s General iInformation about the

Processor
At least 5 registers:

CPUID[0]
CPUID[1]
CPUID[2]
CPUID[3]
CPUID[4]

8 November 1999

IA64 Common Registers

Integer registers
128 in total; Width is 64-bits + 1 bit (NaT); rO=0
Integer, Logical and Multimedia data

Floating point registers
128 in total; 82-bits wide
17-bit exponent, 64-bit significand
f0O=0.0;f1=1.0
Significand also used for two SIMD floats
Predicate registers

64 in total; 1-bit each (fire/do not fire)
pO = 1 (default value)

Branch registers
8 In total; 64-bits wide (for address)

Rotating Registers

Upper 75%b6 rotate (when activated):
= General registers (r32-rl127)
» Floating Point Registers (f32-f127)
= Predicate Registers (pl1l6-p63)

= Formula:
Virtual Register = Physical Register — Register Rotation

Base (RRB)
I A
34 | 35 f124(f125|f126|f127

f28 | f29 | 130 | f31 | f32 | f33

| \

Register Convention

Run-time:
= Branch Registers:
BO: Call register
B1-B5: Must be preserved
B6-B7:. Scratch

« General Registers:
R1: GP (Global Data Pointer)
R2-R3: scratch
R4-R7: Must be preserved
R8-R11: Procedure Return Values
R12: Stack Pointer
R13: (Reserved as) Thread Pointer
R14-R31: Scratch
R32-Rxx: Argument Registers

Register Convention (2)

Run-time convention

« Floating-Point:
F2-F5: Preserved
F6-F7: Scratch
F8-F15: Argument/Return Registers
F16-F31: Must be preserved
F32-F127: Scratch

= Predicates:
P1-P5: Must be preserved
P6-P15: Scratch
P16-P63: Must be preserved

=« Additionally:
Ar.unat & Ar.lc: Must be preserved

Register Stack

The rotating integer registers serve as a
stack

= Each routine allocates via ”Alloc” instruction:
Input + Local + Output
“Input + Local” may rotate (in sets of 8 registers)

oo SN
proc o + 5| oomes
\
Proc C Further Calls
Proc B ‘/
i

Proc A | tomin | ouuea |

8 November 1999 15

Which registers to use

= Start with alloc:
Alloc r36=ar.pfs,4,4,2,8

Available instantaneously [\ Rotate

Input | | Local | | Output

Rotation should only be activated
= When input registers have been read

Lots of register below r32:
= 2-r3, r14-31 (scratch)
= I'8-rl1l (return values; work registers before)

Instruction Types

= M

Memory/Move Operations

Complex Integer/Multimedia Operations

= A

Simple Integer/Logic/Multimedia Operations

n F
Floating Point Operations (Normal/SIMD)

= B

Branch Operations

Instruction Bundle

= ‘Packaging entity’:
3 * 41 bit Instruction Slots

5 bits for Template

» Typical examples: MFI or MIB
» Including bit for Bundle Break “S”

A bundle of 16B:

= Basic unit for expressing parallelism
= The unit that the Instruction Pointer points to

= The unit you branch to
= Actually executed may be less, equal, or more

8 November 1999

18

Templates

= Decide mapping of instruction slots to
execution units:

12x2 basic combinations defined (out of 32)
= Even numbers: No terminating stop-bit
= Odd numbers: Terminating stop bit:

How to remember them:

= All (except one) start w/M:
Ending in I: MLI, MI+1, MMI, MM+1, MFI

Note 1:
Maximum
one F
instruction in
a bundle

Ending in B: MIB, MMB, MFB, MBB
No I or B: MMF Note 2:
Special for 64-bit immediates: MLX Two
i i templates
= Multiple (multiway) branches: have an
BBB embedded
stop bit

INnstruction Formats

= NoO ‘unique’ format; typical examples:
(p20) 1d4 r15=[r30],r8

» Load int (4 bytes) using address plus post-increment stride

(p4) fma.d.sO f35=f32,f33,f127
s U=X*Y+7Z

(p2) add r15=r3,r49,1

« C=ZA+B+1

FMA:

Add:

8 November 1999 20

Instruction Types

= Many Instruction Classes:
Logical operations (e.g. and)
Arithmetic operations (e.g. add)
Compare operations
Shift operations
Multimedia operations (e.g. padd)
Branches
Loop controlling branches
Floating Point operations (e.g. fma)
SIMD Floating Point operations (e.g. fpma)
Memory operations
Move operations
Cache Management operations

Conventions

Instruction syntax
= (Qp) ops[.comp;] r; =1, 1,
Execution is always right-to-left
Result(s) on left-hand side of equal-sign.
Almost all have a qualifying predicate

Many have further completers:
= Unsigned, left, double, etc.

