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About This Book
The primary objective of this manual is to help programmers to provide software that is
compatible across the family of PowerPCª processors using AltiVecª technology. 

To locate any published errata or updates for this document, refer to the website at
http://www.mot.com/SPS/PowerPC/.

This book is one of two that discuss the AltiVec architecture, the two books are:

¥ AltiVec: The Programming Interface Manual (AltiVec PIM) is used as a reference 
guide for high-level programmers. The AltiVec PIM provides a mechanism for 
programmers to access AltiVec functionality from programming languages such as 
C and C++. The AltiVec PIM deÞnes a programming model for use with the AltiVec 
instruction set extension to the PowerPC architecture.

¥ AltiVec: The Programming Environments Manual (AltiVec PEM) is used as a 
reference guide for assembler programmers. The AltiVec PEM provides a 
description for each instruction that includes the instruction format, an 
individualized legend that provides such information as the level(s) of the PowerPC 
architecture in which the instruction may be found, the privilege level of the 
instruction, and Þgures to help in understanding how the instruction works.

It is beyond the scope of this manual to describe individual AltiVec technology
implementations on PowerPC processors. It must be kept in mind that each PowerPC
processor is unique in its implementation of the AltiVec technology.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readersÕ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative or visit our website
at: http://www.mot.com/SPS/PowerPC/. 
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Audience
This manual is intended for system software and application programmers who want to
develop products using the AltiVec technology extension to the PowerPC processors in
general. It is assumed that the reader understands operating systems, microprocessor
system design, the basic principles of RISC processing, and the AltiVec Instruction Set.

Organization
Following is a summary and a brief description of the major sections of this manual:

¥ Chapter 1, ÒOverview,Ó is useful for those who want a general understanding of 
what the programming model deÞnes in the AltiVec technology. 

¥ Chapter 2, ÒHigh-Level Language Interface,Ó is useful for software engineers who 
need to understand how to access AltiVec functionality from high level languages 
such as C and C++. 

¥ Chapter 3, ÒApplication Binary Interface (ABI),Ó describes AltiVec extensions for 
System V Application Binary Interface PowerPC Processor Supplement (SVR4 
ABI), the PowerPC Embedded Application Binary Interface (EABI), Appendix A of 
The PowerPC Compiler WriterÕs Guide (AIX ABI), and the Apple Macintosh ABI.

¥ Chapter 4, ÒAltiVec Operations and Predicates,Ó alphabetically deÞnes the AltiVec 
operations and predicates.  Each AltiVec operation and predicate description 
includes a pseudocode functional description and Þgures illustrating that function, a 
valid set of argument types for that AltiVec operation or predicate, the result type for 
that set of argument types, and the speciÞc AltiVec instruction generated for that set 
of arguments.

¥ Appendix A, ÒAltiVec Instruction Set/Operation/Predicate Cross-Reference,Ó cross-
references the AltiVec instruction set, operations, and predicates by functionality.

¥ This manual also includes a glossary and an index.
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Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the AltiVec technology and PowerPC
architecture. 

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

¥ UserÕs manualsÑThese books provide details about individual PowerPC 
implementations and are intended to be used in conjunction with PowerPC 
Microprocessor Family: The Programming Environments Manual. 

¥ PowerPC Microprocessor Family: The Programming Environments, Rev. 1 provides 
information about resources deÞned by the PowerPC architecture that are common 
to PowerPC processors. This document describes both the 64- and 32-bit portions of 
the architecture.
MPCFPE/AD (Motorola order #)

¥ Implementation Variances Relative to Rev. 1 of The Programming Environments 
Manual is available via the world-wide web at http://www.mot.com/SPS/PowerPC/.

¥ Addenda/errata to userÕs manualsÑBecause some processors have follow-on parts 
an addendum is provided that describes the additional features and changes to 
functionality of the follow-on part. These addenda are intended for use with the 
corresponding userÕs manuals. 

¥ Hardware speciÞcationsÑHardware speciÞcations provide speciÞc data regarding 
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as 
other design considerations for each PowerPC implementation. 

¥ Technical SummariesÑEach PowerPC implementation has a technical summary 
that provides an overview of its features. This document is roughly the equivalent to 
the overview (Chapter 1) of an implementationÕs userÕs manual. 

¥ PowerPC Microprocessor Family: The ProgrammerÕs Reference Guide: 
MPCPRG/D (Motorola order #) is a concise reference that includes the register 
summary, memory control model, exception vectors, and the PowerPC instruction 
set.

¥ PowerPC Microprocessor Family: The ProgrammerÕs Pocket Reference Guide: 
MPCPRGREF/D (Motorola order #): This foldout card provides an overview of the 
PowerPC registers, instructions, and exceptions for 32-bit implementations.

¥ Application notesÑThese short documents contain useful information about 
speciÞc design issues useful to programmers and engineers working with PowerPC 
processors (available via the worldwide web at 
http://www.mot.com/SPS/PowerPC/). 

¥ Documentation for support chips
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Additional literature on AltiVec technology and PowerPC implementations is being
released as new processors become available. For a current list of AltiVec technology and
PowerPC documentation, refer to the website at http://www.mot.com/SPS/PowerPC/.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

¥ The following books are available from the Morgan-Kaufmann Publishers, 340 Pine 
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415) 
392-2665 (International); internet address: mkp@mkp.com.

Ñ The PowerPC Architecture: A SpeciÞcation for a New Family of RISC 
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture speciÞcation are accessible via the world-wide web 
at http://www.austin.ibm.com/tech/ppc-chg.html. 

Ñ PowerPC Microprocessor Common Hardware Reference Platform: A System 
Architecture, by Apple Computer, Inc., International Business Machines, Inc., 
and Motorola, Inc.

Ñ Macintosh Technology in the Common Hardware Reference Platform, by Apple 
Computer, Inc.

Ñ Computer Organization and Design, by David A. Patterson and John L. 
Hennessy.

Ñ Computer Architecture: A Quantitative Approach, Second Edition, by 
John L. Hennessy and David A. Patterson. 

¥ PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books 
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404; 
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).
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Chapter 1  
Overview
10
10

This document deÞnes a programming model for use with the AltiVec instruction set
extension to the PowerPC architecture. There are three types of programming interfaces
described in this document: 

¥ A high-level language interface, intended for use within programming languages 
such as C or C++ 

¥ An application binary interface (ABI) deÞning low-level coding conventions

¥ An assembly language interface

Although a higher-level application programming interface (API) such as mediaLib is
intended for use with AltiVec, such a speciÞcation is not addressed by this document. For
further details on mediaLib see the AltiVec website at:
http://www.mot.com/SPS/PowerPC/AltiVec.

An AltiVec-enabled compiler implementing the model described in this document
predeÞnes the value __VEC__ as the decimal integer 10205.

1.1  High-Level Language Interface
The high-level language interface for AltiVec is a way for programmer to be able to use the
AltiVec technology from programming languages such as C and C++. It describes
fundamental data type for the AltiVec programming model. Details of this interface are
described in Chapter 2, ÒHigh-Level Language Interface.Ó
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Application Binary Interface (ABI)  

  
1.2  Application Binary Interface (ABI)
The AltiVec Programming Model extends the existing PowerPC ABIs and the extension is
independent of the endian mode. The ABI reviews what the data types are and what the
register usage conventions are for vector register Þles. The ABI also discusses how to set
up the stack frame. The vector register save and restore functions are included in the ABI
section to advocate uniformity among compilers on the method used in saving and restoring
vector registers.

The Programming Interface Manual provides the valid set of argument types for speciÞc
AltiVec operations and predicates as well as the speciÞc AltiVec instruction(s) generated
for that set of arguments. The AltiVec operations and predicates are organized
alphabetically in Chapter 4, ÒAltiVec Operations and Predicates.Ó
1-2 AltiVec Technology Programming Interface Manual MOTOROLA



               
Chapter 2  
High-Level Language Interface
20
20

The AltiVec high-level language interface:

¥ Provides an efÞcient and expressive mechanism for programmers to access AltiVec 
functionality from programming languages such as C and C++. 

Note: Access to AltiVec functionality from Java applications is not currently 
addressed by this speciÞcation, but will likely be addressed through a higher level 
API such as mediaLib.

¥ DeÞnes a minimal set of language extensions that clearly describes the intent of the 
programmer while minimizing the impact on existing PowerPC compilers and 
development tools.

¥ DeÞnes a minimal set of library extensions needed to support AltiVec functionality. 

2.1  Data Types
The AltiVec programming model introduces a set of fundamental data types, as described
in Table 2-1. 

Table 2-1. AltiVec Data Types  

New C/C++ Type Interpretation of Contents Components Represent Values

vector unsigned char  16 unsigned char 0...255

vector signed char  16 signed char -128...127

vector bool char 16 unsigned char 0(F), 255 (T)

vector unsigned short
8 unsigned short 0...65536

vector unsigned short int

vector signed short
8 signed short -32768...32767

vector signed short int

vector bool short
8 unsigned short 0 (F), 65535 (T)

vector bool short int

vector unsigned int

4 unsigned int 0...232 - 1vector unsigned long*

vector unsigned long int*
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New Keywords  

                      
In illustrations where an algorithm could apply to multiple types, vec_data represents any
one of these types. Introducing fundamental types permits the compiler to provide stronger
type checking and supports overloaded operations on vector types.

2.2  New Keywords
The model introduces new uses for the following Þve identiÞers: 

¥ vector

¥ __vector

¥ pixel

¥ __pixel

¥ bool 

as simple type speciÞer keywords. Among the type speciÞers used in a declaration, the
vector type speciÞer must occur Þrst. As in C and C++, the remaining type speciÞers may
be freely intermixed in any order, possibly with other declaration speciÞers. The syntax
does not allow the use of a typedef name as a type speciÞer. For example, the following is
not allowed:

typedef signed short int16;
vector int16 data;

These new uses may conßict with their existing use in C and C++. There are two methods
that may be used to deal with this conßict. An implementation of the AltiVec programming
model may choose either method.

2.2.1  The Keyword and PredeÞne Method
In this method, __vector, __pixel, and bool are added as keywords while vector and
pixel are predeÞned macros. bool is already a keyword in C++. To allow its use in C as a
keyword, it is treated the same as it is in C++. This means that the C language is extended
to allow bool alone as a set of type speciÞers. Typically, this type will map to int. To

vector signed int

4 signed int -231...231-1vector signed long*

vector signed long int*

vector bool int

4 unsigned int 0 (F), 232 - 1 (T)vector bool long*

vector bool long int*

vector float 4 float IEEE-754 values

vector pixel 8 unsigned short 1/5/5/5 pixel

*The vector types with the long keyword are deprecated and will be eliminated in a future version of this document.

Table 2-1. AltiVec Data Types  (Continued)

New C/C++ Type Interpretation of Contents Components Represent Values
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Alignment
accommodate a conßict with other uses of the identiÞers vector and pixel, the user can
either #undef or use a command line option to remove the predeÞnes.

2.2.2  The Context Sensitive Keyword Method
In this method, __vector and __pixel are added as keywords without regard to context
while the new uses of vector, pixel, and bool are keywords only in the context of a type.
Since vector must be Þrst among the type speciÞers, it can be recognized as a type
speciÞer when a type identiÞer is being scanned. The new uses of pixel and bool occur
after vector has been recognized. In all other contexts, vector, pixel, and bool are not
reserved. This avoids conßicts such as class vector, typedef int bool, and allows the
use of vector, pixel, and bool as identiÞers for other uses.

2.3  Alignment
The following paragraphs described AltiVec alignment requirements. When working with
vector data, the programmer must be aware of these alignment issues. Because the AltiVec
technology does not generate exceptions, the programmer must determine whether and
when vector data becomes unaligned.

2.3.1  Alignment of Vector Types
A deÞned data item of any vector data type in memory is always aligned on a 16-byte
boundary. A pointer to any vector data type always points to a 16-byte boundary. The
compiler is responsible for aligning vector data types on 16-byte boundaries. Given that
vector data is correctly aligned, a program is incorrect if it attempts to dereference a pointer
to a vector type if the pointer does not contain a 16-byte aligned address. In the AltiVec
architecture, an unaligned load/store does not cause an alignment exception that might lead
to (slow) loading of the bytes at the given address. Instead, the low-order bits of the address
are quietly ignored.

2.3.2  Alignment of Non-Vector Types
An array of components to be loaded into vector registers need not be aligned, but will have
to be accessed with attention to its alignment. Typically, this is accomplished using either
the Load Vector for Shift Right, vec_lvsr(), or Load Vector for Shift Left, vec_lvsl(),
operation and the Vector Permute, vec_perm(), operation.

2.3.3  Alignment of Aggregates and Unions Containing Vector Types
Aggregates (structures and arrays) and unions containing vector types must be aligned on
16-byte boundaries and their internal organization padded, if necessary, so that each
internal vector type is aligned on a 16-byte boundary. This is an extension to all ABIs (AIX,
Apple, SVR4, and EABI).
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Extensions of C/C++ Operators for the New Types  
2.4  Extensions of C/C++ Operators for the New Types
Most C/C++ operators do not permit any of their arguments to be one of the new types. Let
a and b be vector types and p be a pointer to a vector type. The normal C/C++ operators are
extended to include the following operations.

2.4.1  sizeof() 
The operations sizeof(a) and sizeof(*p) return 16.

2.4.2  Assignment
If either the left hand side or right hand side of an expression has a vector type, then both
sides of the expression must be of the same vector type. Thus, the expression a = b is valid
and represents assignment if a and b are of the same vector type (or if neither is a vector
type). Otherwise, the expression is invalid and must be signaled as an error by the compiler. 

2.4.3  Address Operator
The operation &a is valid if a is a vector type. The result of the operation is a pointer to a. 

2.4.4  Pointer Arithmetic
The usual pointer arithmetic can be performed on p. In particular, p+1 is a pointer to the
next vector after p.

2.4.5  Pointer Dereferencing
If p is a pointer to a vector type, *p implies either a 128-bit vector load from the address
obtained by clearing the low order bits of p, equivalent to the instruction vec_ld(0, p) or
a 128-bit vector store to that address equivalent to the instruction vec_st(0, p). If it is
desired to mark the data accessed as least-recently-used (LRU), the explicit instruction
vec_ldl(0,p) or vec_stl(0, p) must be used.

Dereferencing a pointer to a non-vector type produces the standard behavior of either a load
or a copy of the corresponding type.

Accessing of unaligned memory must be carried out explicitly by a 
vec_ld(int, type *) operation, a vec_ldl(int, type *) operation, a 
vec_st(int, type *) operation or a vec_stl(int, type *) operation.
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New Operators
2.4.6  Type Casting
Pointers to old and new types may be cast back and forth to each other. Casting a pointer to
a new type represents an unchecked assertion that the address is 16-byte aligned. Some new
operators are provided to provide the equivalence of casts and data initialization.

Casts from one vector type to another are provided by normal C casts. These should not be
needed frequently if the overloaded forms of operators are used. None of the casts performs
a conversion; the bit pattern of the result is the same as the bit pattern of the argument that
is cast.

¥ (vector signed char) vec_data

¥ (vector signed short) vec_data

¥ (vector signed int) vec_data

¥ (vector unsigned char) vec_data

¥ (vector unsigned short) vec_data

¥ (vector unsigned int) vec_data

¥ (vector bool char) vec_data

¥ (vector bool short) vec_data

¥ (vector bool int) vec_data

¥ (vector float) vec_data

¥ (vector pixel) vec_data

Casts between vector types and scalar types are illegal. To copy data between these types,
us the vec_lde() or vec_ste() operations. An alternative is to use a union consisting of
a vector type and an equivalent array of the scalar type and copy the data using the union.

2.5  New Operators
New operators are introduced to construct vector literals, adjust pointers, and allow full
access to the functionality provided by the AltiVec architecture.

2.5.1  Vector Literals
A vector literal is written as a parenthesized vector type followed by a parenthesized set of
constant expressions. Vector literals may be used either in initialization statements or as
constants in executable statements. Table 2-2 lists the formats and descriptions of the vector
literals. For each, the compiler generates code that either computes or loads the values into
the register.
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New Operators  
2.5.2  Vector Literals and Casts
The combination of vector casts and vector literals can complicate some parsers. An
implementation is not required to support the cast to a vector type of a vector cast or vector
literal when the operand of the cast is not a parenthesized expression. For example, the
programmer may write the following:

(vector unsigned char)((vector unsigned int)(1, 2, 3, 4))
(vector signed char)((vector unsigned short) variable)

The similar expressions below without the parenthesized expression may not be used in a
conforming application 

(vector unsigned char)(vector unsigned int)(1, 2, 3, 4)
(vector signed char)(vector unsigned short) variable

Table 2-2. Vector Literal Format and Description  

Notation Represents

(vector unsigned char) (unsigned int) A set of 16 unsigned 8-bit quantities which all have the value 
specified by the integer. 

(vector unsigned char) (unsigned int, 
..., unsigned int)

A set of 16 unsigned 8-bit quantities specified by the 16 integers.

(vector signed char) (int) A set of 16 signed 8-bit quantities that all have the value specified 
by the integer. 

(vector signed char) (int, ..., int) A set of 16 signed 8-bit quantities specified by the 16 integers. 

(vector unsigned short) (unsigned int) A set of eight unsigned 16-bit quantities which all have the value 
specified by the unsigned integer. 

(vector unsigned short) (unsigned int, 
..., unsigned int)

A set of eight unsigned 16-bit quantities specified by the eight 
unsigned integers. 

(vector signed short) (int) A set of eight signed 16-bit quantities which all have the value 
specified by the integer. 

(vector signed short) (int, ..., int) A set of eight signed 16-bit quantities specified by the eight 
integers. 

(vector unsigned int) (unsigned int) A set of four unsigned 32-bit quantities which all have the value 
specified by the unsigned integer. 

(vector unsigned int) (unsigned int,
..., unsigned int)

A set of four unsigned 32-bit quantities specified by the four 
unsigned integers. 

(vector signed int) (int) A set of four signed 32-bit quantities which all have the value 
specified by the integer. 

(vector signed int) (int, ..., int) A set of four signed 32-bit quantities specified by the 4 integers. 

(vector float) (float) A set of four floating-point quantities which all have the value 
specified by the floating-point value. 

(vector float) (float, ..., float) A set of four floating-point quantities which all have the value 
specified by the four floating-point values. 
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New Operators
2.5.3  Value for Adjusting Pointers
At compile time, the vec_step(vec_data) produces the integer value representing the
amount by which a pointer to a component of an AltiVec data should increment to cause a
pointer increment to increment by 16 bytes. For example, a vector unsigned short data
type is considered to contain eight unsigned 2-byte values. A pointer to unsigned 2-byte
values used to stream through an array of unsigned 2-byte values by a full vector at a time
should increment by vec_step(vector unsigned short) = 8. Table 2-3 provides a
summary of the values by data type. 

2.5.4  New Operators Representing AltiVec Operations
New operators are introduced to allow full access to the functionality provided by the
AltiVec architecture. The new operators are represented in the programming language by
language structures that parse like function calls. The names associated with these
operations are all preÞxed with vec_. The appearance of one of these forms can indicate
the following:

¥ A generic AltiVec operation, like vec_add()

¥ A speciÞc AltiVec operation, like vec_addubm()

¥ A predicate computed from a AltiVec operation like vec_all_eq()

¥ Loading of a vector of components, as discussed in Section 2.5.1, ÒVector LiteralsÓ

Each AltiVec operator takes a list of arguments that represent the input operands. The order
of the operands is prescribed in the architecture speciÞcation and includes a returned result
(possibly void).

The programming model restricts the operand types permitted for each AltiVec operation,
whether speciÞc or generic. The programmer may override this constraint by explicitly
casting arguments to permissible types.

Table 2-3. Increment Value for vec_step by Data Type

 vec_step Expression Value

vec_step(vector unsigned char)
vec_step(vector signed char)
vec_step(vector bool char)

16

vec_step(vector unsigned short)
vec_step(vector signed short) 
vec_step(vector bool short)

8

vec_step(vector unsigned int)
vec_step(vector signed int) 
vec_step(vector bool int)

4

vec_step(vector pixel) 8

vec_step(vector float) 4
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Programming Interface  
For a speciÞc operation, the operand types determine whether the operation is acceptable
within the programming model and the type of the result. For example,
vec_vaddubm(vector signed char, vector signed char) is acceptable in the
programming model because it represents a reasonable way to do modular addition with
signed bytes, while vec_vaddubs(vector signed char, vector signed char) and
vec_vaddubh(vector signed char, vector signed char) are not acceptable. If
permitted, the former operation would produce a result in which saturation treats the
operands as unsigned; the latter operation would produce a result in which adjacent pairs
of signed bytes are treated as signed halfwords.

For a generic operation, the operand types are used to determine whether the operation is
acceptable, to select a particular operation according to the types of the arguments, and to
determine the type of the result. For example, vec_add(vector signed char, vector
signed char) will map onto vec_vaddubm() and return a result of type vector signed
char, while vec_add(vector unsigned short, vector unsigned short) maps onto
vec_vadduhm() and return a result of type vector unsigned short.

The AltiVec operations that set condition register CR6 (i.e., the compare dot instructions)
are treated somewhat differently in the programming model. The programmer can not
access speciÞc register names. Instead of directly specifying a compare dot instruction, the
programmer makes reference to a predicate that returns an integer value derived from the
result of a compare dot instruction. As in C, this value may be used directly as a value (1 is
true, 0 is false) or as a condition for branching. It is expected that the compiler will produce
the minimum code needed to use the condition. Predicates begin with vec_all_ or
vec_any_. Either the true or false state of any bit that can be set by a compare dot
instruction has a predicate. For example, vec_all_gt(x,y) tests the true value of bit 24 of
the CR after executing some vcmpgt. instruction. To complete the coverage by predicates,
additional predicates exercise compare dot instructions with reversed or duplicated
arguments. As examples, vec_all_lt(x,y) performs a vcmpgtx.(y,x), and
vec_all_nan(x) is mapped onto vcmpeqfp.(x,x). If the programmer wishes to have
both the result of the compare dot instruction as returned in the vector register and the value
of CR6, the programmer speciÞes two operations. The compilerÕs job is to determine that
these can be merged. The AltiVec operations and predicates are listed in Chapter 4,
ÒAltiVec Operations and PredicatesÓ. 

2.6  Programming Interface
This document does not prohibit or require an implementation to provide any set of
include Þles or #pragma preprocessor commands. If an implementation requires that an
include Þle be used prior to the use of the syntax described in this document, it is
suggested that the include Þle be named <altivec.h>. If an implementation supports
#pragma preprocessor commands, it is suggested that it provide __ALTIVEC__ as a
predeÞned macro with a nonzero value. A suggested preprocessor command set includes
the following:
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Programming Interface
#pragma altivec_codegen on | off

When this pragma is on, the compiler may use AltiVec instructions. When you set this
pragma off, the altivec_model pragma is also set to off.

#pragma altivec_model on | off

When this pragma is on, the compiler accepts the syntax speciÞed in this document, and the
altivec_codegen pragma is also set to on.

#pragma altivec_vrsave on | off | allon

When this pragma is on, the compiler maintains the VRSAVE register. With allon
selected, the compiler changes the VRSAVE register to have all bits set. It is combined with
#pragma altivec_vrsave off by having a parent function do the work once of setting
the value of the VRSAVE register with #pragma altivec_vrsave allon and the function
it calls uses the setting #pragma altivec_vrsave off.
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Chapter 3  
Application Binary Interface (ABI)
30
30

Note: The ABI extensions described herein for embedded applications are still under review
by the PowerPC EABI industry working group, and may be subject to change.
ModiÞcations, if any, will be highlighted in future revisions of this document.

The AltiVec programming model extends the existing PowerPC ABIs. This chapter
speciÞes extensions to the System V Application Binary Interface PowerPC Processor
Supplement (SVR4 ABI), the PowerPC Embedded Application Binary Interface (EABI),
Appendix A of The PowerPC Compiler WriterÕs Guide (AIX ABI), and the Apple
Macintosh ABI. The SVR4 ABI and EABI speciÞcations deÞne both a Big-Endian ABI and
a Little-Endian ABI. This extension is independent of the endian mode.

3.1  Data Representation
The vector data types are 16-bytes long and 16-byte aligned. All ABIs are extended
similarly. Aggregates (structures and arrays) and unions containing vector types must be
aligned on 16-byte boundaries and their internal organization padded, if necessary, so that
each internal vector type is aligned on a 16-byte boundary. The Apple ABI and AIX ABI
specify a maximum alignment for aggregates and unions of 4-bytes; the EABI speciÞes a
maximum alignment of 8-bytes. Increasing the alignment to 16-bytes creates the
opportunity for padding or holes in the parameter lists involving these aggregates described
in Section 3.4.2, ÒApple Macintosh ABI and AIX ABI Parameter Passing without Varargs.Ó

3.2  Register Usage Conventions
The register usage conventions for the vector register Þle are deÞned as follows:

Table 3-1. AltiVec Registers

Register Intended use Behavior across call sites

v0–v1 General use Volatile (Caller save)

v2–v13 Parameters, general Volatile (Caller save)

v14–v19 General Volatile (Caller save)

v20-v31 General Non-volatile (Callee save)
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The Stack Frame  
The VRSAVE special purpose register (SPR256, named vrsave in assembly instructions) is
used to inform the operating system which vector registers (VRs) need to be saved and
reloaded across context switches. Bit n of this register is set to 1 if vector register vn needs
to be saved and restored across a context switch. Otherwise, the operating system may
return that register with any value that does not violate security after a context switch. The
most signiÞcant bit in the 32-bit word is bit 0.