Numbering [7[efs]ala]2]1]0]

= A"0 right-to left 63 < 0

Immediates

At execution = Various sizes exist

time, sign bit is : : . _ : :
extended all the = Immg (Signed immediate — 7 bits plus sign)

way to bit 63 8 November 1999 22

Logical Operations

s Instruction format:

= (gp) ops ry ="rsr;
= (Qp) ops r, = Immg, ry

Valid Operations:
= And
= Or
= Xor (Exclusive Or)

= Andcm (And Complement)
Result; = Input, & —Input,

Arithmetic Operations

s Instruction format:

. (@P) OpS, Ty =1y L] " replaced with
= (gp) ops, r,=Immgr, (ap) ops 1, = 1,,r0,1
« (gp) ops; r,=r,, countz,NA e v—
becomes
Valid Operations: (ap) Add r, =-imm, r,
= Add
= Sub

Adds/Addl (Imm_,, Imm,,,)

Shladd \ Loading
an immediate value

(gp) Add r, =imm, rO

NB: Integer multiply is a FLP operation

Compare Operations

s Instruction format:

= (gp) cmp.crel.ctype p,, p,=1r,, I's

Parallel
inequality
form

= (gp) cmp.crel.ctype p;, p, =Immg, 1y
— = (gp) cmp.crel.ctype p,, p, =r0, ry

Valid Relationships:
n Eq, It, ItU,

Types:

= None, Unc, And, Or, Or.andcm,

Parallel compare instructions are discussed in the Optimisation Chapter

Shift Operations

s Instruction format:

(ap) ops, r=r, I,
(ap) ops,[.u] r,=rg, counts
(ap) extr[.u] ry=r;, posg, leng

Deposit | =™ . (qp) dep[.zZ] r;=r,r3, poOsg, len,

(@p) shrp[.u]l r,=rs, r,, count,

\ Shift Right Pair can also be
used for a 64-bit Rotate

_ _ (Right)
Valid Operations:
= 0ps, can be: Shl, shr, shr.u
Extract: 1€10

= Shift right and mask sian lelo

Simple Multimedia

Parallel add/subtract

= (gp) paddn].sat] r,=r,, Iy
n=1[1,2, or 4]
Various kinds of saturation

See Part 2 for further details

8 November 1999

27

Floating-Point Operations

s Standard instruction:

= (Qp) ops.pc.sf
Valid Operations:

« Fma [U=X*Y +2Z]
« Fms [U=X~*Y-Z]

: ana[U=—(X*Y)+Z\

See part 3 for further details

U=X*Y
fmul
Pseudo-op
With fO = 0.0

U=X+Z
fadd
Pseudo-op
Withf1 =1.0

U=X-Z
fsub
Pseudo-op
Withf1 =1.0

SIMD Floating-Point

s Standard Instruction:

= (ap) ops.pc.sf fi =151, 1,
Valid Operations: L hs [rhs |1,
« Fpma[U=X*Y + Z]
. Fpms [U=X*Y - 7] L hs [rhs |1,
= Fpnma [U=-(X*Y) + Z] + +
_ths [rhs |1,
See part 3 for further details - -
L ths [rhs |

NB: f1 does NOT contain two 32-bit versions of 1.0 29

Load Operations

Standard instructions:
= (gp) Id.sz.ldtype.ldhint r,=[rsl. r,
= (gp) Id.sz. Idtype.ldhint r,.=[rs], Immg
= (gp) Ildf.fsz.fldtype.ldhint f =[r;], r,
= (gp) ldf.fsz.fldtype.ldhint f =[r;], Immg

Valid Sizes:
w Sz: 1/2/4/8
» Fsz: s d e 8

"\

Types:
« S/a/sa/c.nc/c.clr/c.clr.acq/acq/bias

Always
post-
modify

In the case
of integer
multiply (for
instance)

Line Prefetch

Place a cache-line at a given level

= (gp) Ifetch.lftype.lfhint [rz], 15

= (gp) Ifetch.lftype.lfhint [rz], Immg
Types are:

= None

= Fault NB: There is no target
Hints are:

= None, ntl, nt2, nta
Note than ‘None’ means temporal level 1
Others: Non-temporal L1, L2, All levels

Store Operations

= (gp) st.sz.stype.sthint
= (gp) st.sz.stype.sthint
= (gp) stf.fsz.fstype.sthint
= (gp) stf.fsz.fstype.sthint

Valid Sizes:

= Same as Load

s Standard instructions:

[I’3]= ry I.\IO

_ register-
[rs]= 1y, Immg based
[rs]=1, post-

[r;]=f, Immg | modify

NB: Memory address
IS the target

Move Operations

= Between FLP and Integer:

= (qp) setf.qual f,=r,
= (gp) getf.qual r,=",

Valid Qualifiers:
= S d exp Sig

NB:

« If one part of a fp register is set, the others are imposed
Setf.sig f,= r, sets Exponent = 0x1003E and Sign = 0.
[Idf8 does exactly the same]

Branch Operations

= Several different types:

Conditional or Call branches

=« Relative offset (1P-relative) or Indirect (via branch
registers)