The EABI does not use VRSAVE for any special purpose, but VRSAVE is a non-volatile
register.

3.3  The Stack Frame
The stack pointer maintains 16-byte alignment in the SVR4 ABI and the AIX ABI and
8-byte alignment in the EABI and the Apple Macintosh ABI and AIX ABI. It is not
necessary to align the stack dynamically in either the SVR4 ABI or the AIX ABI, however,
the alignment padding space is speciÞed for both. The additions to the stack frame are the
vector register save area, the vrsave word, and the alignment padding space to dynamically
align the stack to a quadword boundary.

The following additional requirements apply to the stack frame:

¥ Before a function changes the value of vrsave, it shall save the value of VRSAVE at 
the time of entry to the function in the vrsave word.

¥ The alignment padding space shall be either 0, 4, 8, or 12 bytes long so that the 
address of the vector register save area (and subsequent stack locations) are 
quadword aligned.

¥ If the code establishing the stack frame dynamically aligns the stack pointer, it shall 
update the stack pointer atomically with an stwux instruction. The code may assume 
the stack pointer on entry is aligned on an 8-byte boundary.

¥ Before a function changes the value in any non-volatile vector register, vn, it shall 
save the value in vn in the word in the vector register save area 16*(32Ðn) bytes 
before the low-addressed end of the alignment padding space.

¥ Local variables of a vector data type which need to be saved to memory will be 
placed on the stack frame on a 16-byte alignment boundary in the same stack frame 
region used for local variables of other types.

SP in the Þgures denotes the stack pointer (general purpose register r1) of the called
function after it has executed code establishing its stack frame.

VRSAVE Special, see Section 3.3, 
“The Stack Frame

Non-volatile (Callee save)

Table 3-1. AltiVec Registers

Register Intended use Behavior across call sites
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3.3.1  SVR4 ABI and EABI Stack Frame
The size of the vector register save area and the presence of the VRSAVE word may vary
within a function and are determined by a new registers valid tag. Note: In the SVR4 ABI,
the registers valid tag is the most general way to describe a stack frame. It is associated with
a frame or frame valid tag. Figure 3-1 shows an SVR4 and EABI stack frame.

Figure 3-1. SVR4 ABI and EABI Stack Frame

Table 3-2. Vector Registers Valid Tag Format

Word Bits Name Description

1 0–17 RESERVED 0

1 18–29 START_OFFSET The number of words between the BASE of the nearest 
preceding Frame or Frame Valid tag and the first instruction to 
which this tag applies.

1 30–31 TYPE 2

2 0–11 VECTOR_REGS One bit for each non-volatile vector register, bit 0 for v31,..., bit 
11 for v20, with a 1 signifying that the register is saved in the 
vector register save area.

2 12 VRSAVE_AREA1 1 if and only if the VRSAVE word is allocated in the register save 
area.

1.If more than one Vector Registers Valid Tag applies to the same Frame or Frame Valid tag, they shall all 
have the same values for VRSAVE_AREA and VR.
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The Stack Frame  
The code example below shows sample prologue and epilogue code with full saves of all
the non-volatile ßoating-point (FPRs), general (GPRs), and VRs for a stack frame of less
than 32 Kbytes. The example aligns the stack pointer dynamically, addresses incoming
arguments via r30, uses volatile VRs v0Ðv10, maintains VRSAVE, does not alter the non-
volatile Þelds of the CR and does no dynamic stack allocation. Saving and restoring the
VRs and updating vrsave can occur in either order. A function that does not need to address
incoming arguments but does align the stack pointer dynamically can recover the address
of the original stack pointer with an instruction such as lwz r11,0(sp). The computation of
len in the example and whether to use subÞc or addi to align the stack dynamically is based
on the size of the components of the frame. Starting with the components at higher
addresses, the value of len is computed by adding the size of the FPR save area, the GPR
save area, the CR save word, and the VRSAVE word.

The size of the alignment padding space is then computed as the smallest number of bytes
needed to make len a multiple of 16. In the example below, the alignment padding space
is 4 bytes. Consequently, subÞc is used to dynamically align the stack by increasing the size
of the alignment padding space by either 0 or 8 bytes. Had the alignment padding space
been 8 or 12 bytes, addi would be used to align the stack dynamically by decreasing the size
of the alignment padding space by either 0 or 8 bytes. Continuing, the value of len is
updated by adding the size of the vector register save area, the local variable space, the
outgoing parameter list area, and the LR save word. The size of the local variable space is
adjusted so that the overall value of len is a multiple of 16. The following is SVR4 ABI and
EABI prologue and epilogue sample code.

function: mflr r0 # Save return address ...
stw r0,4(sp) # ... in callerÕs frame.
ori r11,sp,0 # Save end of fpr save area
rlwinm r12,sp,0,28,28 # 0 or 8 based on SP alignment
subfic r12,r12,-len # Add in stack length
stwux sp,sp,r12 # Establish new aligned frame
bl _savefpr_14 # Save floating-point registers
addi r11,r11,-144 # Compute end of gpr save area
bl _savegpr_14_g # Save gprs and fetch GOT ptr
mflr r31 # Place GOT ptr in r31

# Save CR here if necessary
addi r30,r11,144 # Save pointer to incoming

2 13-17 VR1 Size in quadwords of the vector register save area.

2 18-29 RANGE The number of words between the first and the last instruction to 
which this tag applies.

2 30 VRSAVE_REG 1 if and only if VRSAVE is saved in the VRSAVE word.

2 31 SUBTYPE 1

Table 3-2. Vector Registers Valid Tag Format

Word Bits Name Description

1.If more than one Vector Registers Valid Tag applies to the same Frame or Frame Valid tag, they shall all 
have the same values for VRSAVE_AREA and VR.
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# arguments
mfspr r0,vrsave # Save VRSAVE ...
stw r0,-220(r30) # ... in callerÕs frame.
oris r0,r0,0xff70 # Use v0-v10 and ...
ori r0,r0,0x0fff # v20-v31 (for example)
mtspr vrsave,r0 # Update VRSAVE
addi r0,sp,len-224 # Compute end of vr save area
bl _savevr20 # Save VRs

# Body of function
addi r0,sp,len-224 # Address of vr save area to r0
bl _restvr20 # Restore VRs
lwz r0,-220(r30) # Fetch prior value of VRSAVE
mtspr vrsave,r0 # Restore VRSAVE
addi r11,r30,-144 # Address of gpr save area to r11
bl _restgpr_14 # Restore gprs
addi r11,r11,144 # Address of fpr save area to r11
bl _restfpr_14_x # Restore fprs and return

3.3.2  Apple Macintosh ABI and AIX ABI Stack Frame
Figure 3-2 shows how the Apple Macintosh ABI and AIX ABI stack frame is set up.

Figure 3-2. Apple Macintosh ABI and AIX ABI Stack Frame

The Apple Macintosh ABI and AIX ABI stack frame allow the use of a 220-byte area at a
negative offset from the stack pointer. This area can be used to save non-volatile registers
before the stack pointer has been updated. This size of this area is not changed. Depending
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The Stack Frame  
on the number of non-volatile registers saved, it may be necessary to update the stack
pointer before saving the VRs. However, it remains unnecessary to update the stack pointer
before saving the GPRs or FPRs.

The size of the VR save area and the presence of the VRSAVE word are determined by a
traceback table entry. The spare3 2-bit Þeld in the Þxed portion of the traceback table is
changed to the following:

has_vec_info This 1-bit Þeld is set if the procedure saves non-volatile VRs in the 
vector register save area, saves vrsave in the VRSAVE word, 
speciÞes the number of vector parameters, or uses AltiVec 
instructions.

spare4 Reserved 1-bit Þeld. 

When the has_vec_info bit is set, all the following optional Þelds of the traceback table
are present following the position of the alloca_reg Þeld.

vr_saved This 6-bit Þeld represents the number of non-volatile VRs saved by 
this procedure. Because the last register saved is always v31, a value 
of 2 in vr_saved indicates that v30 and v31 are saved.

saves_vrsave If this routine saves vrsave, this 1-bit Þeld is set. If so, the VRSAVE 
word in the register save area must be used to restore the prior value 
before returning from this procedure.

has_varargs If this function has a variable argument list, this 1-bit Þeld is set. 
Otherwise, it is set to 0.

vectorparms This 7-bit Þeld records the number of vector parameters. The Þeld 
may be set to a non-zero value for a procedure with vector 
parameters that does not have a variable argument list. Otherwise, 
parmsonstk must be set.

vec_present This 1-bit Þeld is set if AltiVec instructions are performed within the 
procedure.

The following code shows sample prologue and epilogue code with full saves of all the non-
volatile ßoating-point, general, and VRs for a stack frame of less than 32 Kbytes. The code
example dynamically aligns the stack pointer, addresses incoming arguments via r31, uses
volatile VRs v0Ðv10, maintains VRSAVE, does not alter the non-volatile Þelds of the CR
and does no dynamic stack allocation. Saving and restoring the VRs and updating the
vrsave register can occur in either order. A function that does not need to address incoming
arguments but does align the stack pointer dynamically can recover the address of the
original stack pointer with an instruction such as lwz r11,0(sp).

The computation of len in the example and whether to use subÞc or addi to align the stack
dynamically are based on the size of the components of the frame. Starting with the
components at higher addresses, the value of len is computed by adding the size of the
ßoating-point register save area, the general register save area, and the VRSAVE word. The
size of the alignment padding space is then computed as the smallest number of bytes
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needed to make len a multiple of 16. In the example below, the alignment padding space
is 0 bytes. Consequently, subÞc is used to align the stack dynamically by increasing the size
of the alignment padding space by either 0 or 8 bytes. Had the alignment padding space
been 8 or 12 bytes, addi is used to align the stack dynamically by decreasing the size of the
alignment padding space by either 0 or 8 bytes. Continuing, the value of len is updated by
adding the size of the vector register save area, the local variable space, the outgoing
parameter list area, and 24 for the size of the link area. The size of the local variable space
is adjusted so that the overall value of len is a multiple of 16.

The following is Apple Macintosh ABI and AIX ABI prologue and epilogue sample code.

function: mflr r0 # Save return address ...
stw r0,8(sp) # ... in the callerÕs frame.
bl _savef14 # Save floating-point registers.
stmw r13,-220(sp) # Save gprs in gpr save area

# Save CR here if necessary
ori r31,sp,0 # Save pointer to incoming

# arguments
rlwinm r12,sp,0,28,28 # 0 or 8 based on SP alignment
subfic r12,r12,-len # Add in stack length
stwux sp,sp,r12 # Establish new aligned frame
mfspr r0,vrsave # Save VRSAVE ...
stw r0,-224(r31) # ... in callerÕs frame.
oris r0,r0,0xff70 # Use v0-v10 v20-v31 and ...
ori r0,r0,0x0fff # v20-v31 (for example)
mtspr vrsave,r0 # Update VRSAVE
addi r0,sp,len-224 # Compute end of VRSAVE area
bl _savev20 # Save VRs

# Body of function
addi r0,sp,len-224 # Address of VRSAVE area to r0
bl _restv20 # Restore VRs
lwz r0,-224(r31) # Fetch prior value of VRSAVE
mtspr vrsave,r0 # Restore Vrsave
ori sp,r31 # Restore SP
lmw r13,-220(sp) # Restore gprs
lwz r0,8(sp) # Restore return address ...
mtlr r0 # ... and return from _restf14
b _restf14 # Restore fprs and return

3.3.3  Vector Register Saving and Restoring Functions
The vector register saving and restoring functions described in this section are not part of
the ABI. They are deÞned here only to encourage uniformity among compilers in the code
used to save and restore VRs.

On entry to the functions described in this section, r0 contains the address of the word just
beyond the end of the vector register save area, and they leave r0 undisturbed. They modify
the value of r12. The following code is an example of saving a vector register.

_savev20: addi r12,r0,-192
stvx v20,r12,r0 # save v20

_savev21: addi r12,r0,-176
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stvx v21,r12,r0 # save v21
_savev22: addi r12,r0,-160

stvx v22,r12,r0 # save v22
_savev23: addi r12,r0,-144

stvx v23,r12,r0 # save v23
_savev24: addi r12,r0,-128

stvx v24,r12,r0 # save v24
_savev25: addi r12,r0,-112

stvx v25,r12,r0 # save v25
_savev26: addi r12,r0,-96

stvx v26,r12,r0 # save v26
_savev27: addi r12,r0,-80

stvx v27,r12,r0 # save v27
_savev28: addi r12,r0,-64

stvx v28,r12,r0 # save v28
_savev29: addi r12,r0,-48

stvx v29,r12,r0 # save v29
_savev30: addi r12,r0,-32

stvx v30,r12,r0 # save v30
_savev31: addi r12,r0,-16

stvx v31,r12,r0 # save v31
blr # return to prologue

The following code shows how to restore a vector register.

_restv20: addi r12,r0,-192
lvx v20,r12,r0 # restore v20

_restv21: addi r12,r0,-176
lvx v21,r12,r0 # restore v21

_restv22: addi r12,r0,-160
lvx v22,r12,r0 # restore v22

_restv23: addi r12,r0,-144
lvx v23,r12,r0 # restore v23

_restv24: addi r12,r0,-128
lvx v24,r12,r0 # restore v24

_restv25: addi r12,r0,-112
lvx v25,r12,r0 # restore v25

_restv26: addi r12,r0,-96
lvx v26,r12,r0 # restore v26

_restv27: addi r12,r0,-80
lvx v27,r12,r0 # restore v27

_restv28: addi r12,r0,-64
lvx v28,r12,r0 # restore v28

_restv29: addi r12,r0,-48
lvx v29,r12,r0 # restore v29

_restv30: addi r12,r0,-32
lvx v30,r12,r0 # restore v30

_restv31: addi r12,r0,-16
lvx v31,r12,r0 # restore v31
blr # return to prologue
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3.4  Function Calls
This section applies to all user functions. Note that the intrinsic AltiVec operations are not
treated as function calls, so these comments donÕt apply to those operations. 

The Þrst twelve vector parameters are placed in VRs v2Ðv13. If fewer (or no) vector type
arguments are passed, the unneeded registers are not loaded and contain undeÞned values
upon entry to the called function.

Functions that declare a vector data type as a return value place that return value in v2.

Any function that returns a vector type or has a vector parameter requires a prototype. This
requirement enables the compiler to avoid shadowing VRs in GPRs.

3.4.1  SVR4 ABI and EABI Parameter Passing and Varargs
The SVR4 ABI algorithm for passing parameters considers the arguments as ordered from
left (Þrst argument) to right, although the order of evaluation of the arguments is
unspeciÞed. The vector arguments maintain their ordering. The algorithm is modiÞed to
add vr to contain the number of the next available vector register. In the INITIALIZE step,
set vr=2. In the SCAN loop, add a case for the next argument VECTOR_ARG as follows:

¥ If the next argument is in the variable portion of a parameter list, set vr=14. This 
leaves the Þxed portion of a variable argument list in VRs and places the variable 
portion in memory.

¥ If vr>13 (that is, there are no more available VRs), go to OTHER. Otherwise, load 
the argument value into vector register vr, set vr to vr+1, and go to SCAN.

The OTHER case is modiÞed only to understand that vector arguments have 16-byte size
and alignment.

Aggregates are passed by reference (i.e., converted to a pointer to the object), so no change
is needed to deal with 16-byte aligned aggregates.

The va_list type is unchanged, but an additional va_arg_type value of 4 named
arg_VECTOR is deÞned for the __va_arg() interface.  Since vector parameters in the
variable portion of a parameter list are passed in memory, the __va_arg() routine can
access the vector value from the overflow_arg_area value in the va_list type.

3.4.2  Apple Macintosh ABI and AIX ABI Parameter Passing without 
Varargs
If the function does not take a variable argument list, the non-vector parameters are passed
in the same registers and stack locations as they would be if the vector parameters were not
present. The only change is that aggregates and unions may be 16-byte aligned instead of
4-byte aligned. This can result in words in the parameter list being skipped for alignment
(padding) and left with undeÞned value.
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The Þrst twelve vector parameters are placed in v2Ðv13. These parameters are not
shadowed in GPRs. They are not allocated space in the memory argument list. Any
additional vector parameters are passed through memory on the program stack. They
appear together, 16-byte aligned, and after any non-vector parameters.

3.4.3  Apple Macintosh ABI and AIX ABI Parameter Passing with 
Varargs
The va_list type continues to be a pointer to the memory location of the next parameter.
If va_arg() accesses a vector type, the va_list value must Þrst be aligned to a 16-byte
boundary.

A function that takes a variable argument list has all parameters, including vector
parameters, mapped in the argument area as ordered and aligned according to their type.
The Þrst 8 words of the argument area are shadowed in the GPRs only if they correspond
to the variable portion of the parameter list. The Þrst parameter word is named PW0 and is
at stack offset 0x24. A vector parameter must be aligned on a 16-byte boundary. This means
there are two cases where vector parameters are passed in GPRs. If a vector parameter is
passed in PW2:PW5 (stack offset 0x32), its value is placed in GPR5ÐGPR8. If a vector
parameter is passed in PW6:PW9 (stack offset 0x48), its value PW6:PW7 is placed in
GPR9 and GPR10 and the value PW8:PW9 is placed on the stack. All parameters after the
Þrst 8 words of the argument area that correspond to the variable portion of the parameter
list are passed in memory.

In the Þxed portion of the parameter list, vector parameters are placed in v2Ðv13, but are
provided a stack location corresponding to their position in the parameter list.

3.5  malloc(), vec_malloc(), and new
In the interest of saving space, malloc(), calloc(),  and realloc() are not required to
return a 16-byte aligned address. Instead, a new set of memory management functions is
introduced that return a 16-byte aligned address. The new functions are named
vec_malloc(), vec_calloc(), vec_realloc(), and vec_free(). The two sets of
memory management functions may not be interchanged: memory allocated with
malloc(), calloc(), or realloc() may only be freed with free() and reallocated with
realloc(); memory allocated with vec_alloc(), vec_calloc(), or vec_realloc()
may only be freed with vec_free() and reallocated with vec_realloc().

The user must use the appropriate set of functions based on the alignment requirement of
the type involved. In the case of the C++ operator new, the implementation of new is
required to use the appropriate set of functions based on the alignment requirement of the
type.
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3.6  setjmp() and longjmp()
The context required to be saved and restored by setjmp(), longjmp(), and related
functions now includes the 12 non-volatile VRs and vrsave. The user types sigjmp_buf
and jmp_buf are extended by 48 words. An unused word in the existing jmp_buf is used
to save VRSAVE.

There are complications in implementing setjmp() and longjmp():

¥ The user types must be enlarged. Existing applications that use these interfaces will 
have to be recompiled even though they make no use of the AltiVec instruction set.

¥ The implementation that saves and restores the VRs can only assume that the 
v20Ðv31 offset is aligned on a 4-byte boundary. A method where the VRs are saved 
at the Þrst aligned location in the jmp_buf was rejected because the user types are 
only 4-byte aligned and may be copied by value to a location with different 
alignment. 

¥ The implementation that saves and restores the VRs and vrsave uses instructions that 
do not exist on a non-AltiVec enabled PowerPC implementation. The method for 
testing whether the AltiVec instructions operate is privileged. One solution is to 
deÞne an O/S interface that saves and restores the VRs and vrsave if and only if the 
AltiVec instructions exist and are enabled.

A simple solution to these complications is to deÞne setjmp(), longjmp() and the user
types sigjmp_buf and jmp_buf differently when compiled with an AltiVec-enabled
compiler (i.e., when __VEC__ is deÞned). These bindings result in a larger jmp_buf with
16-byte alignment. The bindings for setjmp() and longjmp() unconditionally save and
restore the vector state. Such an implementation does not save and restore the vector state
when these interfaces are compiled without an AltiVec-enabled compiler. The application
must ensure that these two sets of bindings are not mixed.

3.7  Debugging Information
Extensions to the debugging information format are required to describe vector types and
vector register locations. While vector types can be described as Þxed length arrays of
existing C types, the implementation should describe these as new fundamental types.
Doing so allows a debugger to provide mechanisms to display vector values, assign vector
values, and create vector literals.

Table 3-3. ABI Specifications for setjmp() and longjmp()

ABI jmp_buf Size VRSAVE Offset v20Ðv31 Offset

AIX ABI 448 100 256

Apple Macintosh ABI 448 16 256

SVR4 ABI and EABI 448 248 256
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This section is subject to change. It is intended to describe the extensions to the standard
debugging formats: xcoff stabstrings, DWARF version 1.1.0, and DWARF version 2.0.0.

Xcoff stabstrings used in the AIX ABI and adopted by the Apple Macintosh ABI support
the location of objects in GPRs and FPRs. The stabstring code ÒRÓ describes a parameter
passed by value in the given GPR; ÒrÓ describes a local variable residing in the given GPR.
The stabstring code ÒXÓ describes a parameter passed by value in the given vector register;
ÒxÓ describes a local variable residing in the given vector register.

DWARF 2.0 debugging DIEs support the location of objects in any machine register. The
SVR4 ABI speciÞes the DWARF register number mapping. The VRs v0Ðv31 are assigned
register numbers 1124Ð1155. The VRSAVE SPR is SPR256 and is assigned the register
number 356.

3.8  printf() and scanf() Control Strings
The conversion speciÞcations in control strings for input functions (fscanf, scanf,
sscanf) and output functions (fprintf, printf, sprintf, vfprintf, vprintf,
vsprintf) are extended to support vector types.

3.8.1  Output Conversion SpeciÞcations
The output conversion speciÞcations have the following general form:

%[<flags>][<width>][<precision>][<size>]<conversion>

where,

<flags> ::=<flag-char> | <flags><flag-char>
<flag-char> ::=<std-flag-char> | <c-sep>
<std-flag-char> ::= Ô-Õ | Ô+Õ | Ô0Õ | Ô#Õ | Ô Ô
<c-sep> ::= Ô,Õ | Ô;Õ | Ô:Õ | Ô_Õ
<width> ::= <decimal-integer> | Ô*Õ
<precision> ::= Ô.Õ <width>
<size> ::= ÔllÕ | ÔLÕ | ÔlÕ | ÔhÕ | <vector-size>
<vector-size> ::= ÔvlÕ | ÔvhÕ | ÔlvÕ | ÔhvÕ | ÔvÕ
<conversion> ::= <char-conv> | <str-conv> | <fp-conv> | 

<int-conv> | <misc-conv>
<char-conv> ::= ÔcÕ
<str-conv> ::= ÔsÕ | ÔPÕ
<fp-conv> ::= ÔeÕ | ÔEÕ | ÔfÕ | ÔgÕ | ÔGÕ
<int-conv> ::= ÔdÕ | ÔiÕ | ÔuÕ | ÔoÕ | ÔpÕ | ÔxÕ | ÔXÕ
<misc-conv> ::= ÔnÕ | Ô%Õ

The extensions to the output conversion speciÞcation for vector types are shown in bold.

The <vector-size> indicates that a single vector value is to be converted. The vector value
is displayed in the following general form:

value1 C value2 C ... C valuen
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where C is a separator character deÞned by <c-sep> and there are 4, 8, or 16 output values
depending on the <vector-size> each formatted according to the <conversion>, as
follows:

¥ A <vector-size> of ÔvlÕ or ÔlvÕ consumes one argument and modiÞes the 
<int-conv> conversion; it should be of type vector signed int, vector 
unsigned int, or vector bool int; it is treated as a series of four 4-byte 
components. 

¥ A <vector-size> of ÔvhÕ or ÔhvÕ consumes one argument and modiÞes the 
<int-conv> conversion; it should be of type vector signed short, vector 
unsigned short, vector bool short, or vector pixel; it is treated as a series 
of eight 2-byte components. 

¥ A <vector-size> of ÔvÕ with <int-conv> or <char-conv> consumes one 
argument; it should be of type vector signed char, vector unsigned char, or 
vector bool char; it is treated as a series of sixteen 1-byte components. 

¥ A <vector-size> of ÔvÕ with <fp-conv> consumes one argument; it should be of 
type vector float; it is treated as a series of four 4-byte ßoating-point 
components. 

¥ All other combinations of <vector-size> and <conversion> are undeÞned.

The default value for the separator character is a space unless the ÔcÕ conversion is being
used. For the ÔcÕ conversion the default separator character is null. Only one separator
character may be speciÞed in <flags>.