= Based on predication

Return branches
= Indirect + Qualifying Predicate (QP)

Simple Counted Loops
« IP-relative with AR.LC

Modulo scheduled Counted Loop
= IP-relative with AR.LC and AR.EC

Modulo scheduled While Loops
= IP-relative with QP and AR.EC

Branch syntax

Rather complex:

= (gp) Br.btype.bwh..dh target,./b,
(gp) Br.Call. bwh..dh b,= target,; /b,

Branch Whether Hint
Sptk/spnt — Static Taken/Not Taken
Dptk/dpnt — Dynamic

Sequential
Few/none — few lines
Many

Branch Cache Deallocation Hint
None
Clr

8 November 1999

35

Simple Counted Loop

Works as ‘expected’

= Ar.lc counts down the loop (automatically)
No need to use a general register

Mov ar.lc=5
Loop: Work

Much more work

Br.cloop.many.sptk loop

Modulo loop are more advanced
» Uses Epilogue Count (as well as Loop Count)
= ... and Rotating Registers

We will deal with Modulo loops
In the ‘optimisation’ chapter

Instruction Types

v Many Groups:
Logical operations (e.g. and)
Arithmetic operations (e.g add)
Compare operations
Shift operations
Multimedia operations
Branches
Loop controlling branches
Floating Point operations (e.g. fma)
SIMD Floating Point operations (e.g. fpma)
Memory operations
Move operations
Cache Management operations

How to code instruction operands

= TWO rules:
Asignment always on the left

= (gp) ops.qual r,=r,, Iy

Mnemonics:
= Shladd r;=r,, count,, r,
Shift r, Left by count, and ADD to rg
« Fnma.sl f, =1, f,, f,
Flp Negative Multiply and Add: f; = - (f; * f,) + f,
= Less Obvious is: Andcm
AND Complement: r; = Input, & —Input,
Complement Input, or Input; ??

Multimedia Overview

128
Floating Point Registers

64
Predicate Registers

8
Branch Registers

User Register Overview

128
Application Registers

NN Perf. Mon.
Data Reg’s

NN
CPUID Registers

8 November 1999

40

IA64 Registers

= Integer registers
128 in total; Width is 64-bits + 1 bit (NaT); rO=0
Integer, Logical and Multimedia data

s Floating point registers
128 in total; 82-bits wide
17-bit exponent, 64-bit mantissa
fO=0.0;f1=1.0
Mantissa a''o used for two SIMD floats

s Predicate registers
64 in total; 1-bit each (fire/do not fire)
pO = 1 (default value)

s Branch registers
8 In total; 64-bits wide (for address)

8 November 1999

41

Data representation

= Multimedia types have

Three different sizes:
= Byte: 8 * 1B (8 bits)
= Short: 4 * 2B (16 bits)
= Word: 2 * 4B (32 bits)

(o))
w
o

NB:

= Not all instructions handle all types !
Parallel add: Paddl, Padd2, Padd4
Parallel Sum of Absolute Differences: Psadl

8 November 1999 42

Overview Table:
= Operand size

Arithmetic instructions

1B 2B 4B
Padd/Psub 1 2 4
Padd.sus
Psub.sus 1 2 i
Pavg|.raz
Pavgiub] 1 2]
Pshladd) 5)
Pshradd
Pcmp 1 2 4
Pmpy - 2 -
Pmpyshr - 2 -
Psad 1 - -
Pmin/Pmax 1 2 -

Overview Table:
= Operand size

Other Instructions

1B 2B 4B

Pshl/Pshr
- 2 4

Pshr.u

1B 2B 4B
Mix 1 2 4
MuxXx 1 2 -
Pack.sss - 2 4
Pack.uss - 2 -
Unpack 1 2 4

Parallel Multiply * *

* (GP) PMPY2F Ny =2 I Il BN

Same instruction for left

Parallel Multiply and Shift Right Ll SIS

+ (ap) pmpyshral.ul v = ra Ta 00U,
Count can be: 0, 7, 15, 16 *

v
I I R

12 and 11, respectively 8 November 1999 45

Complex Multimedia - 2

Parallel Maximum < < < <

s (@) pmax2 ro=r,rs [[

Signed quantities
Unsigned if single bytes
« Pmaxl.u

Parallel Sum of

T

Absolute Differences R
HEEEEEEN

]

= (gp) psadl r,=r,, I,
Absolute difference of
each sets of bytes

Then sum of these 8 values

8 November 1999 46

Both are 12

Unpack high/low
= (gp) unpackn.[h]I]r, =71, g
“High” uses bits 63-32

“Low” uses 31-0
Sizes: 1/2/4

Mix
= (gp) mixn.[Ijr]r, =71, 1y

“Left” uses odd-numbered
pieces

“Right” uses even-
numbered

8 November 1999

Complex Multimedia - 3

Example 1: Unpackl.h

Example 2: Mix1.1

Complex Multimedia - 4

A"o 12

s Pack w/saturation
(gp) pack2.satr; =r,, Iy

= .Sat” may be sss/uss

(gp) pack4.sssr, =r,, I3

]
\ /
I N N

Example of pack2

8 November 1999

48

Very versatile
= You ‘program’ it yourself
= Reverse is:

Ox1b - 00011011 (binary)

Broadcast (short no. 2)
Oxaa — 10101010 (binary)

= Muxl

14 and 13, respectively

Only ‘fixed’ combinations:

Reverse (Bytes: 01234567)
Mix (73516240)

Shuffle (73625140)
Alternate (75316420)
Broadcast (byte 0)

Complex Multimedia - 5

= Mux?2
(gp) mux2 r,; = r,,mbtype

11 10 01 00

e

Simple Multimedia - 1

Parallel add/subtract
= (gp) paddn].sat] r,=r,,ry

Saturation of r,,r,, r; may be:

sss/uus/uuu

“signed” covers 0x80 <-> Ox7F [Ox8000 <-> Ox7FFF]
“unsigned” covers 0x00 <-> OxFF [Ox0000 <-> OxFFFF]

Parallel add/subtract

= (gp) padd4 r,=r,, Iy
Modulo arithmetic

8 November 1999 50

Simple Multimedia - 2

Parallel compare
= (gp) pcmpn.prel r,=r,, Iy
One/Two/Four byte operands:
“Prel” may be: eq; gt (signed)
If true, a mask of Oxff (Oxffff or OXffffffff) is produced
If false, a mask of zeroes is produced

8 November 1999

51

Perform 32 x 32 unsigned multiplication

= needs: Mux, Pmpyshr, and Mix

11 instructions in total
7 groups

mux?2

mux?2
pmpyshr2.u
pmpyshr2.u
mix2.r
mix2.1

shr.u

ZxXt2

add

shl

add

r34=r32,0x50
r35=r33,0x14 ;;
r36=r34,r35,0
r37=r34,r35,16 ;;
r38=r37,r36
r39=r37,r36 ;;
r40=r39,32
r41=r39 ;;
r42=r40,r41 ;;
r43=r42,16 ;;
r31=r43,r38

Contributed by Walter Misar (TU - Darmstadt)

Multimedia programming

= Relevant example:

| | | A [a]
| | | B [b]
L A [A [a | a |
[b | B | B [b]
L A*b, [A*B, | a*B, [a*b, |
L A*, [A*B, | a*B, [a*b, |
LA*B, | A*B,_ | a*b, [a*b,]
L A*, [A*b, [a*B, | a*B, |
		A*b, [A*b,	
		a*B,	a*B,
		_Mid, [Mid,	
	_Mid, [Mid,		
[Sum, | Sum, | Sum, [Sum, |

Multimedia programming

x MPEG2 motion estimation:
From IA32 to 1A64:

Psad_top: // 16x16 block matching
//Do PSAD for a row, accumulate results
movq mma1l,[esi]

movq mm2,[esi+8]

psadbw mml,[edi]

psadbw mm2,[edi+8]

add esi,eax //increment pointer
add edi, eax

paddw mmO,mml //accumulate
paddw mm7, mm2

dec ecx

jp Psad_top

// 10 instructions

Psad_top: // 16x16 block matching
//Do PSAD for a row, accumulate results

Id8 r32=[r22],r21
Id8 r33=[r23],r21
Id8 r34=[r24],r21
Id8 r35=[r25],r21

psadl r32=r32,r34

psadl r33=r33,r35
add/padd4 r36=r36,r32
add/padd4 r37=r37,r33
Br.cloop.many.sptk Psad_top ;;

// 9 instructions, 3 groups

Floating-Point Overview

User Register Overview

128
Integer Registers

64
Predicate Registers

8
Branch Registers

128
Application Registers

NN Perf. Mon.
Data Reg’s

NN
CPUID Registers

8 November 1999

55

IA64 Registers

s Integer registers
128 in total; Width is 64-bits + 1 bit (NaT); rO =0
Integer, Logical and Multimedia data

= Floating point registers
128 in total; 82-bits wide
17-bit exponent, 64-bit significand
fO=0.0;f1=1.0
Significand also used for two SIMD floats

s Predicate registers
64 in total; 1-bit each (fire/do not fire)
pO = 1 (default value)

s Branch registers
8 In total; 64-bits wide (for address)

8 November 1999

56

Floating-Point Loads/Stores

= INn matrix form:

Operand Ldf. Ldfp. Stf.
Single S S S
Double d d d
Integer 8 8 8
Dbl.Ext. e - e
82-bits fill - spill
Post-incr. Reg/Ilmm |8/16 Imm

|IEEE 754 format

s Intrinsic construct

Sign/uUnsigned Exponent/Unsigned Significand
= (F1)S*2E*1f Example: -3= (-1)1*21*15
A fixed bias is added to the exponent: E'E=E + b

Only the fractional part of significand is stored
Normalisation enforces “1.”