Examples:

vector signed char s8 = vector signed char(ÔaÕ,ÔbÕ,Ô Ô,ÔdÕ,ÔeÕ,ÔfÕ, 
 ÔgÕ,ÔhÕ,ÔiÕ,ÔjÕ,ÔkÕ,ÔlÕ,
 Ôm,Õ,Ô,Õ,ÕoÕ,ÕpÕ);

vector unsigned short u16 = vector unsigned short(1,2,3,4,5,6,7,8);
vector signed int s32 = vector signed int(1, 2, 3, 99);
vector float f32 = vector float(1.1, 2.2, 3.3, 4.39501);
printf(Òs8  = %vc\nÓ, s8);
printf(Òs8  = %,vc\nÓ, s8);
printf(Òu16 = %vhu\nÓ, u16);
printf(Òs32 = %,2lvd\nÓ, s32);
printf(Òf32 = %,5.2vf\nÓ, f32);

This code produces the following output:

s8  = ab defghijklm,op
s8  = a,b, ,d,e,f,g,h,i,j,k,l,m,,,o,p
u16 = 1 2 3 4 5 6 7 8
s32 =  1, 2, 3,99
f32 =  1.10 ,2.20 ,3.30 ,4.40
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3.8.2  Input Conversion SpeciÞcations
The input conversion speciÞcations have the following general form:

%[<flags>][<width>][<size>]<conversion>

where,

<flags> ::= Ô*Õ | <c-sep> [Ô*Õ] | [Ô*Õ] <c-sep>
<c-sep> ::= Ô,Õ | Ô;Õ | Ô:Õ | Ô_Õ
<width> ::= <decimal-integer>
<size> ::= ÔllÕ | ÔLÕ | ÔlÕ | ÔhÕ | <vector-size>
<vector-size> ::= ÔvlÕ | ÔvhÕ | ÔlvÕ | ÔhvÕ | ÔvÕ
<conversion> ::= <char-conv> | <str-conv> | <fp-conv> | 

<int-conv> | <misc-conv>
<char-conv> ::= ÔcÕ
<str-conv> ::= ÔsÕ | ÔPÕ
<fp-conv> ::= ÔeÕ | ÔEÕ | ÔfÕ | ÔgÕ | ÔGÕ
<int-conv> ::= ÔdÕ | ÔiÕ | ÔuÕ | ÔoÕ | ÔpÕ | ÔxÕ | ÔXÕ
<misc-conv> ::= ÔnÕ | Ô%Õ | Ô[Ô

The extensions to the input conversion speciÞcation for vector types are shown in bold.

The <vector-size> indicates that a single vector value is to be scanned and converted. The
vector value to be scanned is in the following general form:

value1 C value2 C ... C valuen

where C is a separator sequence deÞned by <c-sep> (the separator character optionally
preceded by whitespace characters) and 4, 8, or 16 values are scanned depending on the
<vector-size> each value scanned according to the <conversion>, as follows:

¥ A <vector-size> of ÔvlÕ or ÔlvÕ consumes one argument and modiÞes the 
<int-conv> conversion; it should be of type vector signed int * or vector 
unsigned int * depending on the <int-conv> speciÞcation; four values are 
scanned. 

¥ A <vector-size> of ÔvhÕ or ÔhvÕ consumes one argument and modiÞes the 
<int-conv> conversion; it should be of type vector signed * or vector 
unsigned short * depending on the <int-conv> speciÞcation; 8 values are 
scanned. 

¥ A <vector-size> of ÔvÕ with <int-conv> or <char-conv> consumes one 
argument; it should be of type vector signed char * or vector unsigned 
char * depending on the <int-conv> or <char-conv> speciÞcation; 16 values are 
scanned. 

¥ A <vector-size> of ÔvÕ with <fp-conv> consumes one argument; it should be of 
type vector float *; four ßoating-point values are scanned. 

¥ All other combinations of <vector-size> and <conversion> are undeÞned.

For the ÔcÕ conversion the default separator character is null, and the separator sequence
does not include whitespace characters preceding the separator character. For other than the
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ÔcÕ conversions, the default separator character is a space, and the separator sequence does
include whitespace characters preceding the separator character.

If the input stream reaches end-of-Þle or there is a conßict between the control string and a
character read from the input stream, the input functions return EOF and do not assign to
their vector argument.

When a conßict occurs, the character causing the conßict remains unread and is processed
by the next input operation.

Examples:

sscanf(Òab defghijklm,opÓ, Ò%vcÓ, &s8);
sscanf(Òa,b, ,d,e,f,g,h,i,j,k,l,m,,,o,pÓ, Ò%,vcÓ, &s8);
sscanf(Ò1 2 3 4 5 6 7 8Ó, Ò%vhuÓ, &u16);
sscanf(Ò1, 2, 3,99Ó, Ò%,2lvdÓ, &s32);
sscanf(Ò1.10 ,2.20 ,3.30 ,4.40Ó ,Ò%,5vfÓ ,&f32);

This is equivalent to:

vector signed char s8 = vector signed char(ÔaÕ,ÕbÕ,Õ Ô,ÕdÕ,ÕeÕ,ÕfÕ,
   ÔgÕ,ÕhÕ,ÕiÕ,ÕjÕ,ÕkÕ,ÕlÕ,

  ÔmÕ,Õ,Õ,ÕoÕ,ÕpÕ);
vector unsigned short u16 = vector unsigned short(1,2,3,4,5,6,7,8);
vector signed int s32 = vector signed int(1, 2, 3, 99);
vector float f32 = vector float(1.1, 2.2, 3.3, 4.4);
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Chapter 4  
AltiVec Operations and Predicates
40
40

The following three subsections provide some background information that is helpful in
understanding the descriptions provided for each operation and predicate. This is followed
by a detailed listing of AltiVec operations followed by a separate section describing the
AltiVec predicates. The Þnal subsection contains compiler notes for handling predicates.

4.1  Vector Status and Control Register
The vector status and control register (VSCR) is a special 32-bit vector register shown in
Figure 4-1.

Figure 4-1. Vector Status and Control Register (VSCR)

The VSCR has two deÞned bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and the 
AltiVec saturation (SAT) bit (VSCR[31]); the remaining bits are reserved. The vec_mfvscr 
operation moves the VSCR to a vector register. When moved, the 32-bit VSCR is right-
justiÞed in the 128-bit vector register, and the upper 96 bits VRx[0Ð95] of the vector regis-
ter are cleared, so the VSCR in a vector register looks as shown in Figure 4-2.

Figure 4-2. VSCR Moved to a Vector Register

00 SAT00000000000000NJ00000000000000

31301615140

Reserved

SAT0NJ0

1271261121111100 96

 0 

95

Reserved
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VSCR bit settings are shown in Table 4-1.

After vec_mfvscr executes, the result in the target vector register is architecturally precise.
That is, it reßects all updates to the SAT bit that could have been made by vector
instructions logically preceding it in the program ßow, and further, it does not reßect any
SAT updates that may be made to it by vector instructions logically following it in the
program ßow. Reading the VSCR can be much slower than typical AltiVec instructions, and
therefore care must be taken in reading it to avoid performance problems.

The Þrst six 16-bit elements of the result are 0. The seventh element of the result contains
the high-order 16 bits of the VSCR (including NJ). The eighth element of the result contains
the low-order 16 bits of the VSCR (including SAT).

The setting of the Non-Java mode (NJ) bit (VSCR[15]) affects some vector ßoating-point
operations. The other special bit (VSCR[31]) is the AltiVec Saturation (SAT) bit that is set
when an operation generates a saturated result. Saturation is deÞned with respect to the type
of resulting element The result d of saturating a value x with respect to a type t means:

d = max (minimum(t), min(maximum(t), x))

where minimum(t) is the algebraically smallest value representable by a number of 
type t and maximum(t) is the algebraically largest value by a number of type t.

For each operation, where applicable, the effects of the NJ bit setting and/or the effects on
the SAT bit are described in the operation description.

Table 4-1. VSCR Field Descriptions 

Bits Name Description

0–14 — Reserved. Software is permitted to write any value to such a bit. A subsequent reading of the 
bit returns 0 if the value last written to the bit was 0 and returns an undefined value (0 or 1) 
otherwise.

15 NJ Non-Java. A mode control bit that determines whether AltiVec floating-point operations will be 
performed in a Java-IEEE-C9X–compliant mode or a possibly faster non-Java/non-IEEE 
mode.
0  The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as 

specified by Java, IEEE, and C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source vector 

register contains a denormalized value, the value 0 is used instead. If an instruction 
causes an underflow exception, the corresponding element in the target VR is cleared to 
0. In both cases the 0 has the same sign as the denormalized or underflowing value.

This mode is described in detail in the AltiVec Programming Environments Manual.

16–30 — Reserved. Software is permitted to write any value to such a bit. A subsequent reading of the 
bit returns 0 if the value last written to the bit was 0 and returns an undefined value (0 or 1) 
otherwise.

31 SAT Saturation. A sticky status bit indicating that some field in a saturating instruction saturated 
since the last time SAT was cleared. In other words, when SAT = 1 it remains set until it is 
cleared by an explicit instruction. 
0 Indicates no saturation occurred, an instruction can explicitly clear this bit.
1 The AltiVec saturate instruction implicitly sets the SAT field when saturation has occurred 

on the results one of the AltiVec instructions or vector operations having saturate in its 
name.
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4.2  Byte Ordering
The default mapping for AltiVec ISA is PowerPC big-endian. The endian support of the
PowerPC architecture does not address any data element larger than a double word; the
basic memory unit for vectors is a quad word. Big-endian byte ordering is shown in
Figure 4-3.

Figure 4-3. Big-Endian Byte Ordering for a Vector Register

As shown in Figure 4-3, the vector register elements are numbered using big-endian byte
ordering. For example, the high-order (or most signiÞcant) byte element is numbered 0 and
the low-order (or least signiÞcant) byte element is numbered 15.

When deÞning high-order and low-order for elements in a vector register, be careful not to
confuse its meaning based on the bit numbering. For example, in Figure 4-3 the high-order
half word for word 0 would be half word 0 (bits 0Ð7), and the low-order half word for word
0 would be half word 1 (bits 8Ð15).
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4.3  Notation and Conventions
Operation and predicate functionality is described in this section by a semiformal
pseudocode language. Table 4-2 lists the pseudocode notation and conventions used
throughout the section.

Table 4-2. Notation and Conventions 

Notation/Convention Meaning

¬ Assignment

+, +fp Add, single-precision floating-point add

-, -fp Subtract, single-precision floating-point subtract

*, *fp Multiply, single-precision floating-point multiply

/ Integer division with non-negative remainder

<, <fp Less than, single-precision floating-point less than

£, £fp Less than or equal, single-precision floating-point less than or equal

>, >fp Greater than, single-precision floating-point greater than

³, ³fp Greater than or equal, single-precision floating-point greater than or equal

!=, !=fp Not equal, floating-point not equal

=, =fp Equal, floating-point equal

+¥, -¥ Positive infinity, negative infinity

|| Concatenation of two bit strings (e.g., 010 || 111 is the same as 010111)

& AND bit-wise operator

 | OR bit-wise operator

Å Exclusive-OR bit-wise operator

¬ NOT logical operator (one’s complement)

0bnnnn A number expressed in binary format

0xnnnn A number expressed in hexadecimal format

a,b,c,d These symbols represent whole operands in an AltiVec operation or 
predicate. This is typically a vector, but in some operations it can represent 
a specific length literal value.

ai,bi,ci,di These symbols represent the ith component elements of a vector a, b, c, or 
d, respectively.

ABS(x) Absolute value of x

BorrowOut(x - y) Borrow out of the difference of x and y

BoundAlign(x,y) Align x to a y-byte boundary.

CarryOut(x + y) Carry out of the sum of x and y

Ceil(x) The smallest single-precision floating-point integer that is greater than or 
equal to x

do i=x to y Do loop.
• Do the following starting at x and iterating to y
• Indenting shows range. 
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

end Indicates the end of a do loop
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Floor(x) The largest single-precision floating-point integer that is less than or equal 
to x

FP2xEst(x) 3-bit-accurate floating-point estimate of 2**x

FPLog2Est(x) 3-bit-accurate floating-point estimate of log2(x)

FPRecipEst(x) 12-bit-accurate floating-point estimate of 1/x

if...then...else... Conditional execution, indenting shows range, else is optional.

ISNaN(x) Result is 1 if x is a not a number (NaN) and 0 is x is a number

ISNUM(x) Result is 1 if x is a number and 0 is x is not a number (NaN)

MAX(x,y) Returns the larger of x or y. For floating-point values, the following applies: 
• the maximum of +0.0 and –0.0 is +0.0
• the maximum of any value and a NaN is a QNaN

MEM(x,y) Value at memory location x of size y bytes

MIN(x,y) Returns the smaller of x or y. For floating-point values, the following applies: 
• the minimum of +0.0 and –0.0 is –0.0
• the minimum of any value and a NaN is a QNaN

mod(x,y) Remainder of x/y

NaN Not a Number, non-numeric

NEG(x) Result is -x

NGE(x,y) Result is 1 if x or y is a NaN or if x < y, and 0 otherwise

NGT(x,y) Result is 1 if x or y is a NaN or x £ y, and 0 oherwise

NLE(x,y) Result is 1 if x or y is a NaN or x > y, and 0 otherwise

NLT(x,y) Result is 1 if x or y is a NaN or x ³ y, and 0 otherwise

QNaN NaN that propagates through most arithmetic operations without signalling 
an exception

RecipSQRTEst(x) Result is a 12-bit accurate single-precision floating-point estimate of the 
reciprocal of the square root of x

RndToFPINear(x) The single-precision floating-point integer that is nearest in value to x (in 
case of a tie, the even single-precision floating-point value is used).

RndToFPITrunc(x) The largest single-precision floating-point integer that is less than or equal 
to x if x³0, or the smallest single-precision floating-point integer that is 
greater than or equal to x if x<0

RndToFPNearest(x) IEEE rounding to nearest floating-point number

ROTL(x,y) Result of rotating x left by y bits

S Represents a propagated sign bit in a figure

Saturate(x) y ¬ Saturate(x) means saturate x to the type of y

ShiftRight(x,y)
ShiftLeft(x,y)

Shift the contents of x right or left y bits, clearing vacated bits (logical shift). 
This operation is used for shift instructions.

ShiftRightA(x,y) Shift the contents of x right y bits, copying the sign bit to the vacated bits 
(algebraic shift)

SignExtend(x,y) Sign-extend x on the left with sign bits (that is, with copies of bit 0 of x) to 
produce y-bit value; represented in figures by a single S

SIToFP(x,y) Result of converting the signed integer x to a y-bit floating-point value using 
Round-to-Nearest mode

Table 4-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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Precedence rules for pseudocode operators are summarized in Table 4-3.

Operators higher in Table 4-3 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown.
For example, ÔÐÕ (unary minus) associates from left to right, so a Ð b Ð c = (a Ð b) Ð c.
Parentheses are used to override the evaluation order implied by Table 4-3, or to increase
clarity; parenthesized expressions are evaluated before serving as operands.

UIToUImod(x,y) Truncate an unsigned integer x to y-bit unsigned integer

Undefined An undefined value. The value may vary from one implementation to 
another, and from one execution to another on the same implementation.

xi The ith element of vector x where the size and type of the element are 
determined by the type of x

x{i} The ith byte of vector x

x[y:x] Bits i through j of vector x, where i can equal j if referring to a single bit
x0 A bit string of x zeros
x1 A bit string of x ones
xy A bit string of x copies of y, for example, 31 = 111

xn x raised to the nth power

Table 4-3. Precedence Rules 

Operators Associativity

x{i}, x[y], x[y:z] function evaluation Left to right
xy or replication, xy or exponentiation Right to left

unary –, ¬ Right to left

*, *fp, / Left to right

+, +fp, –, –fp Left to right

|| Left to right

=, =fp,!=,!=fp, <, <fp, £, £fp, >, >fp, ³, ³fp Left to right

&, Å Left to right

| Left to right

¬ None

Table 4-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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4.4  Generic and SpeciÞc AltiVec Operations
The AltiVec operations are organized alphabetically by generic operation name with a
deÞnition of the permitted generic and speciÞc AltiVec operations. The operations are listed
in alphabetical order by mnemonic. Figure 4-4 shows the format for each operation
description page.

Where possible, each description is supported by reference Þgures indicating data
modiÞcations and including a table that lists: 

¥ the valid set of argument types for that generic AltiVec operation,

¥ the result type for each set of argument types, and 

¥ the speciÞc AltiVec instruction(s) generated for that set of arguments. 

Any operation not explicitly permitted in this section is prohibited. 

Figure 4-4. Operation Description Format

Operation mnemonic

Operation name

Pseudocode description of operation

Text description of operation

Figure showing operation usage and mapping
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vec_cmpge vec_cmpge
Vector Compare Greater Than or Equal

d = vec_cmpge(a,b)

do i=0 to 3
if ai ³fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all 1s if the corresponding element of a is greater than or equal 
to the corresponding element of b. Otherwise, it returns all 0s.

If VSCR[NJ] = 1, every denormalized floating point operand element is truncated to 0 
before the comparison is made.

The valid argument types and the corresponding result type for d = vec_cmpge(a,b) are 
shown in Figure4-31.

Figure 4-31. Compare Greater-Than-or-Equal of Four Float ing-Point  Elements 
(32-Bit)

³³³³

a

b

d

0Element-> 2 31

d a b maps to

vector bool int vector float vector float vcmpgefp d,a,b
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vec_abs vec_abs
Vector Absolute Value

d = vec_abs(a)

n ¬ number of elements
do i=0 to n-1
di ¬ ABS(ai)
end

Each element of the result is the absolute value of the corresponding element of a. The
arithmetic is modular for integer types.

For vector float argument types, the operation is independent of VSCR[NJ].

Programming note: Unlike other operations, vec_abs maps to multiple instructions. 
The programmer should consider alternatives. For example, to compute the 
absolute difference of two vectors a and b, the expression vec_abs(vec_sub(a,b))
expands to four instructions. A simpler method uses the expression
vec_sub(vec_max(a,b), vec_min(a,b)) that expands to three instructions.

The valid combinations of argument types and the corresponding result types for 
d = vec_abs(a) are shown in Figure 4-5, Figure 4-6, Figure 4-7, and Figure 4-8. It is
necessary to use the generic name since there is no speciÞc operation for vec_abs.

Figure 4-5. Absolute Value of Sixteen Integer Elements (8-bit)

ABS ABSABSABSABSABSABSABSABSABSABSABSABSABSABSABS

a

d

0Element® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d a maps to

vector signed char vector signed char
vspltisb z,0

vsububm t,z,a
vmaxsb d,a,t
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Figure 4-6. Absolute Value of Eight Integer Elements (16-bit)

Figure 4-7. Absolute Value of Four Integer Elements (32-bit)

Figure 4-8. Absolute Value of Four Floating-Point Elements (32-bit)
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d a maps to

vector signed short vector signed short
vspltisb z,0

vsubuhm t,z,a
vmaxsh d,a,t
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a

d

0Element® 2 31

d a maps to

vector signed int vector signed int
vsplisb z,0

vsubuwm t,z,a
vmaxsw d,a,t

ABSABSABSABS

a

d

0Element® 2 31

d a maps to

vector float vector float
vspltisw m,-1
vslw t,m,m
vandc d,a,t
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vec_abss vec_abss
Vector Absolute Value Saturated

d = vec_abss(a)

n ¬ number of elements
do i=0 to n-1
di ¬ Saturate(ABS(ai))
end

Each element of the result is the absolute value of the corresponding element of a. The
arithmetic is saturated for integer types. If saturation occurs, VSCR[SAT] is set (see
Table 4-1).

Programming note: Unlike other operations, vec_abss maps to multiple instructions.
The programmer should consider alternatives. For example, to compute the absolute
difference of two vectors a and b, the expression vec_abss(vec_subs(a,b)) 
expands to four instructions. A simpler method uses the expression
vec_subs(vec_max(a,b),vec_min(a,b)) that expands to three instructions.

The valid combinations of argument types and the corresponding result types for 
d = vec_abss(a) are shown in Figure 4-9, Figure 4-10, and Figure 4-11. It is necessary
to use the generic name since there is no speciÞc operation for vec_abss.

Figure 4-9. Saturated Absolute Value of Sixteen Integer Elements (8-bit)

ABS ABSABSABSABSABSABSABSABSABSABSABSABSABSABSABS
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d a maps to

vector signed char vector signed char
vspltisb z,0

vsubsbs t,z,a
vmaxsb d,a,t
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Figure 4-10. Saturated Absolute Value of Eight Integer Elements (16-bit)

Figure 4-11. Saturated Absolute Value of Four Integer Elements (32-bit)
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vector signed short vector signed short
vspltisb z,0

vsubshs t,z,a
vmaxsh d,a,t
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MOTOROLA Chapter 4. AltiVec Operations and Predicates 4-11



Generic and Specific AltiVec Operations  
vec_add vec_add
Vector Add

d = vec_add(a,b)
¥ Integer add:

n ¬ number of elements
do i=0 to n-1
di ¬ ai + bi
end

¥ Floating-point add:

do i=0 to 3
di ¬ ai +fp bi
end

Each element of a is added to the corresponding element of b. Each sum is placed in the
corresponding element of d. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized operand element
is truncated to a 0 of the same sign before the operation is carried out, and each
denormalized result element is truncated to a 0 of the same sign.

The valid combinations of argument types and the corresponding result types for 
d = vec_add(a,b) are shown in Figure 4-12, Figure 4-13, Figure 4-14, and Figure 4-15.

Figure 4-12. Add Sixteen Integer Elements (8-bit)

+ +++++++++++++++
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b

d
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d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vaddubm d,a,b

vector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vector signed char vector bool char

vector bool char vector signed char
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Figure 4-13. Add Eight Integer Elements (16-bit)

Figure 4-14. Add Four Integer Elements (32-bit)
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Figure 4-15. Add Four Floating-Point Elements (32-bit)
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vec_addc vec_addc
Vector Add Carryout Unsigned Word

d = vec_addc(a,b)

do i=0 to 3
di = CarryOut(ai + bi)
end

Each element of a is added to the corresponding element in b. The carry from each sum is
zero-extended and placed into the corresponding element of d. CarryOut (a + b) is 1 if there
is a carry, and otherwise 0. The valid argument types and the corresponding result type for
d = vec_addc(a,b) are shown in Figure 4-16.

Figure 4-16. Carryout of Four Unsigned Integer Adds (32-bit)
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vec_adds vec_adds
Vector Add Saturated

d = vec_adds(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ Saturate(ai + bi)
end

Each element of a is added to the corresponding element of b. If saturation occurs,
VSCR[SAT] is set (see Table 4-1). The signed-integer result is placed into the
corresponding element of d. The valid combinations of argument types and the
corresponding result types for d = vec_adds(a,b) are shown in Figure 4-17, Figure 4-18,
and Figure 4-19.

Figure 4-17. Add Saturating Sixteen Integer Elements (8-bit)
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Figure 4-18. Add Saturating Eight Integer Elements (16-bit)

Figure 4-19. Add Saturating Four Integer Elements (32-bit)
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vec_and vec_and
Vector Logical AND

d = vec_and(a,b)

d ¬ a & b

Each bit of the result is the logical AND of the corresponding bits of a and b. The valid
combinations of argument types and the corresponding result types for 
d = vec_and(a,b) are shown in Figure 4-20.

Figure 4-20. Logical Bit-Wise AND
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Generic and Specific AltiVec Operations
vec_andc vec_andc
Vector Logical AND with Complement

d = vec_andc(a,b)

d ¬ a & Øb

Each bit of the result is the logical AND of the corresponding bit of a and the one's
complement of the corresponding bit of b. the valid combinations of argument types and
the corresponding result types for d = vec_andc(a,b) are shown in Figure 4-21.

Figure 4-21. Logical Bit-Wise AND with Complement
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Figure 4-21. Logical Bit-Wise AND with Complement
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vec_avg vec_avg
Vector Average

d = vec_avg(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ (ai + bi + 1) / 2
end

Each element of the result is a rounded average of the corresponding elements of a and b.
Intermediate calculations are not limited by the element size. The value 1 is added to the
sum of elements in a and b to ensure the result is rounded up. The valid combinations of
argument types and the corresponding result types for d = vec_avg(a,b) are shown in
Figure 4-22, Figure 4-23, and Figure 4-24.

Figure 4-22. Average Sixteen Integer Elements (8-bit)
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Figure 4-23. Average Eight Integer Elements (16-bit)

Figure 4-24. Average Four Integer Elements (32-bit)
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vec_ceil vec_ceil
Vector Ceiling

d = vec_ceil(a)

do i=0 to 3
di ¬ Ceil(ai)
end

Each single-precision ßoating-point element in a is rounded to a single-precision ßoating-
point integer using the rounding mode Round toward +InÞnity, and placed into the
corresponding word element of d. If an element ai is inÞnite, the corresponding element di
equals ai. If an element ai is Þnite, the corresponding element di is the smallest represented
ßoating-point value ³ ai. For example, if the ßoating-point element was 123.45, the
resulting integer would be 124. 

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
operation.

The valid argument types and the corresponding result type for d = vec_ceil(a,b) are
shown in Figure 4-25.