How is it stored:

= Single precision: 1+ 8+ 23 bits

= Double precision: 1+ 11 + 52 bits _
In 1A64 registers: I EXP [Fraction

= Double Extended: 1+ 17 + 64 bits

Significand in register includes “1.”
This allows unnormalised numbers to be used as well

Exponent representation

= In general:
N bits allow 0 — (2N-1)
Bias is defined as: 2N-1-1

Exponent of O: O

Lowest ‘normal’ exp.: 1
. Equivalent to 2-@""2)
Exponent of 1: 2N-1-1
Highest ‘normal’ exp.: 2N-2
. Equivalent to 2@""D
Infinity and NaNs: 2N-1

= Single Precision:
8 bits allow 0 — 255
127

0]
1

= Equivalent to 2-126

127
254

= Equivalent to 2127

255

IA64 number range

Single:
= Range of [2-126, 2127] corresponds to about [10-37-°, 1038-2]
= 23-bit accuracy: —10-6-9

Double:
= Range of [2-1022 21023] corresponds to about [10-307-7 1(0308.0]
= 52-bit accuracy: ~10-157

Double Extended:
= Range of [2-16382 216383] corresponds to about [10-4931-5 104931.8]
= 63-bit accuracy: ~10-190

Register format
= Range of [2-05535, 265536] corresponds to about [10-19728:0, 1019728.3]
= 63-bit accuracy: —10-1°:0

FLP Status Register

= More on Traps
Included in global FPSR

= Inexact/underflow/overflow/zero-
divide/denorm/invalid ops.
= Disable trap by setting corresponding flag

= Status Fields
In an individual Status Field, the Trap Control bit can be set

'SV

8 November 1999 61

FLP Status Register

= Four Status Fields
SfO (main status field), sfl, sf2, sf3

= Flags

Inexact, Underflow, Overflow, Zero Divide
Denorm/Unnorm Operand
Invalid Operation

= Contains Contro" FPSR.sfx
Trap Disabling
Rounding Control
Precision Control

Widest-range-exponent, Flush-to-zero

8 November 1999 62

Floating-Point Operations

s Standard instruction:

= (Qp) ops.pc.sf f,=1 1,1,

Valid Operations:
« Fma [U=X*Y +Z]

« Fms [U=X*Y -Z]
« FNnmau=-(X*Y) + Z]

>

U=X*Y
fmul
Pseudo-op
With fO = 0.0

U=X+Z
fadd
Pseudo-op
Withf1 =1.0

U=X-Z
fsub
Pseudo-op
Withf1 =1.0

SIMD Floating-Point

s Standard Instruction:

= (gp) ops.pc.sf f, = f3, f,, T,
. . L hhs [rhs g,
Valid Operations: .
rFpmaly =Xy 2l [hs | rhs |
« Fpms[U=X>*Y -Z] " Ty
= Fpnma [U=-(X*Y) + Z]
_hs [rhs |7,
_hs [rhs | {,

NB: f1 does NOT contain two 32-bit versions of 1.0

64

Arithmetic Instructions

Both for Normal and Parallel representation:
= Multiply and Add [f(p)ma]
= Multiply and Subtract
= Negate Multiply and Add
= Reciprocal Approximation [f(p)rcpal]
= Reciprocal Square Root Approximation [f(p)rsqrta]
« Compare [f(p)cmp]
« Minimum [f(p)min], Maximum [f(p)max]
= Absolute Minimum [f(p)amin]
= Absolute Maximum [f(p)amax]
= Convert to Signed/Unsigned Integer [f(p)cvt.fx(u)]

Normal only:
= Convert from Signed Integer [fcvt.xf]
= Integer Multiply and Add [xma]

Non-arithmetic Instructions

Both for Normal and Parallel representation:
= Merge [f(p)merge]
» Classify [fclass]

Parallel only:

= Mix Left/Right

= Sign-Extend Left/Right
= Pack

= Swap

= And

= Or

= Select

« EXxclusive Or [fxor]

Status Control:
= Check Flags

=« Clear Flags
= Set Controls

Divide Example

Accurate for
Double
Precision
Results

How do we achieve an accurate result (x/y)?

Frcpa only ‘guarantees’ 8.68 bits

Z=x/y=[x/y’] * [x/(1-d)]

Implying: y = (y)(1 —d) d=1-y*rcp,whenrcp =1/()

Use polynomial expansion of 1/(1-d) =1+ d +d?+ d3 + ...
Rearranged: (1 + d)(1+ d?)(1+ d4)(1+ d?®)....

Precision doubles 8.7 17.3 34.6 694 138.7

Full formula:
rcpr=1/y
d=1.0—-y *rcp
rco=rcp* (1 +d)(1+ d?)(1+ d*)
z, = double(x * rcp)
rem =x—z*y // remainder
z = double(z, + rem™*rcp)

Cost:
10 operations (8 groups)

FLP Divide

Actual code:

divide:

frcpa.sO 16,p2=f5,f4 // rcp =1.0/y
(p2) fnma.sl f7=f6,f4,f1 //dl= —y*rcp+1.0
(p2) fma.sl f6=f7,f6,f6 // rcp =rcp (1.0 +dl1)
(p2) fmpy.sl fO9=Ff7,f7 //d2 =d1*dl
(p2) fma.sl f6=f9,f6,f6 // rcp =rcp * (1.0 +d2)
(p2) fmpy.s1l f10=f9,f9 // d4 =d2 *d2

(p2) fma.sl f6=f10,f6,f6 // rcp =rcp * (1.0 +d4)

(p2) fmpy.d.sl f8=f5,f6 // z0 =X *rcp

(p2) fnma.sl f11=f8,f5,f4 //rem= —y*rcp + X

(p2) fma.d.sO f8=f18,f6,f11 //z=z+rem*rcp

Integer divide

Steps needed.: idiv: |
= Transfer variables 2222:8
= Convert to FLP .-
= Perform the Division fcvt.xf
= Convert to integer | .. fevt.xt
« Transfer back N do_div

; fevt.fx.

Issue: z

f4=r4
f5=r5

f4=f4
f5=f5

4,15

getf.sig r8=f{8

// a
//b

// convert to floating
//

// precision dependent

unc.sl f8=f8 // convert to integer

// c =a/b

= Long latency

What if we need just the remainder ?

Macro as already shown

Integer remainder

Steps needed.:

Transfer variables
Convert to FLP

Do the Division
Compute remainder
Convert to integer
Transfer back

Issue:

Even longer latency

irem:

setf.sig f4=r4 // a
setf.sig f5=r5 //Db

fcvt.xf f4=f4 // convert to floating
fcvt.xf f5=f5 //

do _div f4,f5 // precision dependent

fnma f6=15,f8,f4 // quotient in f8
fevt.fx.truncsl f6=f6 // convert to integer

getf.sig r6=f6 \// remainder

Macro as already shown

Integer multiply and add

= Native instruction
Running on the FLP side

= (gp) xma.comp f,=1; 1,1,

= Valid completers:
Low (& low unsigned): |
High: h
High unsigned: hu

imul:
setf.sig f2=r2 // move from int
setf.sig f3=r3 // move from int
xma.l 8=f2,f3,f0 // result of mul in f8

getf.sig r8=f8 // return to integer

e Part 4

Optimisation

Optimisation Strateqgy

s As | see It:

Work on the overall design
=« Control flow
« Data flow

Use optimal algorithms
= In each important piece of code

At the assembly level
= Must have good architectural knowledge
= Understand the chip implementation
= Maybe use of special “tricks”

C/C++

« Verify that compiler output is (at least) reasonable
= Possibly, use inline assembler

Loops in assembly
= Exploit (in priority order)

Architectural support

= Modulo Scheduling support
Predication
Register Rotation (Large Register Files)

= Full access to other features
SIMD, Prefetching, Load pair instructions, etc.

Micro-architecture
= Number of parallel slots; Execution units; Latencies
=« Cache sizes, Bandwidth

Tricks

=« For increased speed
integer multiplication via shladd-sequences, etc.

» For balanced execution capability (FLP INT)

“What do you get thanked for”

s Understand the hardware architecture

In order to make changes that matter
Some examples:

= Integer registers:
Minimised use of allocated set (on the stack)

= Control floating-point registers:
1) No use
2) Use of fixed set
3) Use of total set

= Prefetching
Use “nta” if you do not need the data again

Register Stack

Proc A

Proc B

Proc C
Proc B

Proc A

The rotating integer registers serve as

a stack

= Each routine allocates via ”Alloc” instruction:
Input + Local + Output
“Input + Local” may rotate (in sets of 8 registers)

\
Further Calls

—
«—

8 November 1999 76

Execution Width

A given implementation could be N wide

= Itanium/Merced is implemented as a “two-banger”
6 parallel instructions
= Major enhancement compared to 1A-32
But,

= If nothing useful is put into the syllables, they get
filled as NOPs

/

This template should be even (i.e. without stop bit)

8 November 1999 77

Instruction Delivery

= Must match

INnstructions to issue ports
= w/corresponding execution units attached

vailabl rts in |

8 November 1999

78

|A-64 Secret of Speed

s Fill the ENTIRE execution width

Two “easy” cases
= 1) Initialisation
A lot of unrelated stuff can be packed together
= 2) Loops
See section on Software Pipelining later on

One “difficult” case:

= Only ONE algorithm with LITTLE or NO inherent X =5 .-
parallelism v =X/

= Example: RC6 (encryption) 7=V +

R=T+ ...
S=R* ..