Figure 4-25. Round to Plus Infinity of Four Floating-Point Integer Elements (32-Bit)
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vec_cmpb vec_cmpb
Vector Compare Bounds Floating-Point

d = vec_cmpb(a,b)

do i=0 to 3
di ¬ 0
if ai £fp bi

then di[0] ¬ 0
else di[0] ¬ 1

if ai ³fp -bi
then di[1] ¬ 0
else di[1] ¬ 1

end

Each element in a is compared to the corresponding element in b. The 2-bit result indicates
whether the element in a is within the bounds speciÞed by the element in b. Bit 0 of each
result is 0 if the element in a is less than or equal to the element in b (i.e., in bounds high),
and is 1 otherwise (i.e., out of bounds high). Bit 1 of the 2-bit value is 0 if the element in a
is greater than or equal to the negative of the element in b (i.e., in bounds low), and is 1
otherwise (i.e., out of bounds low). The 2-bit result is placed into the high-order two bits
(bit 0 and 1) of the corresponding element in d (which correspond to bits 0Ð1, 32Ð33,
64Ð65, and 96Ð97 of d, respectively) and the remaining bits are cleared. If any single-
precision ßoating-point word element in b is negative; the corresponding element in a is out
of bounds. If an element in a or b element is a NaN, the two high-order bits of the
corresponding result are both 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison.

The valid argument types and the corresponding result type for d = vec_cmpb(a,b) are
shown in Figure 4-26.

Figure 4-26. Compare Bounds of Four Floating-Point Elements (32-Bit)
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vec_cmpeq vec_cmpeq
Vector Compare Equal

d = vec_cmpeq(a,b)
¥ Integer compare equal:

n ¬ number of elements
m ¬ number of bits in an element (128/n)
do i=0 to n-1
if ai = bi

then di ¬ m1

else di ¬ m0
end

¥ Floating-point compare equal:

do i=0 to 3
if ai =fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all ones if the corresponding element of a is equal to the
corresponding element of b. Otherwise, it returns all zeros.

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result types for 
d = vec_cmpeq(a,b) are shown in Figure 4-27, Figure 4-28, Figure 4-29, and
Figure 4-30.

Figure 4-27. Compare Equal of Sixteen Integer Elements (8-bits)
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Figure 4-28. Compare Equal of Eight Integer Elements (16-Bit)

Figure 4-29. Compare Equal of Four Integer Elements (32-Bit)

Figure 4-30. Compare Equal of Four Floating-Point Elements (32-Bit)
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vec_cmpge vec_cmpge
Vector Compare Greater Than or Equal

d = vec_cmpge(a,b)

do i=0 to 3
if ai ³fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all ones if the corresponding element of a is greater than or
equal to the corresponding element of b. Otherwise, it returns all zeros.

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_cmpge(a,b) are shown in 
Figure 4-31.

Figure 4-31. Compare Greater-Than-or-Equal of Four Floating-Point Elements 
(32-Bit)
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vec_cmpgt vec_cmpgt
Vector Compare Greater Than

d = vec_cmpgt(a,b)
¥ Integer compare greater than:

n ¬ number of elements
m ¬ number of bits in an element (128/n)
do i=0 to n-1
if ai > bi

then di ¬ m1

else di ¬ m0
end

¥ Floating-point compare greater than:

do i=0 to 3
if ai >fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all ones if the corresponding element of a is greater than the
corresponding element of b. Otherwise, it returns all zeros. 

For vector float types, if VSCR[NJ] = 1, every denormalized ßoating-point operand
element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result types for 
d = vec_cmpgt(a,b) are shown in Figure 4-32, Figure 4-33, Figure 4-34, and
Figure 4-35.

Figure 4-32. Compare Greater-Than of Sixteen Integer Elements (8-bits)
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Figure 4-33. Compare Greater-Than of Eight Integer Elements (16-Bit)

Figure 4-34. Compare Greater-Than of Four Integer Elements (32-Bit)

Figure 4-35. Compare Greater-Than of Four Floating-Point Elements (32-Bit)
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vec_cmple vec_cmple
Vector Compare Less Than or Equal

d = vec_cmple(a,b)

do i=0 to 3
if ai £fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all ones if the corresponding element of a is less than or equal
to the corresponding element of b. Otherwise, it returns all zeros.

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_cmple(a,b) are shown in 
Figure 4-36. It is necessary to use the generic name, since the specific operation vec_vcmpgefp does not 
reverse its operands.

Figure 4-36. Compare Less-Than-or-Equal of Four Floating-Point Elements 
(32-Bit)
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vec_cmplt vec_cmplt
Vector Compare Less Than

d = vec_cmplt(a,b)
¥ Integer compare less than:

n ¬ number of elements
m ¬ number of bits in an element (128/n)
do i=0 to n-1
if ai < bi

then di ¬ m1

else di ¬ m0
end

¥ Floating-point compare less than:

do i=0 to 3
if ai <fp bi

then di ¬ 321

else di ¬ 320
end

Each element of the result is all ones if the corresponding element of a is less than the
corresponding element of b. Otherwise, it returns all zeros. 

For vector float types, if VSCR[NJ] = 1, every denormalized ßoating-point operand
element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result types for 
d = vec_cmplt(a,b) are shown in Figure 4-37, Figure 4-38, Figure 4-39, and
Figure 4-40. It is necessary to use the generic name, since the speciÞc operations do not
reverse their operands.

Figure 4-37. Compare Less-Than of Sixteen Integer Elements (8-bits)
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Figure 4-38. Compare Less-Than of Eight Integer Elements (16-Bit)

Figure 4-39. Compare Less-Than of Four Integer Elements (32-Bit)

Figure 4-40. Compare Less-Than of Four Floating-Point Elements (32-Bit)
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vec_ctf vec_ctf
Vector Convert from Fixed-Point Word

d = vec_ctf(a,b)

do i=0 to 3
di ¬ SIToFP(ai) * 2-b
end

Each element of the result is the closest ßoating-point representation of the number
obtained by dividing the corresponding element of a by 2 to the power of b. 

The operation is independent of VSCR[NJ].

The valid argument types and the corresponding result type for d = vec_ctf(a,b) are
shown in Figure 4-41.

Figure 4-41. Convert Four Integer Elements to Four Floating-Point Elements 
(32-Bit)
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vec_cts vec_cts
Vector Convert to Signed Fixed-Point Word Saturated

d = vec_cts(a,b)

do i=0 to 3
di¬ Saturate(ai * 2

b)
end

Each element of the result is the saturated signed value obtained after truncating the product
of the corresponding element of a and 2 to the power of b. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the operation.

If saturation occurs, VSCR[SAT] is set (see Table 4-1). 

The valid argument types and the corresponding result type for d = vec_cts(a,b) are
shown in Figure 4-42.

Figure 4-42. Convert Four Floating-Point Elements to Four Saturated Signed 
Integer Elements (32-Bit)
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vec_ctu vec_ctu
Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_ctu(a,b)

do i=0 to 3
di ¬ Saturate (ai * 2

b)
end

Each element of the result is the saturated unsigned value obtained after truncating the
number obtained by multiplying the corresponding element of a by 2 to the power of b. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the operation.

If saturation occurs, VSCR[SAT] is set (see Table 4-1). 

The valid argument types and the corresponding result type for d = vec_ctu(a,b) are
shown in Figure 4-43.

Figure 4-43. Convert Four Floating-Point Elements to Four Saturated Unsigned 
Integer Elements (32-Bit)
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vec_dss vec_dss
Vector Data Stream Stop

vec_dss(a)

DataStreamPrefetchControl ¬ ÒstopÓ || a

Each operation stops cache touches for the data stream associated with tag a. The result is
void. The valid argument type for vec_dss(a) is shown in Table 4-4. The result type is
void.

Table 4-4. vec_dssÑVector Data Stream Stop Argument Types

a maps to

2-bit unsigned literal dss a
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vec_dssall vec_dssall
Vector Stream Stop All

vec_dssall()

DataStreamPrefetchControl ¬ ÒstopÓ

The operation stops cache touches for all data streams. All argument and result types for
vec_dssall() are void. vec_dssall maps to the dssall instruction.
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vec_dst vec_dst
Vector Data Stream Touch

vec_dst(a,b,c)

addr[0:63] ¬ a
DataStreamPrefetchControl ¬ ÒstartÓ || c || 0 || b || addr

Each operation initiates cache touches for loads for the data stream associated with tag c at
the address a using the data block in b. The result type is void. 

The a type may also be a pointer to a const-qualiÞed type. Plain char * is excluded in the
mapping for a.

The b type is encoded for 32-bit as follows:

¥ Block size: b[3:7] if b[3:7] != 0; otherwise 32

¥ Block count: b[8:15] if b[8:15] != 0; otherwise 256

¥ Block stride: b[16:31] if b[16:31] != 0; otherwise 32768

The b type is encoded for 64-bit as follows:

¥ Block size: b[35:39] if b[35:39] != 0; otherwise 32

¥ Block count: b[40:47] if b[40:47] != 0; otherwise 256
¥ Block stride: b[48:63] if b[48:63] != 0; otherwise 32768

The c type is a 2-bit unsigned literal tag used to identify a speciÞc data stream. Up to four
streams can be set up with this mechanism.

The valid combinations of argument types for vec_dst(a,b,c) are shown in Table 4-5.
The result type is void.

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 4-44. Format of b Type (32-bit)

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63

Figure 4-45. Format of b Type (64-bit)
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Table 4-5. vec_dstÑVector Data Stream Touch Argument Types

a b c maps to

vector unsigned char * any integral type 2-bit unsigned literal

dst a,b,c

vector signed char * any integral type 2-bit unsigned literal

vector bool char * any integral type 2-bit unsigned literal

vector unsigned short * any integral type 2-bit unsigned literal

vector signed short * any integral type 2-bit unsigned literal

vector bool short * any integral type 2-bit unsigned literal

vector pixel * any integral type 2-bit unsigned literal

vector unsigned int * any integral type 2-bit unsigned literal

vector signed int * any integral type 2-bit unsigned literal

vector bool int * any integral type 2-bit unsigned literal

vector float * any integral type 2-bit unsigned literal

unsigned char * any integral type 2-bit unsigned literal

signed char * any integral type 2-bit unsigned literal

unsigned short * any integral type 2-bit unsigned literal

short * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

int * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

float * any integral type 2-bit unsigned literal
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Generic and Specific AltiVec Operations  
vec_dstst vec_dstst
Vector Data Stream Touch for Store

vec_dstst(a,b,c)

addr[0:63] ¬ a
DataStreamPrefetchControl ¬ ÒstartÓ || 0 || static || b || addr

Each operation initiates cache touches for stores for the data stream associated with tag c
at the address a using the data block in b. The result type is void.

The a type may also be a pointer to a const-qualiÞed type. Plain char * is excluded in the
mapping for a.

The b type is encoded for 32-bit as follows:

¥ Block size: b[3:7] if b[3:7] != 0; otherwise 32

¥ Block count: b[8:15] if b[8:15] != 0; otherwise 256

¥ Block stride: b[16:31] if b[16:31] != 0; otherwise 32768

The b type is encoded for 64-bit as follows:

¥ Block size: b[35:39] if b[35:39] != 0; otherwise 32

¥ Block count: b[40:47] if b[40:47] != 0; otherwise 256

¥ Block stride: b[48:63] if b[48:63] != 0; otherwise 32768

The c type is a 2-bit unsigned literal tag used to identify a speciÞc data stream. Up to four
streams can be set up with this mechanism.

The valid combinations of argument types for vec_dstst(a,b,c) are shown in Table 4-6.
The result type is void.

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 4-46. Format of b Type (32-bit)

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63

Figure 4-47. Format of b Type (64-bit)
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Generic and Specific AltiVec Operations
Table 4-6. vec_dststÑVector Data Stream for Touch Store Argument Types

a b c maps to

vector unsigned char * any integral type 2-bit unsigned literal

dstst a,b,c

vector signed char * any integral type 2-bit unsigned literal

vector bool char * any integral type 2-bit unsigned literal

vector unsigned short * any integral type 2-bit unsigned literal

vector signed short * any integral type 2-bit unsigned literal

vector bool short * any integral type 2-bit unsigned literal

vector pixel * any integral type 2-bit unsigned literal

vector unsigned int * any integral type 2-bit unsigned literal

vector signed int * any integral type 2-bit unsigned literal

vector bool int * any integral type 2-bit unsigned literal

vector float * any integral type 2-bit unsigned literal

unsigned char * any integral type 2-bit unsigned literal

signed char * any integral type 2-bit unsigned literal

unsigned short * any integral type 2-bit unsigned literal

short * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

int * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

float * any integral type 2-bit unsigned literal
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Generic and Specific AltiVec Operations  
vec_dststt vec_dststt
Vector Data Stream Touch for Store Transient

vec_dststt(a,b,c)

addr[0:63] ¬ a
DataStreamPrefetchControl ¬ ÒstartÓ || 1 || static || b || addr

Each operation initiates cache touches for transient stores for the data stream associated
with tag c at the address a using the data block in b. The result type is void.

The a type may also be a pointer to a const-qualiÞed type. Plain char * is excluded in the
mapping for a.

The b type is encoded for 32-bit as follows:

¥ Block size: b[3:7] if b[3:7] != 0; otherwise 32
¥ Block count: b[8:15] if b[8:15] != 0; otherwise 256
¥ Block stride: b[16:31] if b[16:31] != 0; otherwise 32768

The b type is encoded for 64-bit as follows:

¥ Block size: b[35:39] if b[35:39] != 0; otherwise 32
¥ Block count: b[40:47] if b[40:47] != 0; otherwise 256
¥ Block stride: b[48:63] if b[48:63] != 0; otherwise 32768

The c type is a 2-bit unsigned literal tag used to identify a speciÞc data stream. Up to four
streams can be set up with this mechanism.

The valid combinations of argument types for vec_dststt(a,b,c) are shown in
Table 4-7. The result type is void.

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 4-48. Format of b Type (32-bit)

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63

Figure 4-49. Format of b Type (64-bit)
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Generic and Specific AltiVec Operations
Table 4-7. vec_dststtÑVector Data Stream Touch for Store Transient Argument 
Types

a b c maps to

vector unsigned char * any integral type 2-bit unsigned literal

dststt a,b,c

vector signed char * any integral type 2-bit unsigned literal

vector bool char * any integral type 2-bit unsigned literal

vector unsigned short * any integral type 2-bit unsigned literal

vector signed short * any integral type 2-bit unsigned literal

vector bool short * any integral type 2-bit unsigned literal

vector pixel * any integral type 2-bit unsigned literal

vector unsigned int * any integral type 2-bit unsigned literal

vector signed int * any integral type 2-bit unsigned literal

vector bool int * any integral type 2-bit unsigned literal

vector float * any integral type 2-bit unsigned literal

unsigned char * any integral type 2-bit unsigned literal

signed char * any integral type 2-bit unsigned literal

unsigned short * any integral type 2-bit unsigned literal

short * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

int * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

float * any integral type 2-bit unsigned literal
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Generic and Specific AltiVec Operations  
vec_dstt vec_dstt
Vector Data Stream Touch Transient

vec_dstt(a,b,c)

addr[0:63] ¬ a
DataStreamPrefetchControl ¬ ÒstartÓ || c || 1 || b || addr

Each operation initiates cache touches for transient loads for the data stream associated
with tag c at the address a using the data block in b. The result type is void.

The a type may also be a pointer to a const-qualiÞed type. Plain char * is excluded in the
mapping for a.

The b type is encoded for 32-bit as follows:

¥ Block size: b[3:7] if b[3:7] != 0; otherwise 32
¥ Block count: b[8:15] if b[8:15] != 0; otherwise 256
¥ Block stride: b[16:31] if b[16:31] != 0; otherwise 32768

The b type is encoded for 64-bit as follows:

¥ Block size: b[35:39] if b[35:39] != 0; otherwise 32
¥ Block count: b[40:47] if b[40:47] != 0; otherwise 256
¥ Block stride: b[48:63] if b[48:63] != 0; otherwise 32768

The c type is a 2-bit unsigned literal tag used to identify a speciÞc data stream. Up to four
streams can be set up with this mechanism.

The valid combinations of argument types for vec_dstt(a,b,c) are shown in Table 4-8.
The result type is void.

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 4-50. Format of b Type (32-bit)

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63

Figure 4-51. Format of b Type (64-bit)
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Generic and Specific AltiVec Operations
Table 4-8. vec_dsttÑVector Data Stream Touch Transient Argument Types

a b c maps to

vector unsigned char * any integral type 2-bit unsigned literal

dst a,b,c

vector signed char * any integral type 2-bit unsigned literal

vector bool char * any integral type 2-bit unsigned literal

vector unsigned short * any integral type 2-bit unsigned literal

vector signed short * any integral type 2-bit unsigned literal

vector bool short * any integral type 2-bit unsigned literal

vector pixel * any integral type 2-bit unsigned literal

vector unsigned int * any integral type 2-bit unsigned literal

vector signed int * any integral type 2-bit unsigned literal

vector bool int * any integral type 2-bit unsigned literal

vector float * any integral type 2-bit unsigned literal

unsigned char * any integral type 2-bit unsigned literal

signed char * any integral type 2-bit unsigned literal

unsigned short * any integral type 2-bit unsigned literal

short * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

int * any integral type 2-bit unsigned literal

unsigned int * any integral type 2-bit unsigned literal

float * any integral type 2-bit unsigned literal
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Generic and Specific AltiVec Operations  
vec_expte vec_expte
Vector Is 2 Raised to the Exponent Estimate Floating-Point

d = vec_expte(a)

do i=0 to 3

di ¬ FP2xEst(ai)
end

Each element of the result is an estimate of 2 raised to the corresponding element of a. 

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element is truncated to a
0 of the same sign.

The valid argument type and corresponding result type for d = vec_expte(a) are shown
in Figure 4-52.

Figure 4-52. 2 Raised to the Exponent Estimate Floating-Point for Four Floating-
Point Elements (32-Bit)

FP2xEstFP2xEstFP2xEstFP2xEst

a

d

0Element® 2 31

d a maps to

vector float vector float vexptefp d,a
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Generic and Specific AltiVec Operations
vec_floor vec_floor
Vector Floor

d = vec_ßoor(a)

do i=0 to 3
di ¬ Floor(ai)
end

Each single-precision ßoating-point word element in a is rounded to a single-precision
ßoating-point integer using the rounding mode Round towards ÐInÞnity, and placed into the
corresponding word element of d. Each element of the result is thus the largest
representable ßoating-point integer not greater than a. For example, if the ßoating-point
element was 123.85, the resulting integer would be 123. 

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before rounding.

The valid argument type and corresponding result type for d = vec_floor(a) are shown
in Figure 4-53.

Figure 4-53. Round to Minus Infinity of Four Floating-Point Integer Elements 
(32-Bit)

FloorFloorFloorFloor

a

d

0Element® 2 31

d a maps to

vector float vector float vrfim d,a
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Generic and Specific AltiVec Operations  
vec_ld vec_ld
Vector Load Indexed

d = vec_ld(a,b)

EA ¬ BoundAlign(a+b,16)
d ¬ MEM(EA,16)

Each operation performs a 16-byte load at a 16-byte aligned address. The a is taken to be
an integer value, while b is a pointer. BoundAlign(a+b,16) is the largest value less than or
equal to a + b that is a multiple of 16. This load is the one that is generated for a loading
dereference of a pointer to a vector type. The b type may also be a pointer to a const-
qualiÞed type. Plain char * is excluded in the mapping for b. The valid combinations of
argument types and the corresponding result types for d = vec_ld(a,b) are shown in
Table 4-9.

Figure 4-54. Vector Load Indexed Operation

+

Memory Interface
MEM(EA,16)

ba

BoundAlign(a+b,16) 

Effective Address (EA)

d
Load
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Generic and Specific AltiVec Operations
Table 4-9. vec_ldÑLoad Vector Indexed Argument Types

d a b maps to

vector unsigned char
any integral type vector unsigned char *

lvx d,a,b

any integral type unsigned char *

vector signed char
any integral type vector signed char *

any integral type signed char *

vector bool char any integral type vector bool char *

vector unsigned short
any integral type vector unsigned short *

any integral type unsigned short *

vector signed short
any integral type vector signed short *

any integral type short *

vector bool short any integral type vector bool short *

vector pixel any integral type vector pixel *

vector unsigned int

any integral type vector unsigned int *

any integral type unsigned int*

any integral type unsigned int *

vector signed int

any integral type vector signed int *

any integral type int *

any integral type int *

vector bool int any integral type vector bool int *

vector float
any integral type vector float *

any integral type float *
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Generic and Specific AltiVec Operations  
vec_lde vec_lde
Vector Load Element Indexed 

d = vec_lde(a,b)

s ¬ 16/(number of elements)
EA ¬ BoundAlign(a+b,s)
i ¬ mod(EA,16)/s
di ¬ MEM(EA,s)

Each operation loads a single element into the position in the vector register corresponding
to its address, leaving the remaining elements of the register undeÞned. The a is taken to be
an integer value, while b is a pointer. BoundAlign(a+b,s) is the largest value less than or
equal to a + b that is a multiple of s, where s is 1 for char pointers, 2 for short pointers,
and 4 for int or float pointers. The b type may also be a pointer to a const-qualiÞed type.
Plain char * is excluded in the mapping for b. The valid combinations of argument types
and the corresponding result types for d = vec_lde(a,b) are shown in Table 4-10.

 

Figure 4-55. Vector Load Element Indexed Operation

Table 4-10. vec_lde(a,b)ÑVector Load Element Indexed Argument Types 

d a b Maps to

vector unsigned char any integral type unsigned char *
lvebx d,a,b

vector signed char any integral type signed char *

vector unsigned short any integral type unsigned short *
lvehx d,a,b

vector signed short any integral type short *

vector unsigned int
any integral type unsigned int *

lvewx d,a,b
any integral type unsigned int *

vector signed int any integral type int *

vector float any integral type float *

+

Memory Interface
MEM(EA,s)

ba

BoundAlign(a+b,s) 

Effective Address (EA)

d
Load

Example shows byte element load

UndefinedUndefined di
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Generic and Specific AltiVec Operations
vec_ldl vec_ldl
Vector Load Indexed LRU

d = vec_ldl(a,b)

EA ¬ BoundAlign(a+b,16)
d ¬ MEM(EA,16)

Each operation performs a 16-byte load at a 16-byte aligned address. The a is taken to be
an integer value, while b is a pointer. BoundAlign(a+b,16) is the largest value less than or
equal to a + b that is a multiple of 16. These operations mark the cache line as least-recently-
used. The b type may also be a pointer to a const-qualiÞed type. Plain char * is excluded
in the mapping for b. The valid combinations of argument types and the corresponding
result types for d = vec_ldl(a,b) are shown in Table 4-11.

Figure 4-56. Vector Load Indexed LRU Operation

+

Memory Interface
MEM(EA,16)

ba

BoundAlign(a+b,16) 

Effective Address (EA)

d
Load
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Generic and Specific AltiVec Operations  
Table 4-11. vec_ldlÑVector Load Indexed LRU Argument Types 

d a b Maps to

vector unsigned char
any integral type vector unsigned char *

lvxl d,a,b

any integral type unsigned char *

vector signed char
any integral type vector signed char *

any integral type signed char *

vector bool char any integral type vector bool char *

vector unsigned short
any integral type vector unsigned short *

any integral type unsigned short *

vector signed short
any integral type vector signed short *

any integral type short *

vector bool short any integral type vector bool short *

vector pixel any integral type vector pixel *

vector unsigned int
any integral type vector unsigned int *

any integral type unsigned int *

vector signed int
any integral type vector signed int *

any integral type int *

vector bool int any integral type vector bool int *

vector float
any integral type vector float *

any integral type float *
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Generic and Specific AltiVec Operations
vec_loge vec_loge
Vector Log2 Estimate Floating-Point

d = vec_loge(a)

do i=0 to 3
di ¬ FPLog2Est(ai)
end

Each element of the result is an estimate of the logarithm to base 2 of the corresponding
element of a. 

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out.

The valid argument type and corresponding result type for d = vec_loge(a) are shown in
Figure 4-57

Figure 4-57. Log2 Estimate Floating-Point for Four Floating-Point Elements (32-Bit)

0Element® 2 31

FPLog2EstFPLog2EstFPLog2EstFPLog2Est

a

d

d a maps to

vector float vector float vlogefp d,a
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Generic and Specific AltiVec Operations  
vec_lvsl vec_lvsl
Vector Load for Shift Left

d = vec_lvsl(a,b)

EA ¬ a + b
sh ¬ EA[28:31]
if sh = 0x0 then d ¬ 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then d ¬ 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then d ¬ 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then d ¬ 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then d ¬ 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then d ¬ 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then d ¬ 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then d ¬ 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then d ¬ 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then d ¬ 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then d ¬ 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then d ¬ 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then d ¬ 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then d ¬ 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then d ¬ 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then d ¬ 0x0F101112131415161718191A1B1C1D1E

Each operation generates a permutation useful for aligning data from an unaligned address.
The b type may also be a pointer to a const- or volatile-qualiÞed type. 
Plain char * is excluded in the mapping for b. The valid combination of argument types
and the corresponding result type for d = vec_lvsl(a,b) are shown in Table 4-12.

Table 4-12. vec_lvslÑLoad Vector for Shift Left Argument Types

d a b maps to

vector unsigned char

any integral type unsigned char *

lvsl d,a,b

any integral type signed char *

any integral type unsigned short *

any integral type short *

any integral type unsigned int *

any integral type int *

any integral type float *
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Generic and Specific AltiVec Operations
vec_lvsr vec_lvsr
Vector Load Shift Right

d = vec_lvsr(a,b)

EA ¬ a + b
sh ¬ EA[28:31]
if sh=0x0 then d ¬ 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then d ¬ 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then d ¬ 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then d ¬ 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then d ¬ 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then d ¬ 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then d ¬ 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then d ¬ 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then d ¬ 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then d ¬ 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then d ¬ 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then d ¬ 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then d ¬ 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then d ¬ 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then d ¬ 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then d ¬ 0x0102030405060708090A0B0C0D0E0F10

Each operation generates a permutation useful for aligning data from an unaligned address.
The b type may also be a pointer to a const- or volatile-qualiÞed type. Plain char * is
excluded in the mapping for b. The valid combinations of argument types and the
corresponding result type for d = vec_lvsr(a,b) are shown in Table 4-13.

Table 4-13. vec_lvsrÑVector Load for Shift Right Argument Types 

d a b Maps to

vector unsigned char

any integral type unsigned char *

lvsr d,a,b

any integral type signed char *

any integral type unsigned short *

any integral type short *

any integral type unsigned int *

any integral type int *

any integral type float *
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Generic and Specific AltiVec Operations  
vec_madd vec_madd
Vector Multiply Add

d = vec_madd(a,b,c)

do i=0 to 3
di ¬ RndToFPNearest(ai * bi + ci)
end

Each element of the result is the sum of the corresponding element of c and the product of
the corresponding elements of a and b. 

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

The valid argument types and the corresponding result type for d = vec_madd(a,b,c) are
shown in Figure 4-58

Figure 4-58. Multiply-Add Four Floating-Point Elements (32-Bit)
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d a b c maps to

vector float vector float vector float vector float vmaddfp d,a,b,c
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Generic and Specific AltiVec Operations
vec_madds vec_madds
Vector Multiply Add Saturated

d = vec_madds(a,b,c)

do i=0 to 7
di ¬ Saturate((ai * bi)/2

15 + ci)
end

Each element of the result is the 16-bit saturated sum of the corresponding element of c and
the high-order 17 bits of the product of the corresponding elements of a and b. If saturation
occurs, VSCR[SAT] is set (see Table 4-1). The valid argument types and the corresponding
result type for d = vec_madds(a,b,c) are shown in Figure 4-59.

Figure 4-59. Multiply-Add Four Floating-Point Elements (32-Bit)
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d a b c maps to

vector signed short vector signed short vector signed short vector signed short vmhaddshs d,a,b,c
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vec_max vec_max
Vector Maximum

d = vec_max(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ MAX(ai,bi)
end

Each element of the result is the larger of the corresponding elements of a and b. 

For vector float argument types, if VSCR[NJ] is set, every denormalized operand
element is truncated to a 0 of the same sign before the operation is carried out, and each
denormalized result element truncates to a 0 of the same sign. The maximum of +0.0 and
Ð0.0 is +0.0. The maximum of any value and a NaN is a QNaN.

The valid combinations of argument types and the corresponding result types for 
d = vec_max(a,b) are shown in Figure 4-60, Figure 4-61, Figure 4-62, and Figure 4-63.

Figure 4-60. Maximum of Sixteen Integer Elements (8-Bit)
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d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vmaxub d,a,bvector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vmaxsb d,a,bvector signed char vector bool char

vector bool char vector signed char
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Generic and Specific AltiVec Operations
Figure 4-61. Maximum of Eight Integer Elements (16-bit)

Figure 4-62. Maximum of Four Integer Elements (32-bit)
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Figure 4-63. Maximum of Four Floating-Point Elements (32-bit)
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Generic and Specific AltiVec Operations
vec_mergeh vec_mergeh
Vector Merge High

d = vec_mergeh(a,b)

m ¬ (number of elements)/2
do i=0 to m-1
d2i ¬ ai
d2i+1 ¬ bi
end

The even elements of the result are obtained left-to-right from the high elements of a. 
The odd elements of the result are obtained left-to-right from the high elements of b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_mergeh(a,b) are shown in Figure 4-64, Figure 4-65, and Figure 4-66.

Figure 4-64. Merge Eight High-Order Elements (8-Bit)
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MOTOROLA Chapter 4. AltiVec Operations and Predicates 4-61



Generic and Specific AltiVec Operations  
Figure 4-65. Merge Four High-Order Elements (16-bit)

Figure 4-66. Merge Two High-Order Elements (32-bit)
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vec_mergel vec_mergel
Vector Merge Low

d = vec_mergel(a,b)

m ¬ (number of elements)/2
do i=0 to m-1
d2i ¬ ai+m
d2i+1 ¬ bi+m
end

The even elements of the result are obtained left-to-right from the low elements of a. 
The odd elements of the result are obtained left-to-right from the low elements of b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_mergel(a,b) are shown in Figure 4-67, Figure 4-68, and Figure 4-69. 

Figure 4-67. Merge Eight Low-Order Elements (8-Bit)
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Figure 4-68. Merge Four Low-Order Elements (16-bit)

Figure 4-69. Merge Two Low-Order Elements (32-bit)
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vec_mfvscr vec_mfvscr
Vector Move from Vector Status and Control Register

d = vec_mfvscr

d ¬ 960 || (VSCR)

Figure 4-70. Vector Move from VSCR

Table 4-14. Vector Move from Vector Status and Control Registers Argument Type 
and Mapping

d Maps to

vector unsigned short mfvscr

d

VCSR

0 0 0 0 0 0
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vec_min vec_min
Vector Minimum

d = vec_min(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ MIN(ai,bi)
end

Each element of the result is the smaller of the corresponding elements of a and b. 

For vector float argument types, if VSCR[NJ] is set, every denormalized operand
element is truncated to a 0 of the same sign before the operation is carried out, and each
denormalized result element truncates to a 0 of the same sign. The minimum of +0.0 and
Ð0.0 is Ð0.0. The minimum of any value and a NaN is a QNaN.

The valid combinations of argument types and the corresponding result types for 
d = vec_min(a,b) are shown in Figure 4-71, Figure 4-72, Figure 4-73, and Figure 4-74.

Figure 4-71. Minimum of Sixteen Integer Elements (8-Bit)
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Figure 4-72. Minimum of Eight Integer Elements (16-bit)

Figure 4-73. Minimum of Four Integer Elements (32-bit)
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Figure 4-74. Minimum of Four Floating-Point Elements (32-bit)
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vec_mladd vec_mladd
Vector Multiply Low and Add Unsigned Half Word

d = vec_mladd(a,b,c)

do i=0 to 7
di ¬ (ai * bi) + ci
end

Each element of the result is the low-order 16 bits of the sum of the corresponding element
of c and the product of the corresponding elements of a and b. The valid combinations of
argument types and the corresponding result types for d = vec_mladd(a,b) are shown in
Figure 4-75. 

Figure 4-75. Multiply-Add of Eight Integer Elements (16-Bit)

Prod

c

d

b

a

Temp

* **** * * *

++++++++

0Element® 2 3 4 5 6 71

d a b c maps to

vector unsigned 
short

vector unsigned 
short

vector unsigned 
short

vector unsigned 
short

vmladduhm d,a,b,c
vector signed short

vector unsigned 
short

vector signed short vector signed short

vector signed short vector unsigned 
short

vector unsigned 
short

vector signed short vector signed short vector signed short
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vec_mradds vec_mradds
Vector Multiply Round and Add Saturated

d = vec_mradds(a,b,c)

do i=0 to 7
di ¬ Saturate((ai * bi + 2

14)/215 + ci)
end

Each element of the result is the 16-bit saturated sum of the corresponding element of c and
the high-order 17 bits of the rounded product of the corresponding elements of a and b. If
saturation occurs, VSCR[SAT] is set (see Table 4-1). The valid argument types and the
corresponding result type for d = vec_mradds(a,b,c) are shown in Figure 4-76.

Figure 4-76. Multiply-Add of Eight Integer Elements (16-Bit)
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vec_msum vec_msum
Vector Multiply Sum

d = vec_msum(a,b,c)
¥ For Multiply Sum of Sixteen 8-bit elements

do i=0 to 3
di ¬ (a4i * b4i) + (a4i+1 * b4i+1) + (a4i+2 * b4i+2) + (a4i+3 * b4i+3) +ci
end

¥ For Multiply Sum of Eight 16-bit elements

do i=0 to 3
di ¬ (a2i * b2i) + (a2i+1 * b2i+1) +ci
end

Each element of the result is the sum of the corresponding element of c and the products of
the elements of a and b which overlap the positions of that element of c. For vec_msum, the
sum is performed with 32-bit modular addition. The valid combinations of argument types
and the corresponding result types for d = vec_msum(a,b,c) are shown in Figure 4-77
and Figure 4-78.

Figure 4-77. Multiply Sum of Sixteen Integer Elements (8-Bit)
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Figure 4-78. Multiply Sum of Eight Integer Elements (16-Bit)
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vec_msums vec_msums
Vector Multiply Sum Saturated

d = vec_msums(a,b,c)

do i=0 to 3
di ¬ Saturate((a2i * b2i) + (a2i+1 * b2i+1) + ci)
end

Each element of the result is the sum of the corresponding element of c and the products of
the elements of a and b which overlap the positions of that element of c. The sum is
performed with 32-bit saturating addition. If saturation occurs, VSCR[SAT] is set (see
Table 4-1). The valid combinations of argument types and the corresponding result types
for d = vec_msums(a,b,c) are shown in Figure 4-79.

Figure 4-79. Multiply-Sum of Integer Elements (16-Bit to 32-Bit)
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vec_mtvscr vec_mtvscr
Vector Move to Vector Status and Control Register

vec_mtvscr(a)

VSCR ¬ a[96:127]

The VSCR is set by the elements in a which occupy the last 32 bits. The result is void. 

Refer to the description of vec_mfvscr for a detailed description of the VSCR (see
Figure 4-1). The valid argument types for vec_mtvscr(a) are shown in Table 4-15. The
result type is void.

Figure 4-80. Vector Move to VSCR

Table 4-15. vec_mtvscrÑVector Move to Vector Status and Control Register Argu-
ment Types 

a Maps to

vector unsigned char

mtvscr a

vector signed char

vector bool char

vector unsigned short

vector signed short

vector bool short

vector pixel

vector unsigned int

vector signed int

vector bool int

a

VCSR
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vec_mule vec_mule
Vector Multiply Even

d = vec_mule(a,b)

n ¬ number of elements in d
do i=0 to n-1
di ¬ a2i * b2i
end

Each element of the result is the product of the corresponding high half-width elements of
a and b. The odd elements of a and b are ignored. The valid combinations of argument types
and the corresponding result types for d = vec_mule(a,b) are shown in Figure 4-81 and
Figure 4-82.

.

Figure 4-81. Even Multiply of Eight Integer Elements (8-Bit)

Figure 4-82. Even Multiply of Four Integer Elements (16-Bit)
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vec_mulo vec_mulo
Vector Multiply Odd

d = vec_mulo(a,b)

n ¬ number of elements in d
do i=0 to n-1
di ¬ a2i+1 * b2i+1
end

Each element of the result is the product of the corresponding low half-width elements of
a and b. The even elements of a and b are ignored. The valid combinations of argument
types and the corresponding result types for d = vec_mulo(a,b) are shown in Figure 4-83
and Figure 4-84.

.

Figure 4-83. Odd Multiply of Eight Integer Elements (8-Bit)

Figure 4-84. Odd Multiply of Four Integer Elements (16-Bit)
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vec_nmsub vec_nmsub
Vector Negative Multiply Subtract

d = vec_nmsub(a,b,c)

do i=0 to 3
di ¬ -RndToFPNearest(ai * bi - ci)
end

Each element of the result is the negative of the difference of the corresponding element of
c and the product of the corresponding elements of a and b. 

For vector float argument types, if VSCR[NJ] is set, every denormalized operand
element is truncated to a 0 of the same sign before the operation is carried out, and each
denormalized result element truncates to a 0 of the same sign.

The valid argument types and the corresponding result type for d = vec_nmsub(a,b,c)
are shown in Figure 4-85.

Figure 4-85. Negative Multiply-Subtract of Four Floating-Point Elements (32-Bit)
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vec_nor vec_nor
Vector Logical NOR

d = vec_nor(a,b)

d ¬ Ø (a | b)

Each bit of the result is the logical NOR of the corresponding bits of a and b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_nor(a,b) are shown in Figure 4-86.

Figure 4-86. Logical Bit-Wise NOR
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vec_or vec_or
Vector Logical OR

d = vec_or(a,b)

d ¬ a | b

Each bit of the result is the logical OR of the corresponding bits of a and b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_or(a,b) are shown in Figure 4-87. 

Figure 4-87. Logical Bit-Wise OR
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vec_pack vec_pack
Vector Pack

d = vec_pack(a,b)

n ¬ number of elements in a
s ¬ element size in d (64/n)
do i=0 to n-1
di ¬ UIToUImod(ai,s)
di+n ¬ UIToUImod(bi,s)
end

Each high element of the result is the truncation of the corresponding wider element of a.
Each low element of the result is the truncation of the corresponding wider element of b.
The valid combinations of argument types and the corresponding result types for 
d = vec_pack(a,b) are shown in Figure 4-88 and Figure 4-89.

.

Figure 4-88. Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen Unsigned 
Integer Elements (8-Bit)

Figure 4-89. Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned 
Integer Elements (16-Bit)
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vec_packpx vec_packpx
Vector Pack Pixel

d = vec_packpx(a,b)

do i=0 to 3
di ¬ ai[7] || ai[8:12] || ai[16:20] || ai[24:28]
di+4 ¬ bi[7] || bi[8:12] || bi[16:20] || bi[24:28]
end

Each high element of the result is the packed pixel from the corresponding wider 
element of a. Each low element of the result is the packed pixel from the corresponding
wider element of b. 

Programming note: Each source word can be considered to be a 32-bit pixel consisting of
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel consisting
of one 1-bit channel and three 5-bit channels. A channel can be used to specify the intensity
of a particular color, such as red, green, or blue, or to provide other information needed by
the application.

The usual transformation from a 32-bit pixel to a 16-bit pixel uses the most signiÞcant bit
of the 8-bit intensity channel. This operation uses the least signiÞcant bit. To use the most
signiÞcant bit, Þrst perform the following operation:

(vector unsigned int) vec_rl ((vector unsigned char) a,
     (vector unsigned char) (1,0,0,0,1,0,0,0,

     1,0,0,0,1,0,0,0))

on each input a and b.

The valid argument types and the corresponding result type for d = vec_packpx(a,b) are
shown in Figure 4-90.. 

Figure 4-90. Pack Eight Pixel Elements (32-Bit) to Eight Elements (16-Bit)
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vec_packs vec_packs
Vector Pack Saturated

d = vec_packs(a,b)

n ¬ number of elements in a
do i=0 to n-1
di ¬ Saturate(ai)
di+n ¬ Saturate(bi)
end

Each high element of the result is the saturated value of the corresponding wider element
of a. Each low element of the result is the saturated value of the corresponding wider
element of b. If saturation occurs, VSCR[SAT] is set (see Table 4-1). 

The valid combinations of argument types and the corresponding result types for 
d = vec_packs(a,b) are shown in Figure 4-91 and Figure 4-92.

.

Figure 4-91. Pack Sixteen Integer Elements (16-Bit) to Sixteen Integer Elements 
(8-Bit)

Figure 4-92. Pack Eight Integer Elements (32-Bit) to Eight Integer Elements (16-Bit)
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vec_packsu vec_packsu
Vector Pack Saturated Unsigned

d = vec_packsu(a,b)

n ¬ number of elements in a
do i=0 to n-1
di ¬ Saturate(ai)
di+n ¬ Saturate(bi)
end

Each high element of the result is the saturated value of the corresponding wider element
of a. Each low element of the result is the saturated value of the corresponding wider
element of b. If saturation occurs, VSCR[SAT] is set (see Table 4-1). The result elements
are all unsigned. The valid combinations of argument types and the corresponding result
types for d = vec_packsu(a,b) are shown in Figure 4-93 and Figure 4-94.

.

Figure 4-93. Pack Sixteen Integer Elements (16-Bit) to Sixteen Unsigned Integer 
Elements (8-Bit)

Figure 4-94. Pack Eight Integer Elements (32-Bit) to Eight Unsigned Integer 
Elements (16-Bit)
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vec_perm vec_perm
Vector Permute

d = vec_perm(a,b,c)

do i=0 to 15
j ¬ c{i}[4:7]
if c{i}[3] = 0

then d{i} ¬ a{j}
else d{i} ¬ b{j}

end

Each element of the result is selected independently by indexing the byte elements of a and
b by the value of the corresponding element of c. For example, 0x1C in c selects byte 12 in
b. The value 0x0C selects byte 12 in a. The valid combinations of argument types and the
corresponding result types for d = vec_perm(a,b,c) are shown in Figure 4-95.

Figure 4-95. Permute Sixteen Integer Elements (8-Bit)
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vec_re vec_re
Vector Reciprocal Estimate

d = vec_re(a)

do i=0 to 3
di ¬ FPRecipEst(ai)
end

Each element of the result d is an estimate of the reciprocal to the corresponding element
of a. For results that are not a +0, Ð0, +¥, Ð¥, or QNaN, the estimate has a relative error in
precision no greater than one part in 4096, that is:

where x is the value of the element in a. Note that the value placed into the element of d
may vary between implementations, and between different executions on the same
implementation.

Operation with various special values of the element in a is summarized below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

The valid argument type and corresponding result type for d = vec_re(a) are shown in
Figure 4-96.

Table 4-16. Special Value Results of Reciprocal Estimates

a d

-¥ -0

-0 -¥

+0 +¥

+¥ +0

NaN QNaN

Figure 4-96. Reciprocal Estimate of Four Floating-Point Elements (32-Bit)
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vec_rl vec_rl
Vector Rotate Left

d = vec_rl(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ ROTL(ai, bi)

end

Each element of the result is the result of rotating left the corresponding element of a by the
number of bits indicated by the corresponding element of b. The valid combinations of
argument types and the corresponding result types for d = vec_rl(a,b) are shown in
Figure 4-97, Figure 4-98, and Figure 4-99.

Figure 4-97. Left Rotate of Sixteen Integer Elements (8-Bit)

Figure 4-98. Left Rotate of Eight Integer Elements (16-bit)
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vector unsigned char vector unsigned char vector unsigned char
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Figure 4-99. Left Rotate of Four Integer Elements (32-bit)
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vector unsigned int vector unsigned int vector unsigned int
vrlw d,a,b

vector signed int vector signed int vector unsigned int
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vec_round vec_round
Vector Round

d = vec_round(a)

do i=0 to 3
di ¬ RndToFPINear(ai)
end

Each element of the result is the nearest representable single-precision ßoating-point
integer to the corresponding element of a, using IEEE Round-to-Nearest mode. If the
integers are equally near, rounding is to the even integer.

The operation is independent of VSCR[NJ].

The valid argument type and corresponding result type for d = vec_round(a) are shown
in Figure 4-100.

Figure 4-100. Round to Nearest of Four Floating-Point Integer Elements (32-Bit)
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vec_rsqrte vec_rsqrte
Vector Reciprocal Square Root Estimate

d = vec_rsqrte(a)

do i=0 to 3
di ¬ RecipSQRTEst(ai)
end

Each element of the result is an estimate of the reciprocal square root of the corresponding
element of a. The single-precision estimate of the reciprocal of the square root of each
single-precision element in a is placed into the corresponding word element of d. The
estimate has a relative error in precision no greater than one part in 4096, that is:

where x is the value of the element in a. The value placed into the element of d may vary
between implementations and between different executions on the same implementation. If
VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign. Operation with various special values of the element in a is summarized
below.

The valid argument type and corresponding result type for d = vec_rsqrte(a) are shown
in Figure 4-101.

Table 4-17. Special Value Results of Reciprocal Square Root Estimates

a d

-¥ QNaN

less than 0 QNaN

-0 -¥

+0 +¥

+¥ +0

NaN QNaN

Figure 4-101. Reciprocal Square Root Estimate of Four Floating-Point Elements 
(32-Bit)
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d a maps to

vector float vector float vrsqrtefp d,a
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vec_sel vec_sel
Vector Select

d = vec_sel(a,b,c)

do i=0 to 127
if ci=0 

then d[i] ¬ a[i]
 else d[i] ¬ b[i]
end

Each bit of the result is the corresponding bit of a if the corresponding bit of c is 0.
Otherwise, it is the corresponding bit of b. The valid combinations of argument types and
the corresponding result types for d = vec_sel(a,b,c) are shown in Figure 4-102.

Figure 4-102. Bit-Wise Conditional Select of Vector Contents (128-bit)
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d a b c maps to

vector unsigned char
vector unsigned char vector unsigned char vector unsigned char

vsel d,a,b,c

vector unsigned char vector unsigned char vector bool char

vector signed char
vector signed char vector signed char vector unsigned char

vector signed char vector signed char vector bool char

vector bool char
vector bool char vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector unsigned short
vector unsigned short vector unsigned short vector unsigned short

vector unsigned short vector unsigned short vector bool short

vector signed short
vector signed short vector signed short vector unsigned short

vector signed short vector signed short vector bool short

vector bool short
vector bool short vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector unsigned int
vector unsigned int vector unsigned int vector unsigned int

vector unsigned int vector unsigned int vector bool int

vector signed int
vector signed int vector signed int vector unsigned int

vector signed int vector signed int vector bool int

vector bool int
vector bool int vector bool int vector unsigned int

vector bool int vector bool int vector bool int

vector float
vector float vector float vector unsigned int

vector float vector float vector bool int
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vec_sl vec_sl
Vector Shift Left

d = vec_sl(a,b)

n ¬ number of elements
s ¬ 128/n
do i=0 to n-1
di ¬ ShiftLeft(ai,mod(bi,s))
end

Each element in d is the result of shifting the corresponding element of a left by the number
of bits of the corresponding element of b. The valid combinations of argument types and
the corresponding result types for d = vec_sl(a,b) are shown in Figure 4-103,
Figure 4-104, and Figure 4-105.

Figure 4-103. Shift Bits Left in Sixteen Integer Elements (8-Bit)
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d a b maps to

vector unsigned char vector unsigned char vector unsigned char
vslb d,a,b
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Figure 4-104. Shift Bits Left in Eight Integer Elements (16-bit)

Figure 4-105. Shift Bits Left in Four Integer Elements (32-Bit)
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d a b maps to

vector unsigned int vector unsigned int vector unsigned int
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vec_sld vec_sld
Vector Shift Left Double

d = vec_sld(a,b,c)

do i=0 to 15
if (i+c) < 16

then d{i} ¬ a{i+c}
else d{i} ¬ b{i+c-16}

end

The result is obtained by selecting the top 16 bytes obtained by shifting left 
(unsigned) by the value of c bytes a 32-byte quantity formed by catenating a with b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_sld(a,b,c) are shown in Figure 4-106.

Figure 4-106. Bit-Wise Conditional Select of Vector Contents (128-bit)
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c = 4 in this example

d a b c maps to

vector unsigned char vector unsigned char vector unsigned char 4-bit unsigned literal

vsldoi 
d,a,b,c

vector signed char vector signed char vector signed char 4-bit unsigned literal

vector unsigned short vector unsigned short vector unsigned short 4-bit unsigned literal

vector signed short vector signed short vector signed short 4-bit unsigned literal

vector pixel vector pixel vector pixel 4-bit unsigned literal

vector unsigned int vector unsigned int vector unsigned int 4-bit unsigned literal

vector signed int vector signed int vector signed int 4-bit unsigned literal

vector float vector float vector float 4-bit unsigned literal
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vec_sll vec_sll
Vector Shift Left Long

d = vec_sll(a,b)

m ¬ b[125:127]
If each bi[5:7] = m, where i ranges from 0 to 14
then d ¬ ShiftLeft(a,m)
else d ¬ Undefined

The result is obtained by shifting a left by a number of bits speciÞed by the last 3 bits of the
last element of b. The valid combinations of argument types and the corresponding result
types for d = vec_sll(a,b) are shown in Figure 4-107.

Note that the three low-order bits of all byte elements in b must be the same; otherwise the
value placed into d is undeÞned.
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Figure 4-107. Shift Bits Left in Vector (128-Bit)
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vector unsigned char

vector unsigned char vector unsigned char
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vector signed char
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vector signed char vector unsigned int
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vector signed short vector unsigned short
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vector signed int vector unsigned int

vector bool int
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vector bool int vector unsigned short
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vec_slo vec_slo
Vector Shift Left by Octet

d = vec_slo(a,b)

m ¬ b15[1:4]
do i=0 to 15
j ¬ i + m
if j < 16

then d{i} ¬ a{j}
else d{i} ¬ 0

end

The contents of a are shifted left by the number of bytes speciÞed by bits b15[1:4]; 
only these 4 bits in b are signiÞcant for the shift value. Bytes shifted out of byte 0 are 
lost. Zeros are supplied to the vacated bytes on the right. The result is placed into d. 
The valid combinations of argument types and the corresponding result types for 
d = vec_slo(a,b) are shown in Figure 4-108.