Initial Example

Look in detail at bundles

3 groups
= From two viewpoints In
Fill the slots densely 3 cycles
Respect dependencies
getval:
Explicit MLX
Stop bit
Or
Enforced M+MI
Bundle —p
Break (p0O) Idf.fill f8=[r2] // Load value
(p0) mov ar.pfs=r3 MIB
(p0O) br.ret.sptk.few bO // return

8 November 1999 80

Parallel Compares

s Instruction format:

= (gp) cmp.crel.ctype pg, p,=T1,, I
= (gp) cmp.crel.ctype p,, p, =Immg, r;
= (gp) cmp.crel.ctype p,, p,=r0, r,

In the first two cases:
= Only ‘eq’ (or ‘ne’) relationship may be used

In the third case:
= Can use ‘It’ (or a variant) together with rO

Use Parallel Compare

It@flbllcllid{..}

« Serially:
(pO) cmp.ne.unc p_yes,p0=a,0 -
(p0O) cmp.ne p_yes,p0=Db,0 -
4 CyCIeS (pO) cmp.ne p_yes,p0=c,0 5
(pO) cmp.ne p_yes,p0=d,O -
« Parallel:
(pO) cmp.ne.unc p_yes,p0=a,0 -
1+ cycle (pO) cmp.ne.or p_yes,p0=Db,0
(p0O) cmp.ne.or p_yes,pO0=c,0
(pO) cmp.ne.or p_yes,p0=d,O -
Any one (of the \
three) may write a : :
“1” into D_vyes Another va_rlant would bfe to_ code aI_I four compares in the same group;
provided that a prior instruction has initialised p_yes to 0

Line prefetch

Place a cache-line at a given level

= (gp) Ifetch.lftype.lfhint [rz], 15
= (gp) Ifetch.lftype.lfhint [rz], Immg

Types are:
= None
= Fault

Hints are:

= None, ntl, nt2, nta
Non-temporal L1, L2, All levels

Load hints

Decide where to place a line in cache

Registers Level 1 Level 2 Level 3

None (all)

NT1

NT2
(Lfetch)

NTA (all)

8 November 1999

(Lfetch/Id)

84

Modulo Scheduled Loop

= Example:

Copy integer data inside cache
= 128 words (8B each)

Use modulo scheduled loop (software

pipelining)
= Set Loop Count/Epilogue Count
= Assume all data in LO cache

= Hypothetical load access time with 3 delay cycles

Rotating Registers

Upper 75%b6 rotate (when activated):
= General registers (r32-rl127)
» Floating Point Registers(f32-f127)
= Predicate Registers (pl1l6-p63)

= Formula:
Virtual Register = Physical Register — Register Rotation

Base (RRB)‘ U U i
3

f28 | f29 | 130 | f31 | f32 | f33 | 34 | 35 f124(f125(f126|f127

|

Modulo Loop - 2

Graphical representation
= 7 loop traversa" desired

= Skewed execution
Stage 2 relative to Stage 1
Stage 3 relative to Stage 2

A Main loop

Epilogue

Completed
Stages

Stage 3

Stage 2

Stage 1

8 November 1999

87

Modulo Loop - 3

= How Is It programmed ?
By using:

= Rotating registers (Let values live longer)

= Predication

Each stage uses a distinct predicate register
starting from p16

Stage 1 controlled by p16
Stage 2 by pl17
Etc.
= Architected loop control using BR.CTOP
Clock down LC & EC

Setpl6 =1whenlLC>0
[Actually p63 before new rotation]

Set P16 = O otherwise

Modulo Loop - 4

= Rotating Registers

Reminder of basic principle
« Just like “ageing”

= Virtual Register Number increases by 1 at the bottom
of the loop:
r32 r33 r34 r35(pl6 pl7 pl8, andso on)
« Data is retained
Unless a new assignment is made

Modulo Loop - 5

Putting together the loop

= In asingle bundile
With Store instruction that starts 3 cycles after the Load
Stage 1: 1d8
StageZ2, Stage 3 (empty)
Stage 4: st8

mov ar.lc=127
mov ar.ec=4
mov pr.rot=0x10000 // Initialise p16

loop:
(pl6) 1d8 r32=[ra],8 // Load value
(p1l9) st8 [rb]=r35,8 // Store value

br.ctop.sptk.few loop // Loop

Which loops ?

Only the innermost loop

= In this example,
L3 can be a Modulo Loop

= What if
L2 is the time-consuming loop ?

= Several options to ensure good Modulo
Scheduling
1) Unroll the loop L3 completely
2) Invert the loops
3) Condense the loops

4) Move L3 outside L2
Leaving just a predicated branch
And jump to it (when needed)
5) Leave it in place
And manage it yourself

L1:

L2:

L3:

Action Call

= Study the Architecture Manual

(and other available documents)

Few items at a time
= 1his is dense material

Write code snippets:
= EXxercising the different architectural features
= Compare to existing architectures (such as 1A32)

Be ready for the first shipments of hardware

Appendix la

Type | Instructions Categor
s A-Class yP _ gory
Add; Sub (Register)

Instructions " | and; andem; or; xor | 'Mte9er AL

Whole set A2 | Shladd

« Integer ALU A3 Sub (Immediate)

= Compare And; Andcm; Or; Xor
= Multimedia ALU A4 Adds
A5 Addl
A6 Compare (Reg.) Int. Compare
A7 Compare to Zero
A8 Compare (Imm.)