Figure 4-108. Left Byte Shift of Vector (128-Bit)
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vector unsigned char
vector unsigned char vector unsigned char
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vector unsigned char vector signed char
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vector float vector signed char
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vec_splat vec_splat
Vector Splat

d = vec_splat(a,b)

n ¬ number of elements
do i=0 to n-1
j ¬ mod(b,n)
di ¬ aj
end

Each element of the result is component b of a. The valid combinations of argument types
and the corresponding result types for d = vec_splat(a,b) are shown in Figure 4-109,
Figure 4-110, and Figure 4-111.

Figure 4-109. Copy Contents to Sixteen Integer Elements (8-Bit)

Figure 4-110. Copy Contents to Eight Elements (16-bit)
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Figure 4-111. Copy Contents to Four Integer Elements (32-Bit)
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For this example, b=2.

d a b maps to

vector unsigned int vector unsigned int 5-bit unsigned literal

vspltw d,a,b
vector signed int vector signed int 5-bit unsigned literal

vector bool int vector bool int 5-bit unsigned literal

vector float vector float 5-bit unsigned literal
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vec_splat_s8 vec_splat_s8
Vector Splat Signed Byte

d = vec_splat_s8(a)

do i=0 to 15
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a. This permits values
ranging from -16 to 15 only. The valid argument type and corresponding result type for 
d = vec_splat_s8(a) are shown in Figure 4-112.

Figure 4-112. Copy Value into Sixteen Signed Integer Elements (8-Bit)
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d a maps to

vector signed char 5-bit signed literal vspltisb d,a
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vec_splat_s16 vec_splat_s16
Vector Splat Signed Half-Word

d = vec_splat_s16(a)

do i=0 to 7
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a. This permits values
ranging from -16 to 15 only. The valid argument type and corresponding result type for 
d = vec_splat_s16(a), tare shown in Figure 4-113.

Figure 4-113. Copy Value into Eight Signed Integer Elements (16-Bit)
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vector signed short 5-bit signed literal vspltish d,a
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vec_splat_s32 vec_splat_s32
Vector Splat Signed Word

d = vec_splat_s32(a)

do i=0 to 3
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a. This permits values
ranging from -16 to 15 only. The valid argument type are corresponding result type for 
d = vec_splat_s32(a) are shown in Figure 4-114.

Figure 4-114. Copy Value into Four Signed Integer Elements (32-Bit)
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vec_splat_u8 vec_splat_u8
Vector Splat Unsigned Byte

d = vec_splat_u8(a)

do i=0 to 15
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a and casting it to an
unsigned char value. Each element of d is set to 256*sign(a) + a, where sign(a) is 0 for non-
negative a and 1 for negative a. The valid argument type and corresponding result type for
d = vec_splat_u8(a) are shown in Figure 4-115. It is necessary to use the generic name,
since the speciÞc operation vec_vspltisb returns a vector signed char value.

Figure 4-115. Copy Value into Sixteen Signed Integer Elements (8-Bit)
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d a maps to

vector unsigned char 5-bit signed literal vspltisb d,a
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vec_splat_u16 vec_splat_u16
Vector Splat Unsigned Half-Word

d = vec_splat_u16(a)

do i=0 to 7
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a and casting it to an
unsigned short value. Each element of d is set to 65536*sign(a) + a, where sign(a) is 0 for
non-negative a and 1 for negative a. The valid argument type and corresponding result type
for d = vec_splat_u16(a) are shown in Figure 4-116. It is necessary to use the generic
name, since the speciÞc operation vec_vspltish returns a vector signed short value.

Figure 4-116. Copy Value into Eight Signed Integer Elements (16-Bit)
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vector unsigned short 5-bit signed literal vspltish d,a
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vec_splat_u32 vec_splat_u32
Vector Splat Unsigned Word

d = vec_splat_u32(a)

do i=0 to 3
di ¬ SignExtend(a)
end

Each element of the result is the value obtained by sign-extending a. and casting it to an
unsigned int value. Each element of d is set to 4294967296*sign(a) + a, where sign(a) is 0
for non-negative a and 1 for negative a. The valid argument type and corresponding result
type for d = vec_splat_u32(a) areshown in Figure 4-117. It is necessary to use the
generic name, since the speciÞc operation vec_vspltisw returns a vector signed int
value.

Figure 4-117. Copy Value into Four Signed Integer Elements (32-Bit)
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vec_sr vec_sr
Vector Shift Right

d = vec_sr(a,b)

n ¬ number of elements
s ¬ 128/n
do i=0 to n-1
di ¬ ShiftRight(ai,mod(bi,s))
end

Each element of the result is the result of shifting the corresponding element of a right by
the number of bits of the corresponding element of b. Zero bits are shifted in from the left
for both signed and unsigned argument types. The valid combinations of argument types
and the corresponding result types for d = vec_sr(a,b) are shown in Figure 4-118,
Figure 4-119, and Figure 4-120.

Figure 4-118. Shift Bits Right in Sixteen Integer Elements (8-Bit)
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Figure 4-119. Shift Bits Right in Eight Integer Elements (16-bit)

Figure 4-120. Shift Bits Right in Four Integer Elements (32-Bit)
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vec_sra vec_sra
Vector Shift Right Algebraic

d = vec_sra(a,b)

n ¬ number of elements
s ¬ 128/n
do i=0 to n-1
di ¬ ShiftRightA(ai,mod(bi,s))
end

Each element of the result is the result of shifting the corresponding element of a right by
the number of bits of the corresponding element of b. Copies of the sign bit are shifted in
from the left for both signed and unsigned argument types. The valid combinations of
argument types and the corresponding result types for d = vec_sra(a,b) are shown in
Figure 4-121, Figure 4-122, and Figure 4-123.

Figure 4-121. Shift Bits Right in Sixteen Integer Elements (8-Bit)
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Figure 4-122. Shift Bits Right in Eight Integer Elements (16-bit)

Figure 4-123. Shift Bits Right in Four Integer Elements (32-Bit)
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vec_srl vec_srl
Vector Shift Right Long

d = vec_srl(a,b)

m ¬ b[125:127]
if each bi[5:7] = m, where i ranges from 0 to 14
then d ¬ ShiftRight(a,m)
else d ¬ Undefined

The result is obtained by shifting a right by a number of bits speciÞed by the last 3 bits of
the last element of b. The valid combinations of argument types and the corresponding
result types for d = vec_srl(a,b) are shown in Figure 4-124.

Note that the low-order 3 bits of all byte elements in b must be the same; otherwise the value
placed into d is undeÞned.
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Figure 4-124. Shift Bits Right in Vector (128-Bit)
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vec_sro vec_sro
Vector Shift Right by Octet

d = vec_sro(a,b)

m ¬ b[121:124]
do i=0 to 15
j ¬ i - m
if j ³ 0

then d{i} ¬ a{j}
else d{i} ¬ 0

end

The result is obtained by shifting (unsigned) a right by a number of bytes speciÞed by the
shifting the value of the last element of b by 3 bits. The valid combinations of argument
types and the corresponding result types for d = vec_sro(a,b) are shown in Figure 4-125.

Figure 4-125. Right Byte Shift of Vector (128-Bit)
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vec_st vec_st
Vector Store Indexed

vec_st(a,b,c)

EA ¬ BoundAlign((b + c), 16)
MEM(EA,16) ¬ a

Each operation performs a 16-byte store of the value of a at a 16-byte aligned address. The
b is taken to be an integer value, while c is a pointer. BoundAlign(b+c,16) is the largest
value less than or equal to a b+c that is a multiple of 16. This is not, by itself, an acceptable
way to store aligned data to unaligned addresses. This store is the one that is generated for
a storing dereference of a pointer to a vector type. Plain char * is excluded in the mapping
for c. The valid combinations of argument types for vec_st(a,b,c) are shown in
Table 4-18. The result type is void.

Figure 4-126. Vector Store Indexed
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Table 4-18. vec_stÑVector Store Indexed Argument Types 

a b c Maps to

vector unsigned char any integral type vector unsigned char *

stvx a,b,c

vector unsigned char any integral type unsigned char *

vector signed char any integral type vector signed char *

vector signed char any integral type signed char *

vector bool char any integral type vector bool char *

vector bool char any integral type unsigned char *

vector bool char any integral type signed char *

vector unsigned short any integral type vector unsigned short *

vector unsigned short any integral type unsigned short *

vector signed short any integral type vector signed short *

vector signed short any integral type short *

vector bool short any integral type vector bool short *

vector bool short any integral type unsigned short *

vector bool short any integral type short *

vector pixel any integral type vector pixel short *

vector pixel any integral type unsigned short *

vector pixel any integral type short *

vector unsigned int any integral type vector unsigned int *

vector unsigned int any integral type unsigned int *

vector signed int any integral type vector signed int *

vector signed int any integral type int *

vector bool int any integral type vector bool int *

vector bool int any integral type unsigned int *

vector bool int any integral type int *

vector float any integral type vector float *

vector float any integral type float *
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vec_ste vec_ste
Vector Store Element Indexed

vec_ste(a,b,c)

s ¬ 16/(number of elements)
EA ¬ BoundAlign (b + c,s)
i ¬ mod(EA,16)/s
MEM(EA,s) ¬ ai

A single element of a is stored at the effective address. BoundAlign(b+c,s) is the largest
value less than or equal to b+c that is a multiple of s, where s is 1 for char pointers, 2 for
short pointers, and 4 for int or float pointers. The element stored is the one whose
position in the register matches the position of the adjusted address relative to 16-byte
alignment (A16). If you do not know the alignment of the sum of b and c, you will not know
which element is stored. Plain char * is excluded in the mapping for c. The valid
combinations of argument types for vec_ste(a,b,c) are shown in Figure 4-127. The
result type is void.
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Figure 4-127. Vector Store Element

+

Memory Interface
MEM(EA,s)

cb

BoundAlign(b+c,1) 

Effective Address (EA)

a
Store

ai

The example shows a byte-sized element.

a b c Maps to

vector unsigned char any integral type unsigned char *

stvebx a,b,c
vector signed char any integral type signed char *

vector bool char any integral type unsigned char *

vector bool char any integral type signed char *

vector unsigned short any integral type unsigned short *

stvehx a,b,c

vector signed short any integral type short *

vector bool short any integral type unsigned short *

vector bool short any integral type short *

vector pixel any integral type unsigned short *

vector pixel any integral type short *

vector unsigned int any integral type unsigned int *

stvewx a,b,c

vector unsigned int any integral type unsigned int *

vector signed int any integral type int *

vector signed int any integral type int *

vector bool int any integral type unsigned int *

vector bool int any integral type unsigned int *

vector bool int any integral type int *

vector bool int any integral type int *

vector float any integral type float *
MOTOROLA Chapter 4. AltiVec Operations and Predicates 4-115



Generic and Specific AltiVec Operations  
vec_stl vec_stl
Vector Store Indexed LRU

vec_stl(a,b,c)

EA ¬ BoundAlign(b + c, 16)
MEM(EA,16) ¬ a

Each operation performs a 16-byte store of the value of a at a 16-byte aligned address. The
b is taken to be an integer value, while c is a pointer. BoundAlign(b+c,16) is the largest
value less than or equal to a b+c that is a multiple of 16. This is not, by itself, an acceptable
way to store aligned data to unaligned addresses. The cache line stored into is marked Least
Recently Used (LRU). Plain char * is excluded in the mapping for c. The valid
combinations of argument types for vec_stl(a,b,c) are shown in Table 4-19. The result
type is void.

Figure 4-128. Vector Store Indexed LRU
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MEM(EA,16)

cb

BoundAlign(b+c,16) 
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Table 4-19vec_stlÑVector Store Index Argument Types

a b c Maps to

vector unsigned char any integral type vector unsigned char *

stvxl a,b,c

vector unsigned char any integral type unsigned char *

vector signed char any integral type vector signed char *

vector signed char any integral type signed char *

vector bool char any integral type vector bool char *

vector bool char any integral type unsigned char *

vector bool char any integral type signed char *

vector unsigned short any integral type vector unsigned short *

vector unsigned short any integral type unsigned short *

vector signed short any integral type vector signed short *

vector signed short any integral type short *

vector bool short any integral type vector bool short *

vector bool short any integral type unsigned short *

vector bool short any integral type short *

vector pixel any integral type vector pixel *

vector pixel any integral type unsigned short *

vector pixel any integral type short *

vector unsigned int any integral type vector unsigned int *

vector unsigned int any integral type unsigned int *

vector signed int any integral type vector signed int *

vector signed int any integral type int *

vector bool int any integral type vector bool int *

vector bool int any integral type unsigned int *

vector bool int any integral type unsigned int *

vector bool int any integral type int *

vector float any integral type vector float *

vector float any integral type float *
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vec_sub vec_sub
Vector Subtract

d = vec_sub(a,b)
¥ Integer Subtract:

n ¬ number of elements
do i=0 to n-1
di ¬ ai - bi
end

¥ Floating-Point Subtract:

do i=0 to 3
di ¬ ai -fp bi
end

Each element of the result is the difference between the corresponding elements of a and b.
The arithmetic is modular for integer types. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized vector float
operand element is truncated to a 0 of the same sign before the operation is carried out, and
each denormalized vector float result element truncates to a 0 of the same sign.

The valid combinations of argument types and the corresponding result types for 
d = vec_sub(a,b) are shown in Figure 4-129, Figure 4-130, Figure 4-131, and
Figure 4-132.

Figure 4-129. Subtract Sixteen Integer Elements (8-bit)

– –––––––––––––––

a

b

d

0Element® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vsububm d,a,b

vector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vector signed char vector bool char

vector bool char vector signed char
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Figure 4-130. Subtract Eight Integer Elements (16-bit)

Figure 4-131. Subtract Four Integer Elements (32-bit)

––––––––
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d

0Element® 2 3 4 5 6 71

d a b maps to

vector unsigned short

vector unsigned short vector unsigned short

vsubuhm d,a,b

vector unsigned short vector bool short

vector bool short vector unsigned short

vector signed short

vector signed short vector signed short

vector signed short vector bool short

vector bool short vector signed short

––––

a

b

d

0Element® 2 31

d a b maps to

vector unsigned int

vector unsigned int vector unsigned int

vsubuwm d,a,b

vector unsigned int vector bool int

vector bool int vector unsigned int

vector signed int

vector signed int vector signed int

vector signed int vector bool int

vector bool int vector signed int
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Figure 4-132. Subtract Four Floating-Point Elements (32-bit)

–fp–fp–fp–fp

a

b

d

0Element® 2 31

d a b maps to

vector float vector float vector float vsubfp d,a,b
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vec_subc vec_subc
Vector Subtract Carryout

d = vec_subc(a,b)

do i=0 to 3
di = BorrowOut(ai - bi)
end

Each element of b is subtracted from the corresponding element in a. The borrow from 
each difference is complemented and zero-extended and placed into the corresponding
element of d. BorrowOut (a Ð b) is 0 if a borrow occurred and 1 if no borrow 
occurred. The valid combination of argument types and the corresponding result type for 
d = vec_subc(a,b) are shown in Figure 4-133.

Figure 4-133. Carryout of Four Unsigned Integer Subtracts (32-bit)
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b

33-bit per element

d
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(temp)

0Element® 2 31

d a b maps to

vector unsigned int vector unsigned int vector unsigned int vsubcuw d,a,b
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vec_subs vec_subs
Vector Subtract Saturated

d = vec_subs(a,b)

n ¬ number of elements
do i=0 to n-1
di ¬ Saturate (ai - bi)
end

Each element of the result is the saturated difference between the corresponding elements
of a and b. If saturation occurs, VSCR[SAT] is set (see Table 4-1). The valid combinations
of argument types and the corresponding result types for d = vec_subs(a,b) are shown
in Figure 4-134, Figure 4-135, and Figure 4-136.

Figure 4-134. Subtract Saturating Sixteen Integer Elements (8-bit)

– –––––––––––––––
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d

0Element® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vsububs d,a,bvector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vsubsbs d,a,bvector signed char vector bool char

vector bool char vector signed char
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Figure 4-135. Subtract Saturating Eight Integer Elements (16-bit)

Figure 4-136. Subtract Saturating Four Integer Elements (32-bit)

––––––––
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d a b maps to

vector unsigned short

vector unsigned short vector unsigned short

vsubuhs d,a,bvector unsigned short vector bool short

vector bool short vector unsigned short

vector signed short

vector signed short vector signed short

vsubshs d,a,bvector signed short vector bool short

vector bool short vector signed short
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0Element® 2 31

d a b maps to

vector unsigned int

vector unsigned int vector unsigned int

vsubuws d,a,bvector unsigned int vector bool int

vector bool int vector unsigned int

vector signed int

vector signed int vector signed int

vsubsws d,a,bvector signed int vector bool int

vector bool int vector signed int
MOTOROLA Chapter 4. AltiVec Operations and Predicates 4-123



Generic and Specific AltiVec Operations  
vec_sum4s vec_sum4s
Vector Sum Across Partial (1/4) Saturated

d = vec_sum4s(a,b)
¥ For a with 8-bit elements:

do i=0 to 3
di ¬ Saturate (a4i+ a4i+1 + a4i+2 + a4i+3 + bi)
end

¥ For a with 16-bit elements:

do i=0 to 3
di ¬ Saturate(a2i+ a2i+1 + bi)
end

Each element of the result is the 32-bit saturated sum of the corresponding element in b and
all elements in a with positions overlapping those of that element. If saturation occurs,
VSCR[SAT] is set (see Table 4-1). The valid combinations of argument types and the
corresponding result types for d = vec_sum4s(a,b) are shown in Figure 4-137 and
Figure 4-138. 

Figure 4-137. Four Sums in the Integer Elements (32-Bit)

Figure 4-138. Four Sums in the Integer Elements (32-Bit)
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0Element® 2 31

d a b maps to

vector unsigned int vector unsigned char vector unsigned int vsum4ubs d,a,b

vector signed int vector signed char vector signed int vsum4sbs d,a,b

0Element® 2 3 4 5 6 71
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++++

0Element® 2 31

d a b maps to

vector signed int vector signed short vector signed int vsum4shs d,a,b
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vec_sum2s vec_sum2s
Vector Sum Across Partial (1/2) Saturated

d = vec_sum2s(a,b)

do i=0 to 1
d2i ¬ 0
d2i+1 ¬ Saturate(a2i + a2i+1 + b2i+1)
end

The Þrst and third elements of the result are 0. The second element of the result is 
the 32-bit saturated sum of the Þrst two elements of a and the second element of b. 
The fourth element of the result is the 32-bit saturated sum of the last two elements 
of a and the fourth element of b. If saturation occurs, VSCR[SAT] is set (see Table 4-1). The
valid combination of argument types and the corresponding result type for 
d = vec_sum2s(a,b) are shown in Figure 4-139.

Figure 4-139. Two Saturated Sums in the Four Signed Integer Elements (32-Bit)
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d a b maps to

vector signed int vector signed int vector signed int vsum2sws d,a,b
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vec_sums vec_sums
Vector Sum Saturated

d = vec_sums(a,b)

do i=0 to 2
di ¬ 0
end
d3 ¬ Saturate(a0 + a1 + a2 + a3 + b3)

The Þrst three elements of the result are 0. The fourth element of the result is the 32-bit
saturated sum of all elements of a and the fourth element of b. If saturation occurs,
VSCR[SAT] is set (see Table 4-1). The valid combination of argument types and the
corresponding result type for d = vec_sums(a,b) are shown in Figure 4-140.

Figure 4-140. Saturated Sum of Five Signed Integer Elements (32-Bit)
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a

b

d

0Element® 2 31

0 00

d a b maps to

vector signed int vector signed int vector signed int vsumsws d,a,b
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vec_trunc vec_trunc
Vector Truncate

d = vec_trunc(a)

do i=0 to 3
di ¬ RndToFPITrunc(ai)
end

Each single-precision ßoating-point word element in a is rounded to a single-precision
ßoating-point integer, using the Round-toward-Zero mode, and placed into the
corresponding word element of d. Each element of the result is thus the value of the
corresponding element of a truncated to an integral value. 

The operation is independent of VSCR[NJ].

The valid argument type and corresponding result type for d = vec_trunc(a) are shown
in Figure 4-141.

Figure 4-141. Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)

RndToFPITruncRndToFPITruncRndToFPITruncRndToFPITrunc
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d

0Element® 2 31

d a maps to

vector float vector float vrfiz d,a
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vec_unpackh vec_unpackh
Vector Unpack High Element

d = vec_unpackh(a)
¥ Integer value:

n ¬ number of elements in d
do i=0 to n-1
di ¬ SignExtend(ai)
end

¥ Pixel value:

do i=0 to 3
di ¬ SignExtend(ai[0]) || 000 || ai[1:5] || 000 || ai[6:10] || 000 || ai[11:15]
end

Each element of the result is the result of extending the corresponding half-width high
element of a. The valid argument types and corresponding result types for 
d = vec_unpackh(a) are shown in Figure 4-142, Figure 4-143, and Figure 4-144.

Figure 4-142. Unpack High-Order Elements (8-Bit) to Elements (16-Bit)

SSSSSSSS

a

d

0Element® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d a maps to

vector signed short vector signed char
vupkhsb d,a

vector bool short vector bool char
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Programming note: Notice that the unpacking done by the vector unpack element
operations for vector pixel values does not reverse the packing done by the vector pack
pixel operation. SpeciÞcally, if a 16-bit pixel is unpacked to a 32-bit pixel which is then
packed to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal to the
original 16-bit pixel (because, for each channel except the Þrst, vector unpack element
inserts high-order bits while vector pack pixel discards low-order bits.)

This was designed to optimize image processing where the unpacked values would be
multiplied by small coefÞcients and accumulated in a digital Þlter. The usual
transformation from the 16-bit pixel to a 32-bit pixel involves multiplication of the RGB
channels by 255/31. This can be accomplished by replicating the 3 most signiÞcant bits in
the least signiÞcant bits using the operations:

d = vec_unpackh(a);
d = (vector unsigned int) vec_or(vec_sl((vector unsigned char)d,

   (vector unsigned char)(3)),
  vec_sr((vector unsigned char)d,
   (vector unsigned char)(2)));

Figure 4-143. Unpack High-Order Pixel Elements (16-Bit) to Elements (32-Bit)

Figure 4-144. Unpack High-Order Signed Integer Elements (16-Bit) to Signed 
Integer Elements (32-Bit)
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d a maps to

vector unsigned int vector pixel vupkhpx d,a
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d a maps to

vector signed int vector signed short
vupkhsh d,a

vector bool int vector bool short
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vec_unpackl vec_unpackl
Vector Unpack Low Element

d = vec_unpackl(a)
¥ Integer value:

n ¬ number of elements in d
do i=0 to n-1
di ¬ SignExtend(ai+n)
end

¥ Pixel value:

do i=0 to 3
di ¬ SignExtend(ai+n[0]) || 000 || ai+n[1:5] || 000 || ai+n[6:10] || 000 || ai+n[11:15]
end

Each element of the result is the result of extending the corresponding half-width low
element of a. The valid argument types and corresponding result types for 
d = vec_unpackl(a) are shown in Figure 4-145, Figure 4-146, and Figure 4-147.

Figure 4-145. Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

Figure 4-146. Unpack Low-Order Pixel Elements (16-Bit) to Elements (32-Bit)
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d a maps to

vector signed short vector signed char
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vector unsigned int vector pixel vupklpx d,a
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Programming note: Notice that the unpacking done by the vector unpack element
operations for vector pixel values does not reverse the packing done by the vector pack
pixel operation. SpeciÞcally, if a 16-bit pixel is unpacked to a 32-bit pixel which is then
packed to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal to the
original 16-bit pixel (because, for each channel except the Þrst, vector unpack element
inserts high-order bits while vector pack pixel discards low-order bits.)

This was designed to optimize image processing where the unpacked values would be
multiplied by small coefÞcients and accumulated in a digital Þlter. The usual
transformation from the 16-bit pixel to a 32-bit pixel involves multiplication of the RGB
channels by 255/31. This can be accomplished by replicating the 3 most signiÞcant bits in
the least signiÞcant bits using the operations:

d = vec_unpackh(a);
d = (vector unsigned int) vec_or(vec_sl((vector unsigned char)d,

   (vector unsigned char)(3)),
  vec_sr((vector unsigned char)d,
   (vector unsigned char)(2)));

Figure 4-147. Unpack Low-Order Signed Integer Elements (16-Bit) to Signed Integer 
Elements (32-Bit)
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d a maps to

vector signed int vector signed short
vupklsh d,a

vector bool int vector bool short
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vec_xor vec_xor
Vector Logical XOR

d = vec_xor(a,b)

d ¬ a Å b

Each bit of the result is the logical XOR of the corresponding bits of a and b. 
The valid combinations of argument types and the corresponding result types for 
d = vec_xor(a,b) are shown in Figure 4-148.

Figure 4-148. Logical Bit-Wise XOR
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d

d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vxor d,a,b

vector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vector signed char vector bool char

vector bool char vector signed char

vector bool char vector bool char vector bool char

vector unsigned short

vector unsigned short vector unsigned short

vector unsigned short vector bool short

vector bool short vector unsigned short

vector signed short

vector signed short vector signed short

vector signed short vector bool short

vector bool short vector signed short

vector bool short vector bool short vector bool short

vector unsigned int

vector unsigned int vector unsigned int

vector unsigned int vector bool int

vector bool int vector unsigned int

vector signed int

vector signed int vector signed int

vector signed int vector bool int

vector bool int vector signed int

vector bool int vector bool int vector bool int

vector float

vector bool int vector float

vector float vector bool int

vector float vector float
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4.5  AltiVec Predicates
The AltiVec predicates all begin with vec_all_ or vec_any_. The AltiVec predicates are
organized alphabetically by predicate name with a deÞnition of the permitted generic
AltiVec predicates. The speciÞc operations do not exist for the predicates. 

Where possible, the description is supported by reference Þgures indicating data
modiÞcations and including a table that lists:

¥ the valid set of argument types for that predicate, and 

¥ the speciÞc AltiVec instruction generated for that set of arguments. The AltiVec 
instruction is in the form v-----. x,a,b, where v-----. represents the instruction and 
x,a,b represent the operands. The x represents an unused vector result of the vector 
compare instruction used to implement the predicate. The order of operands listed 
after the instruction indicate the order in which they are applied for that predicate.

For example,

vec_any_lt(vector unsigned char, vector unsigned char) 

maps to the instruction 

vcmpgtb. x,b,a

indicating that the operands are applied in reverse order for this predicate.
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vec_all_eq vec_all_eq
All Elements Equal

d = vec_all_eq(a,b)

n ¬ number of elements
if each ai =int bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_all_eq returns 1 if every element of a is equal to the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_eq(a,b) are shown in Figure 4-149, Figure 4-150, Figure 4-151, and
Figure 4-152.

Figure 4-149. All Equal of Sixteen Integer Elements (8-bits)
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vector signed char vector signed char

vector signed char vector bool char

vector bool char vector unsigned char

vector bool char vector signed char

vector bool char vector bool char
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Figure 4-150. All Equal of Eight Integer Elements (16-Bit)

Figure 4-151. All Equal of Four Integer Elements (32-Bit)
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Figure 4-152. All Equal of Four Floating-Point Elements (32-Bit)
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vec_all_ge vec_all_ge
All Elements Greater Than or Equal

d = vec_all_ge(a,b)

n ¬ number of elements
if each ai ³ bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_all_ge returns 1 if every element of a is greater than or equal to the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_ge(a,b) are shown in Figure 4-153, Figure 4-154, Figure 4-155, and
Figure 4-156.

Figure 4-153. All Greater Than or Equal of Sixteen Integer Elements (8-bits)
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Figure 4-154. All Greater Than or Equal of Eight Integer Elements (16-Bit)

Figure 4-155. All Greater Than or Equal of Four Integer Elements (32-Bit)
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Figure 4-156. All Greater Than or Equal of Four Floating-Point Elements (32-Bit)
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vec_all_gt vec_all_gt
All Elements Greater Than

d = vec_all_gt(a,b)

n ¬ number of elements
if each ai > bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_all_gt returns 1 if every element of a is greater than the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_gt(a,b) are shown in Figure 4-157, Figure 4-158, Figure 4-159, and
Figure 4-160.

Figure 4-157. All Greater Than of Sixteen Integer Elements (8-bits)
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Figure 4-158. All Greater Than of Eight Integer Elements (16-Bit)

Figure 4-159. All Greater Than of Four Integer Elements (32-Bit)

>> >>>>>>

a

b

0Element® 2 3 4 5 6 71

d

&

d a b Maps to

int

vector unsigned short vector unsigned short

vcmpgtuh. x,a,bvector unsigned short vector bool short

vector bool short vector unsigned short

vector signed short vector signed short

vcmpgtsh. x,a,bvector signed short vector bool short

vector bool short vector signed short

>>>>

a

b

0Element® 2 31

d

&

d a b Maps to

int

vector unsigned int vector unsigned int

vcmpgtuw. x,a,bvector unsigned int vector bool int

vector bool int vector unsigned int

vector signed int vector signed int

vcmpgtsw. x,a,bvector signed int vector bool int

vector bool int vector signed int
MOTOROLA Chapter 4. AltiVec Operations and Predicates 4-141



AltiVec Predicates  
Figure 4-160. All Greater Than of Four Floating-Point Elements (32-Bit)
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vec_all_in vec_all_in
All Elements in Bounds

d = vec_all_in(a,b)

if each ai £ bi and ai ³ -bi, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_in returns 1 if every element of a is less than or equal to the
corresponding element of b (high bound) and greater than or equal to the negative (NEG)
of the corresponding element of b (low bound). Otherwise, it returns 0. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_all_in(a,b) are
shown in Figure 4-161.

Figure 4-161. All in Bounds of Four Floating-Point Elements (32-Bit)
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vec_all_le vec_all_le
All Elements Less Than or Equal

d = vec_all_le(a,b)

n ¬ number of elements
if each ai £ bi, where i ranges from 0 to n-1
then d ¬ 0
else d ¬ 1

The predicate vec_all_le returns 1 if every element of a is less than or equal to the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_le(a,b) are shown in Figure 4-162, Figure 4-163, Figure 4-164, and
Figure 4-165.

Figure 4-162. All Less Than or Equal of Sixteen Integer Elements (8-bits)
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Figure 4-163. All Less Than or Equal of Eight Integer Elements (16-Bit)

Figure 4-164. All Less Than or Equal of Four Integer Elements (32-Bit)
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Figure 4-165. All Less Than or Equal of Four Floating-Point Elements (32-Bit)
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vec_all_lt vec_all_lt
All Elements Less Than

d = vec_all_lt(a,b)

n ¬ number of elements
if each ai < bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_all_lt returns 1 if every element of a is less than the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_lt(a,b) are shown in Figure 4-166, Figure 4-167, Figure 4-168, and
Figure 4-169.

Figure 4-166. All Less Than of Sixteen Integer Elements (8-bits)
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Figure 4-167. All Less Than of Eight Integer Elements (16-Bit)

Figure 4-168. All Less Than of Four Integer Elements (32-Bit)
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Figure 4-169. All Less Than of Four Floating-Point Elements (32-Bit)
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vec_all_nan vec_all_nan
All Elements Not a Number

d = vec_all_nan(a)

if each ISNaN(ai) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_nan returns 1 if every element of a is Not a Number (NaN).
Otherwise, it returns 0. 

The operation is independent of VSCR[NJ].

The valid argument type and corresponding result type for d = vec_all_nan(a) are
shown in Figure 4-170.

Figure 4-170. All NaN of Four Floating-Point Elements (32-Bit)
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vec_all_ne vec_all_ne
All Elements Not Equal

d = vec_all_ne(a,b)

n ¬ number of elements
if each ai != bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_all_ne returns 1 if every element of a is not equal to (!=) the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_all_ne(a,b) are shown in Figure 4-171, Figure 4-172, Figure 4-173, and
Figure 4-174.

Figure 4-171. All Not Equal of Sixteen Integer Elements (8-bits)
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Figure 4-172. All Not Equal of Eight Integer Elements (16-Bit)

Figure 4-173. All Not Equal of Four Integer Elements (32-Bit)
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Figure 4-174. All Not Equal of Four Floating-Point Elements (32-Bit)
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vec_all_nge vec_all_nge
All Elements Not Greater Than or Equal

d = vec_all_nge(a,b)

if each NGE(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_nge returns 1 if every element of a is not greater than or equal to
(NGE) the corresponding element of b. Otherwise, it returns 0. Not greater than or equal
can mean either less than or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_all_nge(a,b)
are shown in Figure 4-175.

Figure 4-175. All Not Greater Than or Equal of Four Floating-Point Elements (32-Bit)
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vec_all_ngt vec_all_ngt
All Elements Not Greater Than

d = vec_all_ngt(a,b)

if each NGT(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_ngt returns 1 if every element of a is not greater than (NGT) the
corresponding element of b. Otherwise, it returns 0. Not greater than can either mean less
than or equal to or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_all_ngt(a,b)
is shown in Figure 4-176.

Figure 4-176. All Not Greater Than of Four Floating-Point Elements (32-Bit)
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vec_all_nle vec_all_nle
All Elements Not Less Than or Equal

d = vec_all_nle(a,b)

if each NLE(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_nle returns 1 if every element of a is not less than or equal to
(NLE) the corresponding element of b. Otherwise, it returns 0. Not less than or equal to can
either mean greater than or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_all_nle(a,b)
are shown in Figure 4-177.

Figure 4-177. All Not Less Than or Equal of Four Floating-Point Elements (32-Bit)
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vec_all_nlt vec_all_nlt
All Elements Not Less Than

d = vec_all_nlt(a,b)

if each NLT(ai, bi), where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_nlt returns 1 if every element of a is not less than (NLT) the
corresponding element of b. Otherwise, it returns 0. Not less than can either mean greater
than or equal to or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid argument types and the corresponding result type for d = vec_all_nlt(a,b)
are shown in Figure 4-178.

Figure 4-178. All Not Less Than of Four Floating-Point Elements (32-Bit)
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vec_all_numeric vec_all_numeric
All Elements Numeric

d = vec_all_numeric(a)

if each ISNUM(ai) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_all_numeric returns 1 if every element of a is numeric. Otherwise, it
returns 0.

The operation is independent of VSCR[NJ].

The valid argument types and the corresponding result type for d = vec_all_numeric(a)

are shown in Figure 4-179.

Figure 4-179. All Numeric of Four Floating-Point Elements (32-Bit)
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vec_any_eq vec_any_eq
Any Element Equal

d = vec_any_eq(a,b)

n ¬ number of elements
if any ai =int bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_eq returns 1 if any element of a is equal to the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_any_eq(a,b) are shown in Figure 4-180, Figure 4-181, Figure 4-182, and
Figure 4-183.

Figure 4-180. Any Equal of Sixteen Integer Elements (8-bits)
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Figure 4-181. Any Equal of Eight Integer Elements (16-Bit)

Figure 4-182. Any Equal of Four Integer Elements (32-Bit)
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Figure 4-183. Any Equal of Four Floating-Point Elements (32-Bit)
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vec_any_ge vec_any_ge
Any Element Greater Than or Equal

d = vec_any_ge(a,b)

n ¬ number of elements
if any ai ³ bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_ge returns 1 if any element of a is greater than or equal to the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_any_ge(a,b) are shown in Figure 4-184, Figure 4-185, Figure 4-186, and
Figure 4-187.

Figure 4-184. Any Greater Than or Equal of Sixteen Integer Elements (8-bits)
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Figure 4-185. Any Greater Than or Equal of Eight Integer Elements (16-Bit)

Figure 4-186. Any Greater Than or Equal of Four Integer Elements (32-Bit)
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Figure 4-187. Any Greater Than or Equal of Four Floating-Point Elements (32-Bit)
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vec_any_gt vec_any_gt
Any Element Greater Than

d = vec_any_gt(a,b)

n ¬ number of elements
if any ai > bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_gt returns 1 if any element of a is greater than the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_any_gt(a,b) are shown in Figure 4-188, Figure 4-189, Figure 4-190, and
Figure 4-191.

Figure 4-188. Any Greater Than of Sixteen Integer Elements (8-bits)
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Figure 4-189. Any Greater Than of Eight Integer Elements (16-Bit)

Figure 4-190. Any Greater Than of Four Integer Elements (32-Bit)
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Figure 4-191. Any Greater Than of Four Floating-Point Elements (32-Bit)
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vec_any_le vec_any_le
Any Element Less Than or Equal

d = vec_any_le(a,b)

n ¬ number of elements
if any ai £ bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_le returns 1 if any element of a is less than or equal to the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for
d = vec_any_le(a,b) are shown in Figure 4-192, Figure 4-193, Figure 4-194, and
Figure 4-195.

Figure 4-192. Any Less Than or Equal of Sixteen Integer Elements (8-bits)
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Figure 4-193. Any Less Than or Equal of Eight Integer Elements (16-Bit)

Figure 4-194. Any Less Than or Equal of Four Integer Elements (32-Bit)
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Figure 4-195. Any Less Than or Equal of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates
vec_any_lt vec_any_lt
Any Element Less Than

d = vec_any_lt(a,b)

n ¬ number of elements
if any ai < bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_lt returns 1 if any element of a is less than the corresponding
element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result type for 
d = vec_any_lt(a,b) are shown in Figure 4-196, Figure 4-197, Figure 4-198, and
Figure 4-199.

Figure 4-196. Any Less Than of Sixteen Integer Elements (8-bits)
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Figure 4-197. Any Less Than of Eight Integer Elements (16-Bit)

Figure 4-198. Any Less Than of Four Integer Elements (32-Bit)
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AltiVec Predicates
Figure 4-199. Any Less Than of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates  
vec_any_nan vec_any_nan
Any Element Not a Number

d = vec_any_nan(a)

if any ISNaN(ai) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_nan returns 1 if any element of a is Not a Number (NaN).
Otherwise, it returns 0. 

The operation is independent of VSCR[NJ].

The valid argument type and corresponding result type for d = vec_any_nan(a) are
shown in Figure 4-200.

Figure 4-200. Any NaN of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates
vec_any_ne vec_any_ne
Any Element Not Equal

d = vec_any_ne(a,b)

n ¬ number of elements
if any ai != bi, where i ranges from 0 to n-1
then d ¬ 1
else d ¬ 0

The predicate vec_any_ne returns 1 if any element of a is not equal to (!=) the
corresponding element of b. Otherwise, it returns 0. 

For vector float argument types, if VSCR[NJ] = 1, every denormalized ßoating-point
operand element is truncated to 0 before the comparison.

The valid combinations of argument types and the corresponding result types for 
d = vec_any_ne(a,b) are shown in Figure 4-201, Figure 4-202, Figure 4-203, and
Figure 4-204.

Figure 4-201. Any Not Equal of Sixteen Integer Elements (8-bits)
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AltiVec Predicates  
Figure 4-202. Any Not Equal of Eight Integer Elements (16-Bit)

Figure 4-203. Any Not Equal of Four Integer Elements (32-Bit)
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AltiVec Predicates
Figure 4-204. Any Not Equal of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates  
vec_any_nge vec_any_nge
Any Element Not Greater Than or Equal

d = vec_any_nge(a,b)

if any NGE(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_nge returns 1 if any element of a is not greater than or equal to
(NGE) the corresponding element of b. Otherwise, it returns 0. Not greater than or equal
can either mean less than or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid combination of argument types and the corresponding result type for 
d = vec_any_nge(a,b) are shown in Figure 4-205.

Figure 4-205. Any Not Greater Than or Equal of Four Floating-Point Elements 
(32-Bit)
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AltiVec Predicates
vec_any_ngt vec_any_ngt
Any Element Not Greater Than

d = vec_any_ngt(a,b)

if any NGT(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_ngt returns 1 if any element of a is not greater than (NGT) the
corresponding element of b. Otherwise, it returns 0. Not greater than can either mean less
than or equal to or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid combination of argument types and the corresponding result type for 
d = vec_any_ngt(a,b) are shown in Figure 4-206.

Figure 4-206. Any Not Greater Than of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates  
vec_any_nle vec_any_nle
Any Element Not Less Than or Equal

d = vec_any_nle(a,b)

if any NLE(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_nle returns 1 if any element of a is not less than or equal to (NLE)
the corresponding element of b. Otherwise, it returns 0. Not less than or equal to can either
mean greater than or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid combination of argument types and the corresponding result type for 
d = vec_any_nle(a,b) are shown in Figure 4-207.

Figure 4-207. Any Not Less Than or Equal of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates
vec_any_nlt vec_any_nlt
Any Element Not Less Than

d = vec_any_nlt(a,b)

if any NLT(ai, bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_nlt returns 1 if any element of a is not less than (NLT) the
corresponding element of b. Otherwise, it returns 0. Not less than can either mean greater
than or equal to or that one of the elements is NaN. 

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid combination of argument types and the corresponding result type for 
d = vec_any_nlt(a,b) are shown in Figure 4-208.

Figure 4-208. Any Not Less Than of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates  
vec_any_numeric vec_any_numeric
Any Element Numeric

d = vec_any_numeric(a)

if any ISNUM(ai) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_numeric returns 1 if any element of a is numeric. Otherwise, it
returns 0.

The operation is independent of VSCR[NJ].

The valid argument type and the corresponding result type for d = vec_any_numeric(a)
are shown in Figure 4-209.

Figure 4-209. Any Numeric of Four Floating-Point Elements (32-Bit)
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AltiVec Predicates
vec_any_out vec_any_out
Any Element Out of Bounds

d = vec_any_out(a,b)

if any NLE(ai, bi) = 1 or any NGE(ai, -bi) = 1, where i ranges from 0 to 3
then d ¬ 1
else d ¬ 0

The predicate vec_any_out returns 1 if any element of a is greater than the corresponding
element of b (high bound) or is less than the negative (NEG) of the corresponding element
of b (low bound). Otherwise, it returns 0.

If VSCR[NJ] = 1, every denormalized ßoating-point operand element is truncated to 0
before the comparison.

The valid combination of argument types and the corresponding result type for 
d = vec_any_out(a,b) are shown in Figure 4-210.

Figure 4-210. Any Out of Bounds of Four Floating-Point Elements (32-Bit)
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Appendix A 
AltiVec Instruction 
Set/Operation/Predicate Cross-
Reference
A0
A0

This appendix cross-references the instruction set for the AltiVecª technology, the AltiVec
vector operations, and the AltiVec predicates. Table A-1 lists the instructions and the
alternate vector operation form cross-referenced to the vector operations and predicates.

Table A-1. Instructions to Operations/Predicates Cross-Reference  

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate

dss vec_dss vec_dss

dssall vec_dssall vec_dssall

dst vec_dst vec_dst

dstst vec_dstst vec_dstst

dststt vec_dststt vec_dststt

dstt vec_dstt vec_dstt

lvebx vec_lvebx vec_lde

lvehx vec_lvehx vec_lde

lvewx vec_lvewx vec_lde

lvsl vec_lvsl vec_lvsl

lvsr vec_lvsr vec_lvsr

lvx vec_lvx vec_ld

lvxl vec_lvxl vec_lvxl

mfvscr vec_mfvscr vec_mfvscr

mtvscr vec_mtvscr vec_mtvscr

stvebx vec_stvebx vec_ste

stvehx vec_stvehx vec_ste

stvewx vec_stvewx vec_ste
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stvx vec_stvx vec_st

stvxl vec_stvxl vec_stl

vaddcuw vec_vaddcuw vec_addc

vaddfp vec_vaddfp vec_add

vaddsbs vec_vaddsbs vec_adds

vaddshs vec_vaddshs vec_adds

vaddsws vec_vaddsws vec_adds

vaddubm vec_vaddubm vec_add

vaddubs vec_vaddubs vec_adds

vadduhm vec_vadduhm vec_add

vadduhs vec_vadduhs vec_adds

vadduwm vec_vadduwm vec_add

vadduws vec_vadduws vec_adds

vand vec_vand vec_and

vandc vec_vandc vec_andc

vavgsb vec_vavgsb vec_avg

vavgsh vec_vavgsh vec_avg

vavgsw vec_vavgsw vec_avg

vavgub vec_vavgub vec_avg

vavguh vec_vavguh vec_avg

vavguw vec_vavguw vec_avg

vcfsx vec_vcfsx vec_ctf

vcfux vec_vcfux vec_ctf

vcmpbfpx vec_vcmpbfpx vec_cmpb

vcmpbfp. — vec_all_in, vec_any_out

vcmpeqfx vec_vcmpeqfx vec_cmpeq

vcmpeqfp. — vec_all_eq, vec_all_nan, vec_all_ne, 
vec_all_numeric, vec_any_eq, 

vec_any_nan, vec_any_ne, 
vec_any_numeric

vcmpequbx vec_vcmpequbx vec_cmpeq

vcmpequb. — vec_all_eq, vec_all_ne, vec_any_eq, 
vec_any_ne

vcmpequhx vec_vcmpequhx vec_cmpeq

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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vcmpequh. — vec_all_eq, vec_all_ne, vec_any_eq, 
vec_any_ne

vcmpequwx vec_vcmpequwx vec_cmpeq

vcmpequw. — vec_all_eq, vec_all_ne, vec_any_eq, 
vec_any_ne

vcmpgefpx vec_vcmpgefpx vec_cmpge, vec_cmple

vcmpgefp. — vec_all_ge, vec_all_le, vec_all_nge, 
vec_all_nle, vec_any_ge, vec_any_le, 

vec_any_nge, vec_any_nle

vcmpgtfpx vec_vcmpgtfpx vec_cmpgt, vec_cmplt

vcmpgtfp. — vec_all_gt, vec_all_lt, vec_all_ngt, 
vec_all_nlt, vec_any_gt, vec_any_lt, 

vec_any_ngt, vec_any_nlt

vcmpgtsbx vec_vcmpgtsbx vec_cmpgt, vec_cmplt

vcmpgtsb. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vcmpgtshx vec_vcmpgtshx vec_cmpgt, vec_cmplt

vcmpgtsh. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vcmpgtswx vec_vcmpgtswx vec_cmpgt, vec_cmplt

vcmpgtsw. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vcmpgtubx vec_vcmpgtubx vec_cmpgt, vec_cmplt

vcmpgtub. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vcmpgtuhx vec_vcmpgtuhx vec_cmpgt, vec_cmplt

vcmpgtuh. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vcmpgtuwx vec_vcmpgtuwx vec_cmpgt, vec_cmplt

vcmpgtuw. — vec_all_ge, vec_all_gt, vec_all_le, 
vec_all_lt, vec_any_ge, vec_any_gt, 

vec_any_le, vec_any_lt

vctsxs vec_vctsxs vec_cts

vctuxs vec_vctuxs vec_ctu

vexptefp vec_vexptefp vec_expte

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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vlogefp vec_vlogefp vec_loge

vmaddfp vec_vmaddfp vec_madd

vmaxfp vec_vmaxfp vec_max

vmaxsb vec_vmaxsb vec_max

vmaxsh vec_vmaxsh vec_max

vmaxsw vec_vmaxsw vec_max

vmaxub vec_vmaxub vec_max

vmaxuh vec_vmaxuh vec_max

vmaxuw vec_vmaxuw vec_max

vmhaddshs vec_vmhaddshs vec_madds

vmhraddshs vec_vmhraddshs vec_mradds

vminfp vec_vminfp vec_min

vminsb vec_vminsb vec_min

vminsh vec_vminsh vec_min

vminsw vec_vminsw vec_min

vminub vec_vminub vec_min

vminuh vec_vminuh vec_min

vminuw vec_vminuw vec_min

vmladduhm vec_vmladduhm vec_mladd

vmrghb vec_vmrghb vec_mergeh

vmrghh vec_vmrghh vec_mergeh

vmrghw vec_vmrghw vec_mergeh

vmrglb vec_vmrglb vec_mergel

vmrglh vec_vmrglh vec_mergel

vmrglw vec_vmrglw vec_mergel

vmsummbm vec_vmsummbm vec_msum

vmsumshm vec_vmsumshm vec_msum

vmsumshs vec_vmsumshs vec_msums

vmsumubm vec_vmsumubm vec_msum

vmsumuhm vec_vmsumuhm vec_msum

vmsumuhs vec_vmsumuhs vec_msums

vmulesb vec_vmulesb vec_mule

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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vmulesh vec_vmulesh vec_mule

vmuleub vec_vmuleub vec_mule

vmuleuh vec_vmuleuh vec_mule

vmulosb vec_vmulosb vec_mulo

vmulosh vec_vmulosh vec_mulo

vmuloub vec_vmuloub vec_mulo

vmulouh vec_vmulouh vec_mulo

vnmsubfp vec_vnmsubfp vec_nmsub

vnor vec_vnor vec_nor

vor vec_vor vec_or

vperm vec_vperm vec_perm

vpkpx vec_vpkpx vec_packpx

vpkshss vpkshss vec_packs

vpkshus vec_vpkshus vec_packsu

vpkswss vec_vpkswss vec_packs

vpkswus vec_vpkswus vec_packsu

vpkuhum vec_vpkuhum vec_pack

vpkuhus vec_vpkuhus vec_packs, vec_packsu

vpkuwum vec_vpkuwum vec_pack

vpkuwus vec_vpkuwus vec_packs, vec_packsu

vrefp vec_vrefp vec_re

vrfim vec_vrfim vec_floor

vrfin vec_vrfin vec_round

vrfip vec_vrfip vec_ceil

vrfiz vec_vrfiz vec_trunc

vrlb vec_vrlb vec_rl

vrlh vec_vrlh vec_rl

vrlw vec_vrlw vec_rl

vrsqrtefp vec_vrsqrtefp vec_rsqrte

vsel vec_vsel vec_sel

vsl vec_vsl vec_sll

vslb vec_vslb vec_sl

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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vsldoi vec_vsldoi vec_sld

vslh vec_vslh vec_sl

vslo vec_vslo vec_slo

vslw vec_vslw vec_sl

vspltb vec_vspltb vec_splat

vsplth vec_vsplth vec_splat

vspltisb vec_vspltisb vec_splat_s8, vec_splat_u8

vspltish vec_vspltish vec_splat_s16, vec_splat_u16

vspltisw vec_vspltisw vec_splat_s32, vec_splat_u32

vspltw vec_vspltw vec_splat

vsr vec_vsr vec_srl

vsrab vec_vsrab vec_sra

vsrah vec_vsrah vec_sra

vsraw vec_vsraw vec_sra

vsrb vec_vsrb vec_sr

vsrh vec_vsrh vec_sr

vsro vec_vsro vec_sro

vsrw vec_vsrw vec_sr

vsubcuw vec_vsubcuw vec_subc

vsubfp vec_vsubfp vec_sub

vsubsbs vec_vsubsbs vec_subs

vsubshs vec_vsubshs vec_subs

vsubsws vec_vsubsws vec_subs

vsububm vec_vsububm vec_sub

vsububs vec_vsububs vec_subs

vsubuhm vec_vsubuhm vec_sub

vsubuhs vec_vsubuhs vec_subs

vsubuwm vec_vsubuwm vec_sub

vsubuws vec_vsubuws vec_subs

vsumsws vec_vsumsws vec_sums

vsum2sws vec_vsum2sws vec_sum2s

vsum4sbs vec_vsum4sbs vec_sum4s

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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Table A-2 lists the vector operations cross-referenced to the AltiVec instructions.