A9 Padd; Psub; Pavg; Pcmp| Multimedia

A10 Pshladd; Pshradd

AppendixX
1b

s l-Instructions
Part 1

= Multimedia and
Variable Shifts

= Integer Shifts

Type | Instructions Category
11 Pmpyshr Multimedia
15 Pmpy; Mix; Pack; Unpack
Pmin; Pmax; Psad
13 Mux1
14 Mux2
15 Shr; Pshr (Variable)
16 Pshr (Fixed)
17 Shl; Pshl (Variable)
18 Pshl (Fixed)
19 Population Count
110 Shrp Int. Shift
111 Extract
112 Zero and deposit
113 Zero and deposit (Imnm.)
114 Deposit (Imm.)
115 Deposit

Appendix

1c

s l-Instructions
Part 2

= Miscellaneous

Type | Instructions Category
116 | TestBit Test Bit

117 Test Nat

118 Move Long Int. Misc.
119 Break.i; Nop.i

120 Chk.s.i

121 Move to BR Int. Move
122 Move from BR

123 Move to Predicate (Red.)

124 Move to Predicate (Imm.)

125 Move from PR/IP

126 Move to AR (Reg.)

127 Move to AR (Imm.)

128 Move from AR

129 Sign/Zero Extend,; Int. Misc.

Compute Zero Index

Type | Instructions Category

Ap p e n d iX M1 Integer Load Load/Store

M2 Integer Load (PI via reg.)
1 d M3 Integer Load (PI via imm.)

M4 Integer Store

M5 Integer Store (Pl via imm.))

M6 Floating-Point Load

= M-instructions [FLP Load (P1 via reg.)

Load M8 | FLP Load (PI via imm.)
Store M9 FLP Store
Prefetch M10 |FLP Store (PI viaimm.)

M11 | FLP Load Pair

M12 | FLP Load Pair (PI via imm))

M13 | Line prefetch Prefetch

M14 | Line prefetch (PI via reg.)

M15 | Line prefetch (PI viaimm.)

Appendix
le

= M-Instructions
Miscellaneous

Type | Instructions Category
M16 (Cmp and) Exchange Semaphore
M17 Fetch and Add

M18 Setf Set/Get
M19 Getf

M20 | Chk.s.m (INT) Speculation
M21 Chk.s (FLP)

M22 Chk.a.nc/clr (INT)

M23 Chk.a.nc/clr (FLP)

M24 Sync; Fence; Serialize Synchr.
M25 Flushrs "

M26 Invala.e (INT)

M27 Invala.e (FLP)

M28

Flush cache

Appendix
1f

s M-instructions

Register moves
Misc.

Type | Instructions Category
M29 Move to AR (Reg.) Mem.Mov.
M30 Move to AR (Imm.)

M31 Move from AR

M32

M33

M34 | Alloc M.Misc.
M35 Move to PSR

M36 Move from PSR

M37 Break.m; Nop.m

M38

M39

M40

M41

M42

M43 Move from Indirect Reg.| Mem.Mgm.
M44 | Set/Reset User Mask

Appendix 19

s B- | nstru CtiOnS Type | Instructions Category
Whole set Bl IP-relative branch Branch
B2 IP-rel. Counted Branch
B3 IP-rel. Call
B4 Indirect Branch (B-reg.)
B5 Indirect Call (B-reg.)
B6
B7
B8 Clrrrb Br.Misc.
B9 Break.b/Nop.b Br.Nop.

Type | Instructions Category

Ap p e n d iX F1 F(p)ma with variants FLP Arith.

F2 Xma
1 h F3 Fselect FLP Select
F4 Fcmp FLP Compare
s F-INnStructions |rs |Fclass
Whole Set F6 F(p)rcpa FLP Approx.
= Arithmetic Fr F(p)sqrta .
= Compare and F8 F(p)min/max; F(p)cmp [FLP Min/Max
Classify F9 F(p)merge + Logical FLP M/L
= Approximations F10 | Convert FLP to Fixed | FLP Convert
= Miscellaneous F11 | Convert Fixed to FLP

= Convert F12 Set Contro" FLP Status

= Status Fields
F13 Clear Flags

F14 Check Flags

F15 Break.f/Nop.f FLP Misc.

Change History

s 11 June:

Version 2
= Some editorial changes; Added date & page numbers

= Added slides on:
Templates; XMA-instruction;
Example using PMPYSHR
Example on Motion Estimation (MPEG2)

= 8 November:

Version 3:
= More editorial changes

= Added slides on:
Register coding conventions
Itanium/Merced execution width and units
Appendix w/all instruction categories