vsum4shs vec_vsum4shs vec_sum4s

vsum4ubs vec_vsum4ubs vec_sum4s

vupkhpx vec_vupkhpx vec_unpackh

vupkhsb vec_vupkhsb vec_unpackh

vupkhsh vec_vupkhsh vec_unpackh

vupklpx vec_vupklpx vec_unpackl

vupklsb vec_vupklsb vec_unpackl

vupklsh vec_vupklsh vec_unpackl

vxor vec_vxor vec_xor

Table A-2. Operations to Instructions Cross-Reference  

SpeciÞc Operation AltiVec Instruction(s)

vec_abs vspltisb, vsububm, vmaxsb

vspltisb, vsubuhm, vmaxsh

vspltisb, vsubuwm, vmaxsw

vspltisw, vslw, vandc

vec_abss vspltisb, vsubsbs, vmaxsb

vspltisb, vsubshs, vmaxsh

vspltisb, vsubsws, vmaxsw

vec_add vaddfp

vaddubm

vadduhm

vadduwm

vec_addc vaddcuw

vec_adds vaddsbs

vaddshs

vaddsws

vaddubs

vadduhs

vadduws

vec_and vand

Table A-1. Instructions to Operations/Predicates Cross-Reference  (Continued)

AltiVec Instruction SpeciÞc Operation  Generic Operation/Predicate
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vec_andc vandc

vec_avg vavgsb

vavgsh

vavgsw

vavgub

vavguh

vavguw

vec_ceil vrfip

vec_cmpb vcmpbfpx

vec_cmpeq vcmpeqfx

vcmpequbx

vcmpequhx

vcmpequwx

vec_cmpge vcmpgefpx

vec_cmpgt vcmpgtfpx

vcmpgtsbx

vcmpgtshx

vcmpgtswx

vcmpgtubx

vcmpgtuhx

vcmpgtuwx

vec_cmple vcmpgefpx

vec_cmplt vcmpgtfpx

vcmpgtsbx

vcmpgtshx

vcmpgtswx

vcmpgtubx

vcmpgtuhx

vcmpgtuwx

vec_ctf vcfsx

vcfux

vec_cts vctsxs

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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vec_ctu vctuxs

vec_dss dss

vec_dssall dssall

vec_dst dst

vec_dstst dstst

vec_dststt dststt

vec_dstt dstt

vec_expte vexptefp

vec_floor vrfim

vec_ld lvx

vec_lde lvebx

lvehx

lvewx

vec_ldl lvxl

vec_loge vlogefp

vec_lvsl lvsl

vec_lvsr lvsr

vec_madd vmaddfp

vec_madds vmhaddshs

vec_max vmaxfp

vmaxsb

vmaxsh

vmaxsw

vmaxub

vmaxuh

vmaxuw

vec_mergeh vmrghw

vmrghb

vmrghh

vec_mergel vmrglw

vmrglb

vmrglh

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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vec_mfvscr mfvscr

vec_min vminfp

vminsb

vminsh

vminsw

vminub

vminuh

vminuw

vec_mladd vmladduhm

vec_mradds vmhraddshs

vec_msum vmsummbm

vmsumshm

vmsumubm

vmsumuhm

vec_msums vmsumshs

vec_msums vmsumuhs

vec_mtvscr mtvscr

vec_mule vmulesb

vmulesh

vmuleub

vmuleuh

vec_mulo vmulosb

vmulosh

vmuloub

vmulouh

vec_nmsub vnmsubfp

vec_nor vnor

vec_or vor

vec_pack vpkuhum

vpkuwum

vec_packpx vpkpx

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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vec_packs vpkshss

vpkswss

vpkuhus

vpkuwus

vec_packsu vpkuhus

vpkuwus

vpkshus

vpkswus

vec_perm vperm

vec_re vrefp

vec_rl vrlb

vrlh

vrlw

vec_round vrfin

vec_rsqrte vrsqrtefp

vec_sel vsel

vec_sl vslb

vslh

vslw

vec_sld vsldoi

vec_sll vsl

vec_slo vslo

vec_splat vspltb

vsplth

vspltw

vec_splat_s16 vspltish

vec_splat_s32 vspltisw

vec_splat_s8 vspltisb

vec_splat_u16 vspltish

vec_splat_u32 vspltisw

vec_splat_u8 vspltisb

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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vec_sr vsrb

vsrh

vsrw

vec_sra vsrab

vsrah

vsraw

vec_srl vsr

vec_sro vsro

vec_st stvx

vec_ste stvebx

stvehx

stvewx

vec_stl stvxl

vec_sub vsubfp

vsububm

vsubuhm

vsubuwm

vec_subc vsubcuw

vec_subs vsubsbs

vsubshs

vsubsws

vsububs

vsubuhs

vsubuws

vec_sum2s vsum2sws

vec_sum4s vsum4sbs

vsum4shs

vsum4ubs

vec_sums vsumsws

vec_trunc vrfiz

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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vec_unpackh vupkhpx

vupkhsb

vupkhsh

vec_unpackl vupklpx

vupklsb

vupklsh

vec_xor vxor

Table A-2. Operations to Instructions Cross-Reference  (Continued)

SpeciÞc Operation AltiVec Instruction(s)
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Table A-3 lists the predicates cross-referenced to the AltiVec instructions.

Table A-3. Predicate to Instruction Cross-Reference  

Predicate AltiVec Instruction

vec_all_eq vcmpeqfp.

vcmpequb.

vcmpequh.

vcmpequw.

vec_all_ge vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgefp.

vec_all_gt vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgtfp.

vec_all_in vcmpbfp.

vec_all_le vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgefp.
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vec_all_lt vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgtfp.

vec_all_nan vcmpeqfp.

vec_all_ne vcmpeqfp.

vcmpequb.

vcmpequh.

vcmpequw.

vec_all_nge vcmpgefp.

vec_all_ngt vcmpgtfp.

vec_all_nle vcmpgefp.

vec_all_nlt vcmpgtfp.

vec_all_numeric vcmpeqfp.

vec_any_eq vcmpeqfp.

vcmpequb.

vcmpequh.

vcmpequw.

vec_any_ge vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgefp.

Table A-3. Predicate to Instruction Cross-Reference  (Continued)

Predicate AltiVec Instruction
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vec_any_gt vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgtfp.

vec_any_le vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgefp.

vec_any_lt vcmpgtsb.

vcmpgtsh.

vcmpgtsw.

vcmpgtub.

vcmpgtuh.

vcmpgtuw.

vcmpgtfp.

vec_any_nan vcmpeqfp.

vec_any_ne vcmpeqfp.

vcmpequb.

vcmpequh.

vcmpequw.

vec_any_nge vcmpgefp.

vec_any_ngt vcmpgtfp.

vec_any_nle vcmpgefp.

vec_any_nlt vcmpgtfp.

vec_any_numeric vcmpeqfp.

vec_any_out vcmpbfp.

Table A-3. Predicate to Instruction Cross-Reference  (Continued)

Predicate AltiVec Instruction
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Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and deÞnitions included in the glossary are reprinted from IEEE
Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are deÞned in the context of how they are used in this book.

Architecture. A detailed speciÞcation of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Biased exponent. An exponent whose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-signiÞcant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-signiÞcant byte. See Little-endian.

Cache. High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

Cast. A cast expression consists of a left parenthesis, a type name, a right
parenthesis, and an operand expression. The cast causes the operand
value to be converted to the type name within the parentheses.

Denormalized number. A nonzero ßoating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading signiÞcand bit is zero.
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Effective address (EA). The 32- or 64-bit address speciÞed for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to either a physical memory address or an I/O address.

Exponent. In the binary representation of a ßoating-point number, the
exponent is the component that normally signiÞes the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Floating-point register (FPR). Any of the 32 registers in the ßoating-point
register Þle. These registers provide the source operands and
destination results for ßoating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store ßoating-
point vlaues in double-precision format.

Fraction. In the binary representation of a ßoating-point number, the Þeld of
the signiÞcand that lies to the right of its implied binary point.

General-purpose register (GPR). Any of the 32 registers in the general-
purpose register Þle. These registers provide the source operands and
destination results for all integer data manipulation instructions.
Integer load instructions move data from memory to GPRs and store
instructions move data from GPRs to memory.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that deÞnes operations and representations of binary
ßoating-point arithmetic.

Inexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the inÞnitely precise value with unbounded range.

Least-signiÞcant bit (lsb). The bit of least value in an address, register, data
element, or instruction encoding. 

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-signiÞcant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-signiÞcant byte. See Big-endian.

Mnemonic. The abbreviated name of an instruction used for coding. 
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Modulo. A value v which lies outside the range of numbers representable by
an n-bit wide destination type is replaced by the low-order n bits of
the twoÕs complement representation of v.

Most-signiÞcant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding. 

NaN. An abbreviation for ÔNot a NumberÕ; a symbolic entity encoded in
floating-point format. There are two types of NaNsÑsignaling NaNs
(SNaNs) and quiet NaNs (QNaNs).

Normalization. A process by which a ßoating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a ßoating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1. 

 Overßow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not
be representable in 32 bits. 

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on inÞnities or on NaNs, when invalid. See
Signaling NaN.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reßect the result of the
operation. Its presence is denoted by a Ò.Ó following the mnemonic.

Reserved Þeld. In a register, a reserved Þeld is one that is not assigned a
function. A reserved Þeld may be a single bit. The handling of
reserved bits is implementation-dependent. Software is permitted to
write any value to such a bit. A subsequent reading of the bit returns
0 if the value last written to the bit was 0 and returns an undeÞned
value (0 or 1) otherwise.
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RISC (reduced instruction set computing). An architecture characterized
by Þxed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses. 

Saturate. A value v which lies outside the range of numbers representable by
a destination type is replaced by the representable number closest to
v.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is speciÞed as arithmetic operands. See Quiet
NaN. 

SigniÞcand. The component of a binary ßoating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction Þeld to the right.

Splat. A splat instruction will take one element and replicate (splat) that value
into a vector register.

Sticky bit. A bit that when set must be cleared explicitly.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations. 

Tiny. A ßoating-point value that is too small to be represented for a particular
precision format, including denormalized numbers; they do not
include ±0.

Underßow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underßow can happen if two ßoating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.
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Vector Literal. A vector literal is a constant expression with a value that is
taken as a vector type. See Section 2.5.1, ÒVector LiteralsÓ for
details.

Vector Register (VR). Any of the 32 registers in the vector register Þle. Each
vector register is 128 bits wide. These registers can provide the
source operands and destination results for AltiVec instructions.

Word. A 32-bit data element. 

VV

VW
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Symbols
#pragma altivec_codegen 2-10
#pragma altivec_model 2-10
#pragma altivec_vrsave 2-10
__pixel 2-2, 2-3
__va_arg 3-9
__vector 2-2, 2-3

A
ABI 1-1, 1-2, 3-1
ABS 4-4, 4-8, 4-10
AIX ABI 3-1, 3-2, 3-10

stack frame 3-5
aligning data from an unaligned address 4-54, 4-55
alignment

aggregates and unions containing vector types 2-3
non-vector types 2-3
vector types 2-3

AltiVec registers 3-1
Apple Macintosh ABI 3-1, 3-2, 3-10

stack frame 3-5

B
bool 2-2, 2-3
BorrowOut 4-4, 4-121
BoundAlign 4-4, 4-48, 4-50, 4-51, 4-112, 4-114, 

4-116
byte ordering 4-3

C
cache touches

all 4-37
loads 4-38
stores 4-40
tag a 4-36
transient loads 4-44
transient stores 4-42

calloc 3-10
CarryOut 4-4, 4-15
casts 2-5
Ceil 4-4, 4-23
condition register CR6 2-9
cross-reference

AltiVec Instructions to Operations/Predicates A-1
AltiVec Operations to Instructions A-7
AltiVec Predicates to Instructions A-14

D
data stream 4-36, 4-37, 4-38, 4-40, 4-42, 4-44
DataStreamPrefetchControl 4-36, 4-37, 4-38, 4-40, 4-

42, 4-44
debugging information 3-11
DWARF 3-12

E
EABI 3-1, 3-2, 3-3, 3-9
Effective Address 4-48, 4-50, 4-51, 4-54, 4-55, 4-112,

4-114, 4-116

F
Floor 4-5, 4-47
FP2xEst 4-5, 4-46
FPLog2Est 4-5, 4-53
FPRecipEst 4-5, 4-85
fprintf 3-12
fscanf 3-12

G
generic AltiVec operation 2-8

H
high-level language interface 1-1, 2-1
high-order byte numbering 4-3

I
ISNaN 4-5, 4-150, 4-174
ISNUM 4-5, 4-158, 4-182

L
longjmp 3-11

M
malloc 3-10
MAX 4-5, 4-58
MEM 4-5, 4-48, 4-50, 4-51, 4-112, 4-114, 4-116
MIN 4-5, 4-66
mod 4-50

N
NaN 4-5, 4-24, 4-58, 4-66, 4-85, 4-150, 4-154, 4-155,
MOTOROLA Index  Index-1



INDEX
4-156, 4-157, 4-174, 4-178, 4-179, 4-180, 4-181
NEG 4-5, 4-183
NGE 4-5, 4-154, 4-178, 4-183
NGT 4-5, 4-155, 4-179
NJ bit 4-2, 4-8, 4-12, 4-23, 4-24, 4-25, 4-27, 4-28, 4-

30, 4-31, 4-33, 4-34, 4-35, 4-46, 4-47, 4-53, 4-56,
4-58, 4-66, 4-77, 4-85, 4-88, 4-89, 4-118, 4-127,
4-134, 4-137, 4-140, 4-143, 4-144, 4-147, 4-150,
4-151, 4-154, 4-155, 4-156, 4-157, 4-158, 4-159,
4-162, 4-165, 4-168, 4-171, 4-174, 4-175, 4-178,
4-179, 4-180, 4-181, 4-182, 4-183

NLE 4-5, 4-156, 4-180, 4-183
NLT 4-5, 4-157, 4-181
non-Java mode. See NJ bit
notation and conventions 4-4

O
operation description format 4-7
operator new 3-10

P
parameter passing 3-9, 3-10
pixel 2-2, 2-3, 4-81, 4-128, 4-130
pointer arithmetic 2-4
pointer dereferencing 2-4
precedence rules 4-6
predicate 2-8, 4-133
printf 3-12
pseudocode 4-4

Q
QNaN 4-5, 4-58, 4-66, 4-85

R
realloc 3-10
RecipSQRTEst 4-5, 4-89
register usage conventions 3-1
RndToFPINear 4-5, 4-88
RndToFPITrunc 4-5, 4-127
RndToFPNearest 4-5, 4-56, 4-77
ROTL 4-5, 4-86
Round to Nearest 4-88
Round toward +Infinity 4-23
Round toward Zero 4-127
Round towards ÐInfinity 4-47

S
SAT bit 4-1, 4-2, 4-10, 4-16, 4-34, 4-35, 4-57, 4-70,

4-73, 4-82, 4-83, 4-122, 4-124, 4-125, 4-126
Saturate 4-5, 4-10, 4-16, 4-34, 4-35, 4-57, 4-70, 4-73,

4-82, 4-83, 4-122, 4-124, 4-125, 4-126

saturation. See SAT bit
save and restore functions 3-7
scanf 3-12
setjmp 3-11
ShiftLeft 4-5, 4-91, 4-94
ShiftRight 4-5, 4-105, 4-109
ShiftRightA 4-5, 4-107
SignExtend 4-5, 4-99, 4-100, 4-101, 4-102, 4-103, 

4-104, 4-128, 4-130
SIToFP 4-5, 4-33
sizeof 2-4
specific AltiVec operation 2-8
sprintf 3-12
sscanf 3-12
stack frame 1-2, 3-2, 3-5
SVR4 ABI 3-1, 3-2, 3-3, 3-9

T
type casting 2-5
types 2-5

U
UIToUImod 4-6, 4-80
Undefined 4-6, 4-50, 4-94, 4-109
user-level cache operations

vec_dss 4-36
vec_dssall 4-37
vec_dst 4-38
vec_dstst 4-40
vec_dststt 4-42
vec_dstt 4-44

V
va_arg 3-10
Varargs 3-9
vec_abs 4-8
vec_abss 4-10
vec_add 2-8, 2-9, 4-12
vec_addc 4-15
vec_adds 4-16
vec_addubm 2-8
vec_all_eq 2-8, 4-134
vec_all_ge 4-137
vec_all_gt 2-9, 4-140
vec_all_in 4-143
vec_all_le 4-144
vec_all_lt 2-9, 4-147
vec_all_nan 2-9, 4-150
vec_all_ne 4-151
vec_all_nge 4-154
vec_all_ngt 4-155
vec_all_nle 4-156
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vec_all_nlt 4-157
vec_all_numeric 4-158
vec_alloc 3-10
vec_and 4-18
vec_andc 4-19
vec_any_eq 4-159
vec_any_ge 4-162
vec_any_gt 4-165
vec_any_le 4-168
vec_any_lt 4-171
vec_any_nan 4-174
vec_any_ne 4-175
vec_any_nge 4-178
vec_any_ngt 4-179
vec_any_nle 4-180
vec_any_nlt 4-181
vec_any_numeric 4-182
vec_any_out 4-183
vec_avg 4-21
vec_calloc 3-10
vec_ceil 4-23
vec_cmpb 4-24
vec_cmpeq 4-25
vec_cmpge 4-27
vec_cmpgt 4-28
vec_cmple 4-30
vec_cmplt 4-31
vec_ctf 4-33
vec_cts 4-34
vec_ctu 4-35
vec_data 2-2
vec_dss 4-36
vec_dssall 4-37
vec_dst 4-38
vec_dstst 4-40
vec_dststt 4-42
vec_dstt 4-44
vec_expte 4-46
vec_floor 4-47
vec_free 3-10
vec_ld 2-4, 4-48
vec_lde 4-50
vec_ldl 2-4, 4-51
vec_loge 4-53
vec_lvsl 2-3, 4-54
vec_lvsr 2-3, 4-55
vec_madd 4-56
vec_madds 4-57
vec_malloc 3-10
vec_max 4-8, 4-10, 4-58
vec_mergeh 4-61
vec_mergel 4-63
vec_mfvscr 4-2, 4-65
vec_min 4-8, 4-10, 4-66
vec_mladd 4-69

vec_mradds 4-70
vec_msum 4-71
vec_msums 4-73
vec_mtvscr 4-74
vec_mule 4-75
vec_mulo 4-76
vec_nmsub 4-77
vec_nor 4-78
vec_or 4-79, 4-129, 4-131
vec_pack 4-80
vec_packpx 4-81
vec_packs 4-82
vec_packsu 4-83
vec_perm 2-3, 4-84
vec_re 4-85
vec_realloc 3-10
vec_rl 4-81, 4-86
vec_round 4-88
vec_rsqrte 4-89
vec_sel 4-90
vec_sl 4-91, 4-129, 4-131
vec_sld 4-93
vec_sll 4-94
vec_slo 4-96
vec_splat 4-97
vec_splat_s16 4-100
vec_splat_s32 4-101
vec_splat_s8 4-99
vec_splat_u16 4-103
vec_splat_u32 4-104
vec_splat_u8 4-102
vec_sr 4-105, 4-129, 4-131
vec_sra 4-107
vec_srl 4-109
vec_sro 4-111
vec_st 2-4, 4-112
vec_ste 4-114
vec_step 2-8
vec_stl 2-4, 4-116
vec_sub 4-8, 4-118
vec_subc 4-121
vec_subs 4-10, 4-122
vec_sum2s 4-125
vec_sum4s 4-124
vec_sums 4-126
vec_trunc 4-127
vec_unpackh 4-128, 4-129, 4-131
vec_unpackl 4-130
vec_vaddubh 2-9
vec_vaddubm 2-9
vec_vaddubs 2-9
vec_vadduhm 2-9
vec_xor 4-132
vector 2-2, 2-3
vector bool char 2-1, 2-5
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vector bool int 2-2, 2-5
vector bool long 2-2
vector bool long int 2-2
vector bool short 2-1, 2-5
vector bool short int 2-1
vector cast 2-7
vector data types 3-1
vector float 2-2, 2-5, 2-7
vector literal 2-7
vector operations, arithmetic

vec_abs 4-8
vec_abss 4-10
vec_add 4-12
vec_addc 4-15
vec_adds 4-16
vec_avg 4-21
vec_max 4-58
vec_min 4-66
vec_mule 4-75
vec_mulo 4-76
vec_sub 4-118
vec_subc 4-121
vec_subs 4-122

vector operations, compare
vec_cmpb 4-24
vec_cmpeq 4-25
vec_cmpge 4-27
vec_cmpgt 4-28
vec_cmple 4-30
vec_cmplt 4-31

vector operations, function estimate
vec_expte 4-46
vec_loge 4-53
vec_re 4-85
vec_rsqrte 4-89

vector operations, load/store
vec_ld 4-48
vec_lde 4-50
vec_ldl 4-51
vec_st 4-112
vec_ste 4-114
vec_stl 4-116

vector operations, logical
vec_and 4-18
vec_andc 4-19
vec_nor 4-78
vec_or 4-79
vec_sel 4-90
vec_xor 4-132

vector operations, merge
vec_mergeh 4-61
vec_mergel 4-63

vector operations, miscellaneous
vec_alloc 3-10

vec_calloc 3-10
vec_free 3-10
vec_malloc 3-10
vec_mfvscr 4-65
vec_mtvscr 4-74
vec_realloc 3-10
vec_step 2-8
vector cast 2-7
vector literals 2-7

vector operations, mixed arithmetic
vec_madd 4-56
vec_madds 4-57
vec_mladd 4-69
vec_mradds 4-70
vec_msum 4-71
vec_msums 4-73
vec_nmsub 4-77
vec_sum2s 4-125
vec_sum4s 4-124
vec_sums 4-126

vector operations, pack and unpack
vec_pack 4-80
vec_packpx 4-81
vec_packs 4-82
vec_packsu 4-83
vec_unpackh 4-128
vec_unpackl 4-130

vector operations, permute
vec_perm 4-84

vector operations, rounding and conversion
vec_ceil 4-23
vec_ctf 4-33
vec_cts 4-34
vec_ctu 4-35
vec_floor 4-47
vec_round 4-88
vec_trunc 4-127

vector operations, shift
vec_sld 4-93
vec_sll 4-94
vec_slo 4-96
vec_srl 4-109
vec_sro 4-111

vector operations, shift and rotate
vec_rl 4-86
vec_sl 4-91
vec_sr 4-105
vec_sra 4-107

vector operations, splat
vec_splat 4-97
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vec_splat_s16 4-100
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Index-4 AltiVec Technology Programming Interface Manual MOTOROLA



INDEX
vec_splat_u32 4-104
vec_splat_u8 4-102

vector operations, supporting alignment
vec_lvsl 4-54
vec_lvsr 4-55

vector pixel 2-2, 2-5
vector predicates

vec_all_eq 4-134
vec_all_ge 4-137
vec_all_gt 4-140
vec_all_in 4-143
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vector register 1-2
vector register saving and restoring functions 3-7
vector signed char 2-1, 2-5, 2-7
vector signed int 2-2, 2-5, 2-7
vector signed long 2-2
vector signed long int 2-2
vector signed short 2-1, 2-5, 2-7
vector signed short int 2-1
vector unsigned char 2-1, 2-5, 2-7
vector unsigned int 2-1, 2-5, 2-7
vector unsigned long 2-1
vector unsigned long int 2-1
vector unsigned short 2-1, 2-5, 2-7
vector unsigned short int 2-1
vfprintf 3-12
vprintf 3-12
VRSAVE 3-2, 3-4, 3-6, 3-11
VSCR 4-1, 4-65, 4-74
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Attention!
This book is a companion to the PowerPC Microprocessor Family: The Programming
Environments, referred to as The Programming Environments Manual. Note that the
companion Programming Environments Manual exists in two versions. See the Preface for
a description of the following two versions:

¥ PowerPC Microprocessor Family: The Programming Environments, Rev 1
Order #: MPCFPE/AD

¥ PowerPC Microprocessor Family: The Programming Environments for 32-Bit 
Microprocessors, Rev 1
Order #: MPCFPE32B/AD

Call the Motorola LDC at 1-800-441-2447 or contact your local sales ofÞce to obtain
copies.
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